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A universal dimensionality function 
for the fractal dimensions of 
Laplacian growth
J. R. Nicolás-Carlock   & J. L. Carrillo-estrada

Laplacian growth, associated to the diffusion-limited aggregation (DLA) model or the more general 
dielectric-breakdown model (DBM), is a fundamental out-of-equilibrium process that generates 
structures with characteristic fractal/non-fractal morphologies. However, despite diverse numerical and 
theoretical attempts, a data-consistent description of the fractal dimensions of the mass-distributions 
of these structures has been missing. Here, an analytical model of the fractal dimensions of the DBM 
and DLA is provided by means of a recently introduced dimensionality equation for the scaling of 
clusters undergoing a continuous morphological transition. Particularly, this equation relies on an 
effective information-function dependent on the Euclidean dimension of the embedding-space and the 
control parameter of the system. Numerical and theoretical approaches are used in order to determine 
this information-function for both DLA and DBM. In the latter, a connection to the Rényi entropies and 
generalized dimensions of the cluster is made, showing that DLA could be considered as the point of 
maximum information-entropy production along the DBM transition. The results are in good agreement 
with previous theoretical and numerical estimates for two- and three-dimensional DBM, and high-
dimensional DLA. Notably, the DBM dimensions conform to a universal description independently of 
the initial cluster-configuration and the embedding-space.

The establishment of a unified and comprehensive theory of fractal growth constitutes a great challenge given 
the great diversity and complexity of the out-of-equilibrium processes that give origin to fractal morphologies 
in nature1–4. In this endeavour, simple models have appeared to unify diverse phenomena that once seemed to 
be completely unrelated. This is the case of Laplacian growth, with its emblematic diffusion-limitied aggrega-
tion (DLA) model and the more general dielectric breakdown model (DBM), which constitute a paradigm of 
out-of-equilibrium growth5. These models have received significant attention in diverse scientific and techno-
logical fields, from the oil industry, through bacterial growth, to cosmology5–7, even with relevant applications 
in current neuroscience and cancer research8–10. However, despite their relevance, a data-consistent analytical 
description of the fractal dimensions that characterize the DBM and DLA models has been missing5.

To have a practical understanding of the problem let us recall that the mass-distribution of a given structure 
can be described in terms of a simple scaling law, M r D∝ , where r is a characteristic length, and D is its dimen-
sion. For example, a sphere growing uniformly in a d-dimensional Euclidean space has a dimension =D d, 
however, in the case of fractals, one finds that D d< 3,4. This is the case of structures generated by the DLA model, 
where particles following random-walks aggregate one-by-one to a seed-particle forming a fractal cluster5 (see 
Fig. 1a). This process has been the subject of extensive numerical11–15 and theoretical16–23 research, not only for the 
well-known two-dimensional case, but for higher dimensions as well. In higher dimensions, the numerical24–26 
and theoretical27–34 results for the fractal dimensions of DLA are not in best agreement (see Fig. 1b and Table 1). 
In addition, the self-similarity of the mass-distribution of the DLA cluster is still a matter of debate. Although 
there are diverse works that have rigorously proven the consistency of the two-dimensional DLA within a 
self-similar picture, with a fractal dimension very close to = .D 1 7111,13,15,20, there are other results based on mul-
tifractal analysis where this is not conclusive. In these studies, the DLA cluster is found to be a weak 
mass-multifractal, that in terms of the generalized dimension, Dq and momenta q, goes from ≈ .→−∞D 1 75q  to 
D 1 65q ≈ .→∞

35,36; while in others, it is a monofractal with ≈ .D 1 7q  for all q37–40. Nevertheless, among the most 
important theoretical results for DLA one has that: first, its fractal dimensions are an exclusive function of the 
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embedding Euclidean space, =D D d( )34; secondly, they must satisfy Kesten’s inequality17 D d( 1)/2≥ + , and 
Ball’s inequality27, D d 1≥ − , where the equality holds at d → ∞ (see Fig. 1b).

Furthermore, DLA is just an instance in more general scenario provided by the DBM. In this model, the 
growth is related to the growth probability distribution, σ ϕ∝ |∇ |η, where ϕ is a scalar field associated to the 
energy landscape of the growing surface (for the DBM, φ is directly related to the electrostatic potential5), and 

0η ≥  is the control parameter associated to the net effect of all non-linear interactions41–51 (see Fig. 1c). In two 

Figure 1. The Laplacian framework. (a) Characteristic features of the DLA fractal (cluster in blue and 
approximate growing front in red), for =d 2 and d → ∞. (b) Semi-log plot of the numerical (DN) and 
theoretical (DT) estimates for D(d) (see Table 1), shown as D D d( 1)∆ = − − . Forbidden regions imposed by 
Kesten (green) and Ball (grey) are indicated as ∆DK and ∆DB, respectively. (c) Characteristic features of the 
DBM for d 2= , with a sketch of the corresponding growing dynamics (bottom). (d) Log-log plot of the 
numerical and theoretical estimates for ηD( ), for d 2, 3=  (see Table 2).

Source d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

Rodriguez & Sosa40 . ± .1 711 0 008 2 51 0 01. ± .

Meakin24,25 . ± .1 71 0 07 2 50 0 08. ± .

1 71 0 05. ± . . ± .2 51 0 06 . ± .3 32 0 10

. ± .1 70 0 06 . ± .2 53 0 06 . ± .3 31 0 10 . ± .4 20 0 16 ≈ .5 35

Tolman & Meakin26 . ± .1 715 0 004 . ± .2 495 0 005 ≈ .3 40 ≈4 33. ≈5 40. ≈6 45. ≈ .7 50

Turkevich & Scher28 .1 67 2 46.

Erzan, et al.30 1 71. .2 54

Halsey31 1 66. .2 50 .3 40 4 33.

Hentschel32 .1 75 .2 52 3 38. .4 29 5 0.

Wang & Wang33,34 .1 74 2 52. .3 34 .4 22 .5 13 6 08. 7 05.

D d( )〈 〉 1 71 0 01. ± . 2 51 0 01. ± . . ± .3 34 0 05 . ± .4 27 0 09 5 38 0 04. ± .

D d( ), equation (6) .1 70 .2 51 .3 36 .4 24 .5 15 .6 09 .7 05

D d( )2 1 71. 2 50. .3 32 .4 12 5 11. .6 07 7 04.

D d( )MF .1 67 .2 50 .3 40 .4 33 5 29. .6 25 7 22.

Table 1. DLA dimensions. (First section) Numerical estimates for D d( ). (Second section) Theoretical estimates 
for D d( ). (Third section) Average of numerical estimates, 〈 〉D d( ) , mean-field estimates, D d( )MF , and the 
estimates obtained with equation (6), including D d( )2  from Methods. Error in measurements is shown when 
available.
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dimensions, by setting 0η =  one makes the growth probability, σ, proportional to a constant, i.e., a uniform 
growth probability (fluctuation independent growth), where the resulting outcome of this process is a compact 
circular cluster with =D 2. On the other hand, if 1η , then, σ favours the growth at the tips over the growing 
front (fluctuation enhancing growth), where the final outcome is a one-dimensional structure (see Fig. 1c). The 
most remarkable scenario of this model appears for η = 1, associated to pure stochastic (fluctuation-preserving) 
growth dynamics, that corresponds to the universality of DLA5.

The structures generated by the DBM are characterized by the fractal dimensions ηD d( , ). As function of the 
parameter η, they go from isotropic and compact structures with D d= , for η = 0 (Eden clusters); through intri-
cate dendritic-like fractals with D d1 < < , for 1η ≈ ; to highly anisotropic linear structures (D 1≈ ) as  1η . 
For =d 2, the collapse to D 1=  is expected to occur at 4η ≈ 46,47,52–54. Most characterization approaches rely on 
numerical methods to estimate ηD( ), with very few theoretical results for ηD d( , )4,5. Among these, mean-field 
approaches55–57 have provided the closed expression,

D d d
d

( , ) ,
(1)MF

2
η η

η
=

+
+

that fails to be consistent with the reported numerical results. For example, D 5/3 1 67MF = ≈ .  differs from the 
well-known value of DLA in two dimensions (see Fig. 1d and Table 2). In general, the derivation of a 
data-consistent analytical solution to ηD d( , ) has proven to be a non-trivial task and has been missing4,5.

In this work, our main goal is to provide a data-consistent analytical description to the fractal dimensions, 
D d( , )η , of the DBM and DLA model. To this end, we will make use of a recently introduced framework for the 
study fractal/non-fractal morphological transitions58,59. In this framework, a morphological transition is defined 
as the geometrical transformation that a given structure undergoes as a result of the stochastic/energetic (or 
symmetry-breaking) aspects of its growth-dynamics58. Quantitatively, the geometrical features of these structures 
are described through the scaling or fractal dimension of their mass-distribution, D. In addition, all the informa-
tion regarding symmetry-breaking effects are encoded into an effective information-function, Γ. The fractal 
dimensions that characterize the transition are given by the dimensionality function59,

Data η = 0.5 η = 1 η = 2 η = 3 η = 4 η = 5

Niemeyer, et al.41* 1 89 0 01. ± . . ± .1 75 0 02 1 6.

Hayakawa, et al.42* . ± .1 79 0 01 . ± .1 47 0 03

Pietronero, et al.43 .1 92 .1 70 .1 43

Somfai, et al.47 .1 71 .1 42 .1 23

Tolman & Meakin49 1 408 0 006. ± . . ± .1 292 0 003

Sánchez, et al.45* 1 61. 1 35. .1 22 .1 08 .1 04

Amitrano44 1 86. 1 69. 1 43. .1 26 .1 16 1 07.

Hastings46 .1 433 1 263. .1 128 .1 068

.1 426 .1 264 .1 090 .1 030

.1 435 .1 262 .1 078 .1 025

1 452. .1 243 1 071. .1 009

η〈 〉 =D( ) d 2 . ± .1 89 0 05 . ± .1 70 0 01 . ± .1 43 0 02 . ± .1 26 0 02 . ± .1 11 0 04 1 04 0 03. ± .

D( )d 2η = , 0 68Λ ≈ . , χ ≈ .1 37 (N) .1 88 1 71. .1 41 1 21. 1 10. .1 04

D( )d 2η = , Λ ≈ .0 68, 1 52χ ≈ .  (T) .1 89 .1 71 1 37. .1 16 .1 06 1 02.

D ( )MF d 2η = , Λ = 1, χ = 1 1 80. .1 67 .1 50 1 40. .1 33 .1 29

Satpathy50 2 48 0 06. ± . 2 11 0 06. ± . . ± .1 96 0 08 1 75 0 06. ± .

2 54 0 06. ± . 2 09 0 06. ± . . ± .1 84 0 07 1 79 0 08. ± .

Tolman & Meakin49 2 134 0 001. ± . . ± .1 895 0 004

Vespignani & Pietronero51 2 50 0 10. ± . 2 13 0 10. ± . 1 89 0 10. ± .

.2 49 2 17. .1 91

2 54. .2 21 1 92.

D( ) d 3η〈 〉 = 2 51 0 03. ± . . ± .2 14 0 04 . ± .1 90 0 04 1 77 0 03. ± .

η =D( )d 3, 0 84Λ ≈ . , χ ≈ .0 91 (N) 2 51. .2 18 .1 93 .1 74

η =D( )d 3, 0 84Λ ≈ . , 1 39χ ≈ .  (T) 2 51. 1 96. 1 55. 1 29.

η =D ( )MF d 3, Λ = 1, χ = 1 .2 50 .2 20 2 00. 1 86.

Table 2. DBM dimensions. Average dimension, D d( , )η〈 〉, for d 2=  (first section) and =d 3 (second section), 
with the corresponding ηD d( , )MF , and the numerical (N), and theoretical (T) estimates for D d( , )η  of this work. 
Data marked with the asterisk are excluded from the corresponding averages due to known limitations in their 
measurements.
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Γ = + − −ΓD D D e( , ) 1 ( 1) , (2)0 0

where D0 is the dimension of the initial cluster and where the functional form of Γ is to be found according to the 
particular phenomenology of the system. That is, Γ is a function of the control parameters of the model and the 
Euclidean dimension of the embedding space. Hence, in this framework, finding the complete solution to D 
implies finding the corresponding information-function, Γ, of the system.

Results
In the following, we present the results of using equation (2), along with other theoretical and numerical results, 
in order to find the general solution to the fractal dimensions ηD d( , ). Without loss of generality and for all prac-
tical purposes, we will consider that the mass-distribution of both DBM and DLA clusters is self-similar, that is, 
it can be defined by a single fractal dimension5 (more on this in the Discussion section). The results are presented 
as follows: first, we present the conditions that the information-function, Γ, must satisfy in order to describe the 
DBM dimensions, as well as a proposal for its general functional form. Secondly, based on this functional form, 
we present the results of a first numerical approach to determine Γ for =d 2 and d 3= . Thirdly, we will restrict 
our attention to the solution of the DLA dimensions for any d. Finally, we focus on the general solution to the 
DBM dimensions where attention is be paid to a theoretical approach that connects the information-entropy of 
the clusters to their fractal dimension. This result will be tested for d 2=  and d 3= .

Conditions for a general Γ. Insight into the general form of the information-function, ηΓ d( , ), can be 
gained from the analysis of mean-field equation, D d( , )MF η , and the reported numerical estimates of ηD d( , ) in 
two and three dimensions.

First, the mean-field result given in equation (1) belongs to a special case of equation (2). This is observed by 
expanding the exponential of equation (2) up to its first-order term in Γ, leading to, D D( ) 1 ( 1)/(1)

0Γ = + −  
+ Γ = + Γ + ΓD(1 ) ( )/(1 )0 . From direct comparison to equation (1), one observes that, D DMF

(1) = , with 
=D d0 , and η ηΓ =d d( , ) /MF . Even though this mean-field result does not provide the correct description to 

D d( , )η , this example serves two purposes: it provides a first glimpse into the relation between the 
information-function and the specific variables of the model, and it provides useful evidence about the validity 
and generality of equation (2) as a fractality function for the DBM.

Secondly, the general form of ηΓ d( , ) can be inferred from the data for D d( , )η  in two and three dimensions. 
This is done by solving for D( , )0 ηΓ  in equation (2), which gives,

ηΓ = −D D( , ) log , (3)0
⁎

where, ⁎ = − −D D D( 1)( 1)0 , is defined as the normalized dimension. As it can be easily seen, ⁎ =D 1 when 
=D D0, and ⁎ =D 0, when =D 1. Furthermore, considering that for the DBM, D d0 = , equation (3) can be used 

along with the numerical data for ηD d( , ) in Table 2 to obtain a qualitative description of d( , )ηΓ  (see Fig. 2a). In 
these log-log plots, the data suggests that the functional form of Γ must be quite close to a power-law relation. 
Therefore, we propose the following ansatz,

η ηΓ = Γ χd( , ) , (4)0

with d/0Γ = Λ , and where Λ and χ are two characteristic real numbers associated to the particular growth 
dynamics of the system. For example, for the mean-field approximation, d/MF ηΓ = , we have the exact solutions 

1MFΛ =  and χ = 1MF , for all d. In general, the specific values of Λ and χ must be determined accordingly.

Numerical approach to DBM: finding a general Γ(d, η). One direct way to obtain the desired Λ and χ, 
is by using d( , )ηΓ  in equation (4) as a fitting-function. To do this, let us first observe that according to equation 
(4), Γ becomes an exclusive function of η for a fixed d, this is, d( const , ) ( )η η ηΓ = . → Γ ∝ χ provides all the 
information associated to the DBM dimensions; whereas for η = 1, from direct evaluation of equation (4), we 
have that ηΓ = = Γ = Λd d d( , 1) ( ) /0  is associated to the DLA dimensions. This suggests that the values for Λ can 
be estimated by a simply substitution from the previous knowledge of the fractal dimensions of DLA, while the 
values for χ can be obtained via linear-fitting (see Fig. 2a). For example, by substituting η = 1 and = .D 1 71, in 
equations (3) and (4), with = =D d 20 , we have that ⁎d Dlog( ) 0 68Λ = − ≈ . . Now, using equation (4) as a 
fitting-function over the data for ηΓ( ), we have that 1 37 0 02χ = . ± . . Following the same procedure for d 3= , we 
have that Λ ≈ .0 84 (using = .D 2 51 for three-dimensional DLA) and 0 91 0 02χ = . ± . , via linear-fitting (see 
Fig. 2a).

Although this procedure on its own provides a complete data-consistent description to D d( , )η , for d 2=  and 
d 3=  (see Table 2), it is only useful when the dimensions of DLA and DBM are known beforehand, that is, it as a 
good characterization scheme. Nevertheless, this example serves two purposes: first, it shows that in order to find 
the fractal dimensions of DLA, one must determine the values of d( )Λ = Λ ; secondly, once Λ is determined, the 
general solution to the fractal dimensions of the DBM relies on finding the corresponding values of χ. In the 
following sections we present two methods to determine general expressions for these two quantities.
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Solution to DLA: finding a general Λ(d). The purpose of this section is to show how to determine a 
general expression for Λ d( ), which can then be used along with equations (2) and (4), with 1η = , as a solution to 
the fractal dimensions of DLA.

Some insight into this problem can be gained from previous numerical and theoretical estimates for D(d) and 
other rigorous theoretical results. In particular, the data in Table 1 can be used together with d d D( ) log( )⁎Λ = −  
to have look into the qualitative behaviour of d( )Λ  (see Fig. 2b). As expected, Λ d( ) does not conform to the trivial 
mean-field approximation, Λ = 1MF . Additionally, some theoretical restrictions can be established. For example, 
the Kesten’s inequality, ≥ = +D D d( 1)/2K

17, and the Ball’s inequality, ≥ = −D D d 1B
27, impose an strict 

upper boundary, Λ+ ,  which is defined by parts as d log2KΛ = Λ =+ ,  for ≤d 3, and Λ = Λ =+
B  

− − −d d dlog[( 2)/( 1)], for d 3≥ . From these boundaries, any solution must satisfy Λ ≤ Λ+, where the equality, 
BΛ = Λ , holds for → ∞d . In fact, it is only in this limit that 1MF BΛ = Λ =  (see Fig. 2b).

Considering the previous results, an analytical expression for Λ d( ) is constructed by using a particular 
real-space renormalization-group (RG) result for the fractal dimensions of on-lattice DLA33,34. Under this RG 
approach, the DLA dimensions are given in discrete form by,

∑

µ

µ φ φ

= +

= + − + −

=

− ( )( )
D k d

k d d d
k

( , ) 1 log /log2,

( , ) 1 2 1
1

1 ,
(5)k

d

k1
2

1

where, k d( , )µ µ=  is inversely proportional to the maximum growth probability, d( )max
1σ µ= − , and where 

φ φ= d( )k k  are growth potentials that need to be determined for a given lattice configuration. For example, for the 
square lattice, these equations lead to D 1 74≈ . , and for a cubic lattice, they lead to D 2 52≈ . . Independently of 
the lattice configuration, φ =∞ 1/2 and µ = +∞

− d2 /2d 2  are found in the → ∞d  limit34.
For our main task, these lattice-dependent results can be extended to the lattice-independent scenario by 

replacing the discrete lattice potentials, φ d( )k , with a continuous effective potential, Φ d( ), i.e., d d( ) ( )kφ → Φ . Now, 
for continuity and clarity purposes, we invite the reader to consult the Methods section for further details on how 
this extension is specifically done. After the corresponding analysis, we found that the off-lattice DLA dimensions, 
under the RG model, are given by,

µ
µ µ

µ

= +
= + − Φ

= +

Φ = Φ +

∞

∞
−

∞
− −

D d
d

d d

d

( ) 1 log /log2,
( ) 1 2( 1) ,

( ) 2 /2,

( ) /[1 2 ], (6)

d

r d

2

( 1)

where 1/2Φ =∞ , and = . ± .r 0 762 0 014.
By substituting D(d) of equations (6) into equation (3), and solving for Λ using equation (4), we have that,

µΛ = Γ = − .−d d d( ) log(log /log2 ) (7)d
0

1

As shown in Fig. 3a, this analytical expression for Λ is in great agreement with the KBW-restrictions, namely, 
Λ ≤ Λ = d log2K  (Kesten’s condition), Λ ≤ Λ = − − −d d dlog[( 2)/( 1)]B  (Ball’s condition), and the additional 
lower boundary, µΛ ≥ Λ = Λ = −−

∞
−d log[log /log2 ]W

d 1  (Wang’s condition), that come from the inequalities 
summarized below,

Figure 2. Information function. (a) Log-log plot of ηΓ( ) as provided by the numerical average η〈 〉D( )  in =d 2 
and d 3=  (in Table 2), the mean-field approximation, d( ) /MF η ηΓ = , and fitting-function, η ηΓ = Λ χd( ) ( / )N . 
(b) Semi-log plot of d( )Λ  as provided by numerical ( NΛ ) and theoretical (ΛT) estimates for D(d) (in Table 1). 
Forbidden regions imposed by Kesten (ΛK) and Ball (ΛB), are indicated accordingly.
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µ

≤ ≥ = +
≥ ≥ = −
≥ ≤ = + ∞

D d D d
D d D d
D d D

( 3) ( 1)/2,
( 3) 1,
( 1) 1 log /log2, (8)

K

B

W

where µ∞ is given in equation (6), and the equality, D D DW B= = , holds for the → ∞d  limit34 (see Fig. 3a). 
Furthermore, the analytical solution provided by equation (6) to the DLA dimensions not only is in great agree-
ment with the KBW-restrictions but provide an accurate description of the data (see Fig. 3b). The numerical val-
ues obtained for D(d) are shown in Table 1.

Solution to DBM: finding a general χ(d). Once a general solution to Λ d( ) has been found, here we pro-
pose a theoretical approach to determine χ(d). This approach is based on a particular finding from the study of 
the rate of information-entropy production of random fractals60,61. This finding suggests that DLA can be associ-
ated to a critical state that defines the point of maximum information-entropy production along the DBM mor-
phological transition62–65. Then, if this is indeed the case, this could manifest itself in the fractality of the system.

This observation is incorporated into our model for D d( , )Γ  by means of the formalism of multifractal sets as 
applied to the mass-distribution of fractal clusters5,35. In particular, through the relation between the Rényi entropies, 
Sq, and the generalized dimension, Dq

36,40,66. First, the Rényi entropies are defined as, S p qlog ( ) /( 1)q i
n

i
q

1 ε= ∑ −= , 
where q are the momenta, n is the number of partitions (boxes) of the set, and p ( )i ε  is the probability of finding an 
element of the cluster at a spatial observation scale, ε. Secondly, the generalized dimension, Dq, is related to the Rényi 
entropies by, D Slim /logq q0 ε= ε→ , in such a way that, for example, for q 0= , one has the box-counting dimension 
Dq 0= , for =q 2, the correlation dimension Dq 2= , and for =q 1, one has the information-dimension =Dq 1, obtained 
from the scaling of the information-entropy S p p( ) log ( )q i

n
i i1 1 ε ε= −∑= =

5,66. In the case of self-similar clusters, the 
generalized dimension, Dq, becomes q-independent, making all the dimensions Dq equivalent (D Dq → ), and 
directly proportional to the information-entropy (S Sq 1 →= ). Then, from the definition of the generalized dimen-
sion, we simply have that S kD= , with ε=k log( )66.

This relation implies that η η∂ ∂ = ∂ ∂ →−D k S/ / 01 , in both of the limits η → 0 or η  1. For example, the 
amount of information needed to characterize a (non-fractal) compact circular or spherical cluster (D d→ ) as 

0η → , or the (non-fractal) linear structure ( →D 1) for 1η , does not grow as much as the one needed to char-
acterize the intermediate (disordered) fractal clusters for 1η ≈  (see Fig. 1b). Therefore, if the DLA fractal corre-
sponds to a maximum in information-entropy production in the DBM transition, this should manifest in the 
fractality of the cluster itself, specifically, it must show up at a certain point, ηi, where S/

i
η∂ ∂ |η η=  becomes a global 

maximum, that is, S k D/ / 02 2 2 2
i

η η∂ ∂ = ∂ ∂ | =η η= .
From equations (2) and (4), this inflection point, ηi, satisfies, η η∂Γ ∂ − ∂ Γ ∂ | =η η=[( / ) / ] 02 2 2

i
, leading to,

η χ
χ

Γ =
−

.χ 1
(9)i0

Finally, by using the DLA condition, 1iη = , and solving for χ, we have that χ = − Γ1/(1 )0 , where Γ = Λ d/0 . 
In this way, the values of χ depend on Λ, and the information-function is now given by,

η ηΓ = Γ −Γd( , ) (10)0
1/(1 )0

where d/0Γ = Λ  is already given by equation (7).
Using this result, we have that in two dimensions, Λ ≈ .0 70, and χ = − Λ ≈ .d1/(1 / ) 1 54, with D 1 70≈ .  at 

η = 1; in three dimensions, Λ ≈ .0 84, and χ ≈ .1 39, with D 2 51≈ .  at η = 1 (see Fig. 4a,b). The complete numer-
ical values obtained for ηD d( , ) under this approach are shown in Table 2.

Figure 3. The DLA solution. (a) Semi-log plot of Λ d( ) with its corresponding analytical solution. (b) Semi-log 
plot of D(d), shown as D D d( 1)∆ = − − . In both (a,b) plots, the forbidden regions imposed by Kesten ( KΛ ), 
Ball ( BΛ ), and Wang ( WΛ ), are indicated accordingly. For the numerical values of D(d), see Table 1.
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Discussion
Despite the morphological complexity of the DBM and DLA clusters, equation (2) can be used to describe the 
fractal dimensions of their mass-distribution, D d( , )Γ , by considering that the fundamental elements of its growth 
dynamics are encoded in an effective information-function, ηΓ d( , ).

Solution to DLA. From equations (2) and (4), the DLA dimensions correspond to η = 1, which is 
η →D d D d( , ) ( ), and ηΓ → Γ = Λ−d d( , ) 0

1 . Here, finding the solution to D(d) implies finding the solution to Λ. 
In this case, with the help of equation (6) (the extended RG equations), it was possible to find the analytical 
expression for d( )Λ  in equation (7). Notably, equation (6) stand on their own as a solution to the DLA dimen-
sions, this is, independent of equation (2). Nevertheless, finding this solution was only possible because of the Λ 
description (or “Λ-space”), which allowed to define the region of validity for any solution of D(d) through the 
KBW (Kesten-Ball-Wang) boundaries in equation (8) (see Fig. 3b). The values obtained for D(d) from equation 
(6) not only are in good agreement with previously reported numerical and theoretical results (see Table 1), but 
they improve their accuracy for ≥d 4, and together with DB and DW, they provide the exact solution (D d 1B = − ) 
for any dimension larger than d 10≈ . It is only at → ∞d  (specifically, ≈d 100) that all solutions become identi-
cal to DB (see Fig. 3).

In this analysis it was considered that the mass-distribution of the DLA cluster is self-similar (D Dq =  for all 
q)5,37–40. However, even in the event of weak multifractality for d 2=  and d 3= 35,36,40, these results would still 
apply to the box-counting or Hausdorff dimension, =Dq 0, and the correlation dimension, =Dq 2, which are the most 
common dimensions reported for DLA; and even to the information-dimension, given the fact that for suffi-
ciently large clusters, ≈ ≈= = =D D Dq q q0 1 2

36,40.

Solution to DBM. From equations (2) and (4), the DBM dimensions correspond to general case of ηD d( , ). For 
fixed dimension, d, one has that η η→D d D( , ) ( ), and η η ηΓ → Γ = Γ χd( , ) ( ) 0 , with Γ = Λ−d d( )0

1  given by equa-
tion (7). Here, finding the solution to D( )η  implies finding the solution to χ. In a first (numerical) approach, the 
values of χ for d 2=  and =d 3, were estimated using equation (4) as a fitting-function (see Fig. 2a), yielding very 
good results (see Table 2). In a second (theoretical) approach, the hypothesis of maximum information-entropy 
production at the DLA point led to equation (10), in which χ and Λ, become coupled. Together with equation (2), 
this result provides a theoretical solution to D d( , )η .

From Table 2, this theoretical proposal for D( )η  is accurate for =d 2 (within the statistical error of η〈 〉D( )  for 
η≥ ≤2 3), but it deviates significantly for η > 1 in three dimensions (see Fig. 4a,b). A relevant reason behind 

this discrepancy could be associated to the small-size clusters used to measure the reported fractal dimensions in 
Table 2 49,50, in which case, finite-size effects and crossovers can be accounted for the slow convergence of the 
fractal dimensions to their true values26,49.

Another important reason behind this discrepancy could be associated to the fact that the functional form of 
ηΓ d( , ) might not be exactly a power-law. We must recall that equation (4) was introduced as an ansatz, from the 

evidence given by the mean-field result ( ηΓ = d/MF ) and by the data in Fig. 2a. Indeed, in those log-log plots data 

Figure 4. The DBM solutions. (a) Log-log plots of ηΓ( ), and (b) semi-log plots of ηD( ), with their 
corresponding numerical (ΓN , DN) and theoretical (Γ, D) solution for =d 2 and =d 3. For the numerical values 
of ηD d( , ) see Table 2. (c) Universal behaviour of the normalized dimension, Γ⁎D ( ), with a sketch of the DBM 
morphological transition for d 2= , on top.
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shows a (possible local) linear behaviour suggesting a power-law description, however, many laws might look 
locally as power-laws. Hence, Eq. (4) remains as a quite good approximation of ηΓ d( , ), as far as we can tell, and 
more analysis is needed in order to derive its exact functional form. Consequently, the functional form provided 
under the maximum information-entropy production hypothesis is expected to be different from equation (10).

Similarly to the DLA results, in this analysis it was considered that the mass-distribution of the DBM clusters 
is self-similar5,46. Even in the event of weak multifractality, the same arguments that apply to the DLA clusters, 
apply to the DBM clusters. Even more, weak multifractality should only be expected for η< <0 4, this is, suffi-
ciently far away from the non-fractal limits46.

Lastly, equation (2) might resemble a functional form of the well-known Turkevich-Scher conjecture28,29, 
α= +D 1 min, that relates the fractal dimension of the mass-distribution of the cluster, D, with the scaling of the 

maximum growth probability distribution defined on its surface, αmin (the minimum of an infinite set of expo-
nents associated to scaling of the growth probability distribution, which is indeed a multifractal5,22). However, as 
originally formulated59, equation (2) is neither dependent-on nor derived-from the Turkevich-Scher conjecture, 
and does not demonstrates its validity (a rigorous demonstration of the validity of this conjecture for d 2≥  goes 
beyond the scope of this work). Hence, the results for the scaling of the mass-distribution of DLA and DBM clus-
ters using equation (2) are valid regardless of the Turkevich-Scher conjecture.

Criticality and universality. The criticality of the DBM transition is understood in terms of D d( , )η  as a 
non-thermal order parameter. For example, for =d 2, it has been suggested that the full collapse to linear clusters 
occurs at the “critical” value η ≈ 446,52–54. To address this point, the normalized dimension, D D d( 1)/( 1)⁎ = − − , 
can be used as the non-thermal order parameter of the system, where ⁎D 1= , when D d=  at η = 0, and D 0⁎ = , 
when D 1→  as 1η . From equation (2), we have that D exp( )= −Γ⁎ , is a continuous and monotonically 
decreasing function which obviously differs from the typical discontinuous power-law behaviour expected from 
the critical phase-transitions theory62,65. Hence, the suggested “critical” point cannot be considered as such under 
this description. Nevertheless, it is still possible to define a transitional point, ηt, i.e., a point where ≈D 1. 
Considering D 1 δ= + , where δ  1, from equations (2) and (4), one has that η δΛ = − −χd d( / ) log[ /( 1)]t . For 
example, for d 2=  and using 1 52χ = .  (from theory), we have that η δ = . ≈ .( 0 10) 3 5t , or ( 0 05) 4 1tη δ = . ≈ . , 
which are consistent with the reported value, 4η ≈ 46.

An interesting consequence of the previous results is that the fractal dimensions of the DBM can indeed be 
conformed to the universal description given by the normalized dimension, = −ΓD exp( )⁎ , that as function of Γ 
is independent of the initial cluster-configuration and the Euclidean dimension of the embedding space (see 
Fig. 4c). Under this description, the mean-field equation for DMF does not conform to the same curve, but it takes 
the form of its first-order approximation, D 1/(1 )⁎ = + Γ . Although this point might seem trivial, it implies that 
the mathematical formulation given by equation (2) is quite general, with the DBM being just one member of the 
family of morphological transitions that can be described under this framework59.

Final Remarks
The main results of this work: the numerical-based analytical result for the DBM dimensions using equation (4) 
as a fitting-function, the theory-consistent analytical expression for the dimensions of DLA in equation (6), and 
the theoretical result for the dimensions of the DBM using equation (10); all of these results remain as good data- 
and theory-consistent approximations to the dimensions of both DLA and DBM as far as we can tell. In particu-
lar, a rigorous mathematical derivation of the information-function in equation (4) is beyond the scope of this 
work. Nevertheless, these results provide one of the most simple analytical descriptions to most of the theoretical 
and numerical results for the fractal dimensions of the DBM and DLA reported in the literature. In addition, 
these results reveal an interesting universality regarding the mathematical description of the fractal dimensions 
of morphological transitions in terms of their information-function. We are confident that the characterization 
of these models, along with the data-set used in this analysis, will be useful to scientists working in fundamental 
and applied problems of complex growth phenomena.

Methods
Construction of Φ(d). In the RG model33,34, the on-lattice DLA dimensions are given in discrete form by 
equation (5), reprinted below,

( )( )
D k d

k d d d
k

( , ) 1 log /log2,

( , ) 1 2 1
1

1 ,
k

d

k1
2

1

∑

µ

µ φ φ

= +

= + − + −

=

−

where, µ µ= k d( , ) is inversely proportional to the maximum growth probability, d( )max
1σ µ= − , and where 

φ φ= d( )k k , with k d1, 2, , 1= … − , and φ φ φ φ= … −, , ,k d1 2 1, are growth potentials that need to be determined 
for a given lattice configuration according to the relation φ φ φ+ − − − − =− +d k d k( 1) ( 1) 1k k k1 1 . For exam-
ple, for the square lattice, these relations lead to φ = 1/31  with D 1 74≈ . ; for a cubic lattice, they lead to 5/141φ =  
and φ = 3/72 , with D 2 52≈ . . Independently of the lattice configuration, φ =∞ 1/2, and d2 /2d 2µ = +∞

−  are 
found in the → ∞d  limit34.

These lattice-dependent results are extended to the lattice-independent scenario by replacing the discrete lattice 
potentials, d( )kφ , with a continuous effective potential, Φ d( ), this is, we consider that φ → Φd d( ) ( )k  for all k. Then, 

https://doi.org/10.1038/s41598-018-38084-3


www.nature.com/scientificreports/

9Scientific RepoRts |          (2019) 9:1120  | https://doi.org/10.1038/s41598-018-38084-3

by using the identity ∑ − ==
− −( )d

k
1 2k

d d
0
1 1, equation (5) can be rewritten in the forms presented in equation (6), 

reprinted below,

D d
d

d d

( ) 1 log /log2,
( ) 1 2( 1) ,

( ) 2 /2d 2

µ
µ µ

µ

= +
= + − Φ

= + .
∞

∞
−

In the Supplementary Fig. 1S, we present a plot of Φ d( ). In this plot, d( )Φ  is shown as estimated from the data 
for D in Table 1, using µΦ = − −−

∞D d[ ( )] (2 1)/[2( 1)]D 1 . Similarly, by substituting DMF into Φ D d[ ( )] the 
mean-field approximation ΦMF is also shown. In addition, the ≥D DK (Kesten), D DB≥  (Ball), and ≤D DW 
(Wang34) inequalities in equations (8), where, = +D d( 1)/2K , D d 1B = − , and µ= + ∞D 1 log /log2W  can also 
be plugged into Φ D d[ ( )] to establish the bounds (ΦK, ΦB, and ΦW) for any solution of d( )Φ .

The functional form of Φ is then constructed by taking into account that it must satisfy φΦ = =∞ 1/2 for d → ∞, 
whereas it must remain finite and positively defined as →d 134, while maintaining a steady grow between limits. This 
suggest that Φ could be model using an ordinary Logistic equation of the form, f x L R x x( ) /(1 exp[ ( )])0= + − − . 
Here, = Φf x d( ) ( ), the initial dimension x d 10 = = , the “carrying capacity” or saturation limit L 1/2= Φ =∞ , and 
steepness R r log2= , where the log 2 factor is chosen to match the base of the original description and r was deter-
mined by a numerical-fit to Φ d( ) given by data. For this fit, only the numerical estimates of D(d) for =d 2 and =d 3 
were considered (which on average are the most reliable numerical results). From the previous, the general solution to 
the effective potential is given by,

d( ) /[1 2 ],r d( 1)Φ = Φ +∞
− −

where 1/2Φ =∞ , and = . ± .r 0 762 0 014.
As shown in the Supplementary Fig. 1S, this solutions to Φ not only satisfies its expected asymptotic values but 

also, the necessary KBW-restrictions. Even more, in the same manner as the KBW bounds ( KΦ , BΦ , and ΦW) for 
Φ were constructed by substituting DK, DB, and DW, into Φ D d[ ( )], the corresponding bounds for the parameter 
Λ d( ), the maximum growth probability σmax(d), and the fractal dimensions ∆D, can also be constructed by sub-
stituting DK, DB, and DW, into their corresponding relations,

D d
D d d D d
D d D d
D d D d

[ ( )] (2 1)/[2( 1)],
[ ( )] log[( 1)/( 1)],
[ ( )] [ ( )] ,

( ) ( 1)

D

max

1

1

µ

σ µ

Φ = − −

Λ = − − −

=
∆ = − − .

−
∞

−

Alternative construction of Φ(d). Another method to determine Φ is by finding its approximation as 
d 2→ . This is done by considering φ = 1/2k  (the limit-value of kφ  as → ∞d ) for all ≥k 2 (this is ≥d 3) in equa-
tions (5). This leads to µ µ φ= + − −∞d d( ) ( 1)(2 1), where φ φ→ d( )1  is now a continuous function of d. We 
found that this φ d( ) can be either determined by an adequate logistic function or heuristically constructed. Here 
we present the results for the latter.

To construct d( )φ , notice that for d 2→  we have that µ φ→ = +d( 2) 1 2  together with D 1 log /log2µ= + , 
lead to d( 2) (2 1)/2D 1φ → = −− . Here, →D d( 2) can be linearly approximated as → = + −D d d( 2) 1 ( 1)/ 2, 
where the slope of 1/ 2  is chosen ad-hoc according to a previous result16, in such a way that =D 1 for =d 1, 

= + ≈ .D 1 1/ 2 1 71 for d 2= , and = + ≈ .D 1 2/ 2 2 41 for d 3= ; or according to ∆ = − −D D d( 1), we 
have D 1∆ =  for d 1= , ∆ = .D 0 71 for d 2= , and ∆ = .D 0 41 for d 3= . However, given that φ →d( 2) approx-
imates Φ at the →d 2 limit, we want the value of ∆D at d 3=  to be as small as possible (∆ →D 0). This is because 
∆D is nothing but a measure of the deviation of D from Ball’s limit = −∞D d 1, and in this d( 2)φ →  approxima-
tion, the → ∞d  limit has been applied to all 1/2kφ φ= =∞  for k 2≥  (d 3≥ ), then, these terms should not be 
contributing factors to φ →d( 2). A relation that satisfies the previous condition is D d d( 2) 1 [( 1)/2]1/2→ = + − , 
which at =d 1 gives D 1∆ = , at =d 2 gives ∆ = ≈ .D 1/ 2 0 71, and at =d 3 gives ∆ =D 0.

From the previous discussion, and by looking at the form of d( 2) (2 1)/2D 1φ → = −− , and by using, 
→ = + −D d d( 2) 1 [( 1)/2]1/2, we propose the general expression, φ = −−d d( ) [2 1]/d( 1)/2  as an ansatz. To 

recover Φ, let us observe that µ µ φ= + − −∞d d( ) ( 1)(2 1) and d( ) 1 2( 1)µ µ= + − Φ∞  must be equivalent 
relations, consequently, φ µΦ = + − − −∞d1/2 ( 1)(2 1)/[2( 1)]. Using this alternative potential 2Φ = Φ , all rel-
evant quantities, Λ2, σ2, and ∆D2, can be recovered (see Supplementary Fig. 1S). The numerical estimates given by 
D2 are shown in Table 1. Here it is important to remark that, even though this approach provides a parameter-free 
solution that satisfies all KBW-restrictions for d 2≥ , it violates the Kesten’s bound in d1 2< <  (this is better seen 
in its Λ2 behaviour). Certainly this anomaly can be attributed to the imprecise nature of the ansatz for φ d( ). Thus, 
this particular proposal as a general solution to the DLA dimensions must be taken with caution.

Data Availability
All data generated or analysed during this study are included in this published article.
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