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Artificial neural networks for 
density-functional optimizations in 
fermionic systems
Caio A. Custódio  , Érica R. Filletti   & Vivian V. França

In this work we propose an artificial neural network functional to the ground-state energy of fermionic 
interacting particles in homogeneous chains described by the Hubbard model. Our neural network 
functional was proven to have an excellent performance: it deviates from numerically exact calculations 
by less than 0.15% for a vast regime of interactions and for all the regimes of filling factors and 
magnetizations. When compared to analytical functionals, the neural functional was found to be more 
precise for all the regimes of parameters, being particularly superior at the weakly interacting regime: 
where the analytical parametrization fails the most, ~7%, against only ~0.1% for the neural network. 
We have also applied our homogeneous functional to finite, localized impurities and harmonically 
confined systems within density-functional theory (DFT) methods. The results show that while our 
artificial neural network approach is substantially more accurate than other equivalently simple and fast 
DFT treatments, it has similar performance than more costly DFT calculations and other independent 
many-body calculations, at a fraction of the computational cost.

Theoretical approaches at the quantum mechanical level are essential to the full understanding of the matter and 
its properties. Although the wavefunction of a given system – and thus any property of that system – may in prin-
ciple be obtained by solving the Schrödinger equation, this exact method is extremely costly for many-particle 
interacting systems, despite the availability of high computational resources. This difficulty is enhanced further 
when the theoretical simulations incorporate also spatial inhomogeneities – such as borders, impurities, con-
fining potentials and disorder – which are sometimes desired1 but in most of the cases unavoidable in realistic 
systems and experimental setups.

In this context the density-functional theory (DFT)2–4 appears as an interesting and powerful tool. Within 
DFT the particle density of a system with N interacting particles is used as the central quantity, instead of the 
wavefunction. Thus the task of obtaining Ψ(r1, r2, …, rN) – a 3N-dimensional function – is reduced to obtain 
n(r) – a 3-dimensional function. This illustrates how much simpler DFT calculations are in comparison to 
wavefunction-based quantum calculations. The one-to-one mapping between n and Ψ is guaranteed by the 
Hohenberg-Kohn (HK) theorem2, which has been recently formally proved to be valid also for lattice systems5,6. 
As a consequence of the HK theorem all the observables are a density functional and therefore may in principle 
be obtained via DFT calculations. The theorem does not provide however any hint of how to obtain both, density 
of the system and density functional of any desired property.

The Kohn-Sham (KS) scheme7 is a clever iterative mapping commonly used to obtain the density of an inter-
acting system. It maps the many-body interacting system into a ficticious non-interacting one via the so-called 
KS potential vKS. Here vKS is constructed to reproduce the density n(r) of the interacting system. Since vKS depends 
on the exchange-correlation energy and the latter is a density functional typically unknown exactly, in practical 
calculations one needs to make use of approximations to obtain the particle density. Hence, the performance of 
the DFT results depends on the approximations and functionals used.

Therefore there is a very active community in DFT dedicated to the development and the optimization of 
density functionals for practical DFT calculations. Less exploited tools in this research line are however the artifi-
cial neural networks (ANN)8. ANN are computational models that refer to the human brain functioning and are 
capable of calculating non-linear mathematical functions. It resembles the biological brain: it is able to be trained 
with a dataset and afterwards generalize the learning to other data of the same problem, being a type of machine 
learning used to estimate parameters and to recognize patterns.
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Among the advantages of ANN one can mention the precision of the results, the easy implementation, the fast 
calculations and the ability of generalizing from examples9. Once an ANN has been trained and validated satis-
factorily, it is able to predict new outputs from different input data (in the same domain, but different from those 
used in the training). ANN are used in many areas including neurocomputation, chemical engineering, industrial 
applications, medicine, chemistry and physics10–17.

Here we apply ANN’s concepts to estimate the ground-state energy of fermionic interacting particles in homo-
geneous chains as described by the one-dimensional Hubbard model. We designed an ANN functional which is 
able to recover the numerically exact energy of the Hubbard by less than 0.15% for all the regimes of filling factors, 
0 ≤ n ≤ 1, all the regimes of magnetization, 0 ≤ m ≤ n, and a vast regime of interactions, 0 ≤ U ≤ 10t, including 
strongly correlated materials, with typical interaction U~6t, where t is the hopping term. Our ANN functional 
was also proven to be superior to current parameterizations, used as input in local and non-local approximations 
for DFT methods. Additionally, we have used the homogeneous ANN functional as input in DFT calculations 
for investigating finite, localized impurities and harmonically confined systems. We find that while our ANN 
calculations are notably more accurate than other similarly simple and fast DFT approaches, it is two orders of 
magnitude faster. Thus the ANN model proposed here could be used as a practical and reliable tool in DFT cal-
culations for such inhomogeneous fermionic systems, including superlattices18,19 and disordered chains20,21, for 
which exact calculations are nontrivial.

Theoretical and Computational Methods
We consider one-dimensional homogeneous chains described by the fermionic Hubbard model22,
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where U is the on-site interaction and t is the nearest-neighbor hopping term, while σˆ†ci  ( σĉi ) is the creation (anni-
hilation) operator of fermions at site i with spin σ = ↑ ↓, , and =σ σ σˆ ˆ ˆ†n c ci i i  the number operator. The average 
charge density or filling factor is given by = = 〈 〉 + 〈 〉↑ ↓ˆ ˆn N L n n/ , while the magnetization or spin density is 

= 〈 〉 − 〈 〉↑ ↓ˆ ˆm n n , where = +↑ ↓N N N  is the total number of particles and L the chain size.
This is the simplest model to describe itinerant and interacting electrons in a chain, such as in solids and in 

nanostructures23–25, or cold atoms in an optical lattice26–28. Despite its simplicity the Hubbard model describes 
important phenomena29, such as the Mott transition from metal to insulator (for U > 0, at n = 1)30, the transition 
from Bardeen-Cooper-Schrieffer superfluid to Bose-Einstein condensate (for U < 0, at m = 0)30 and exotic super-
fluidity (for U < 0 and m ≠ 0)28,31,32.

Nevertheless the exact analytical solution of the model is in general unknown – except for some specific con-
ditions33 – thus one has to perform numerical calculations. For spatially homogeneous chains, L = ∞, one can 
obtain an exact fully numerical (FN) solution by solving the Lieb-Wu integrals34. For finite chains, using exact 
diagonalization we are limited to small chains, L 15, while with density-matrix renormalization group 
(DMRG)35, which is almost exact, one can solve chains of L 200 sites. DMRG are however computationally 
expensive calculations: a single calculation might take several hours in a high-performance computing cluster.

Thus DFT appears as a powerful tool to solve larger chains at a lower computational cost: a typical DFT calcu-
lation for the Hubbard model takes no longer than 1 minute. DFT may also be applied to solve inhomogeneous 
chains, i.e., in the presence not only of boundaries, but also impurities, interfaces, superlattices, harmonic confine-
ment and disorder. This is possible thanks to – local or non-local – approximations to the exchange-correlation 
functional, which require, as an input, a functional for the per-site ground-state energy of the homogeneous 
system.

In particular, the local-spin-density approximation (LSDA) for the ground-state energy is given by
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where e hom
0  is the homogeneous functional for the ground-state energy density and (ni, mi) are local densities at 

site i of the inhomogeneous system. Thus Eq. (2) approximates the energy of inhomogeneous chains by evaluating 
the energy of the homogeneous system with the site-by-site replacement n → ni and m → mi. In practical DFT, 
using the self-consistent KS scheme7, it implies the evaluation of partial derivatives of the energy with respect to 
ni and mi (to obtain vKS) in each of the iterations of the self-consistency cycle. Therefore, in order to solve inhomo-
geneous Hubbard chains within DFT-LSDA, the first step is to obtain a simple and reliable functional 
e n m U[ , , ]hom

0  for the homogeneous limit.
Although the fully numerical (FN) solutions of the Lieb-Wu integrals34 (exact only for infinite chains) are 

certainly a trusty functional for the DFT-LSDA treatment of inhomogeneous systems, they are computationally 
expensive. Besides, the integrals are not direct functions of (n, m) and hence we do not have total freedom to 
choose specific values to be used site by site in each iteration of the KS cycles. Therefore, for each interaction 
U, one has to produce a huge amount of FN data to cover all the regimes of ni and mi in order to obtain the vKS 
numerical derivatives with high precision.

So one possibility to overcome this numerical difficulty is then to adopt a reliable analytical expression for the 
homogeneous functional. An example for this approach is the analytical FVC functional33, which extended previ-
ous expressions36 by incorporating the magnetization, has been currently used as a practical tool for DFT-LSDA 
calculations20,37–40. The FVC parametrization properly recovers all the analytical known limiting cases (for U = 0, 
U = ∞ and for the combined set n = 1 and m = 0), correctly predicts a positive Mott gap at n = 1 for any U > 0, 
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and is also more precise in general than the previous expressions36. While for most of the parameters the FVC 
functional presents relatively low deviations from numerically exact results (~2%), its accuracy is considerably 
worse for the weakly interacting regime. Thus, the ANN functional proposed here is a simpler and faster numeri-
cal approach to inhomogeneous systems within DFT calculations, with superior accuracy than FVC and compu-
tationally cheaper than FN and DMRG.

Results and Discussion
The training of our neural model was performed with the Levenberg-Marquartd algorithm41. The process involves 
the random split of the exact data in three sets: 70% for the training itself, 15% for the validation and the remain-
ing 15% for testing the ANN performance. The input parameters of our ANN model are the variables density n, 
magnetization m and interaction U, while the output is the per-site ground-state energy e n m U( , , )ANN

0 . We con-
sider 20,891 numerically exact Lieb-Wu results within the regimes 0 ≤ U ≤ 10t, 0 ≤ n ≤ 1 and 0 ≤ m ≤ n. Thus the 
possible topologies of our ANN are of type: 3 input neurons {n, m, U} – a certain number of hidden layers – a 
single output neuron e n m U{ ( , , )}ANN

0 . Several topologies were studied, e.g., with a single hidden layer – 3-5-1, 
3-10-1 and 3-20-1 – and with two hidden layers, 3-12-12-1 and 3-10-10-1.

Our target performance was below 10−6 for the mean squared error, which was obtained after extensive train-
ing by the topology 3-20-1 with 1000 epochs (we choose to stop the training in 1000 epochs to avoid over-fitting 
by the network, which could lead to a poorer generalization performance), as shown in Fig. 1. This architecture 
contains one hidden layer composed of twenty neurons, with tangent sigmoid transfer function, while the output 
layer has only one node with a linear transfer function. The trained neural network can be found online free of 
charge as Supplementary Material (ANN_to_Hubbard.mat and Read_me.pdf files).

Now we compare the perfomance of our ANN model with the FVC parametrization, for all the regimes of 
parameters. We start by considering non-magnetic systems. In Fig. 2 we show the energy as a function of the 
density for a strongly correlated case, with U = 6t. While the overall behavior is well described by both, ANN and 
FVC, we find that the ANN deviations are below ~0.1% (see inset), smaller than the FVC ones, which in some 
cases are 10 times bigger. This higher performance of ANN over FVC for strongly interacting systems is surpris-
ing, since at this regime FVC is recognized as sufficiently precise33.

Figure 3 presents the energy as a function of the interaction for non-magnetic chains. It reveals that the excel-
lent performance of our ANN model is not restricted to the strongly correlated systems: within 0 ≤ U ≤ 10t and 
m ~ 0 the ANN deviates by less than ~0.08% for all the interactions, while FVC deviates on average ~0.5%.

We also compare the performance of ANN and FVC for magnetic systems. Figure 4 presents the energy as a 
function of the magnetization for several interactions. We find that while FVC in some cases fails to recover even 
the qualitative behavior of the energy, our ANN model properly describes the exact trend. Quantitatively, while 
FVC deviations reach up to ~7% (for U = 0.5t), the ANN model remains reliable, with deviations inferior to 
0.15%. We also calculate numerically the magnetic susceptibility χ, related to the energy by χ = ∂ ∂ |−

=e m/ m
1 2 2

0. 
For the case of U = 0.5t we find χFN = 0.896, χANN = 0.825 and χFVC = 1.335, illustrating that the higher accuracy 
on the total energy leads in general to more precise observables.

Finally, we illustrate the use of our ANN functional within DFT-LSDA calculations by applying it to inhomo-
geneous (i) unconfined finite chains, (ii) localized impurity systems ( δ=V Vi i i, V

) and (iii) harmonically confined 
chains (Vi = k(i − i0)2). The harmonic potential is particularly relevant to simulate state-of-the-art experiments 
with cold fermionic atoms in optical lattices. We compare the performance of DFT-LSDA – with each functional 
ANN, FVC and FN – to DMRG calculations.

Figure 5 summarizes the essential features of our analysis to the several inhomogeneous test cases. For finite 
unconfined chains, Fig. 5a, the typical Friedel-like oscillations42 on the local densities are in general well repro-
duced by all the three functionals. The average percentage deviations in this case are similar, slightly larger for 
FVC, because the chain is relatively large, L = 40. For smaller chains and/or with inhomogeneous external poten-
tials Vi, as in Fig. 5b,c, we see that the FVC is clearly the less accurate functional. Figure 5d, for the harmonically 

Figure 1. Structure of our ANN model, 3-20-1, and its performance during training.
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confined case, shows that the deviations on the ground-state energy follow similar trend: although the deviation 
oscillates with the harmonic strength k for the approaches, the FVC deviations are systematically larger than 
the FN and ANN ones. Thus, our results demonstrate that the ANN approach has a very good balance between 
precision and computational cost: it is two orders of magnitude faster than FN and DMRG and significantly more 
precise than FVC.

Conclusions
In summary, we have developed a simple, fast and reliable artificial neural network functional for the ground-state 
energy of the homogeneous fermionic Hubbard chains. We have demonstrated the power of the ANN functional 
in DFT methods by exploring finite, localized impurities and harmonically confined systems. The results show 
that our ANN approach not only properly captures the qualitative behavior of energy and density profiles for all 
the inhomogeneous systems, but also leads to more accurate results than previous parameterizations. This excel-
lent performance is similar to other numerical solutions (FN and DMRG), but at a fraction of the computational 
cost. Therefore our ANN functional is a practical tool to be implemented in DFT calculations, such as in local 
and non-local density approximations, for inhomogeneous Hubbard chains. Our approach is particularly useful 
to investigate disordered systems, where many realizations are needed for each randomly localized impurities 
scenario, what makes analyses via exact methods computationally prohibitive.

Figure 2. Per-site ground-state energy as a function of the density for the FVC and ANN functionals in 
comparison to the numerically exact FN result. The inset shows the percentage deviations, obtained via 

× | − |e e e100 ( )/approx exact exact
0 0 0 . In all cases the interaction is U = 6t, the magnetization is m ~ 0 and D is the 

average percentage deviation.

Figure 3. Per-site ground-state energy as a function of the on-site interaction U (in units of t), for the FVC and 
ANN functionals in comparison to the numerically exact FN result. Here n ~ 0.5 and magnetization m ~ 0. The 
inset shows the percentage deviations, obtained via × | − |e e e100 ( )/approx exact exact

0 0 0 , while D is the average 
percentage deviation.
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Figure 4. Per-site ground-state energy as a function of the magnetization m, for the FVC and ANN functionals 
in comparison to the numerically exact FN result. Here n ~ 0.5 and D is the average percentage deviation.

Figure 5. Density profile for (a) a finite chain of size L = 40 and n = 0.8, (b) a localized impurity system, with 
L = 15, impurity strength V = 2t and n = 0.4, and (c) a harmonically confined chain with L = 40, harmonic 
curvature k = 0.01 and n = 0.8, while (d) shows the per-site ground-state energy as a function of the harmonic 
confinement curvature for chains of size L = 40 and n = 0.8. In all cases we adopted open boundary conditions, 
U = 1t and m ~ 0. The results are either exact DMRG or approximated DFT-LSDA, with one of the functionals: 
FN, FVC or ANN. The percentage deviations are obtained via × | − |e e e100 ( )/approx exact exact

0 0 0  and D is the 
average percentage deviation.
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Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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