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Uniform magnetic force impact 
on water based nanofluid thermal 
behavior in a porous enclosure with 
ellipse shaped obstacle
M. Sheikholeslami1,2, Zahir Shah  3, Ahmad Shafee4,5, Ilyas Khan6 & Iskander Tlili7

In the present research, aluminum oxide- water (Al2o3-H2O) nanofluid free convection due to magnetic 
forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice 
Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability 
on nanoparticles migration. To predict properties of Al2o3- water nanofluid, Brownian motion impact 
has been involved. Outcomes revels that considering higher magnetic forces results in greater 
conduction mechanism. Permeability can enhance the temperature gradient.

By suggesting nanoparticles from nanoscience as useful working fluid, thermal performance enhances. Nano 
sized metallic particles are dispersed into common fluid to generate such fluid. Nanofluids must be utilized to 
augment the conduction and can be more stable with better mixing1,2. Nano science can suggest appropriate 
working fluid to reach thermal efficiency enhancement3–6. The furthermost current publications on nanofluids 
with new applications can be demonstrated in7–12. Kumar et al.13 involved the Brownian motion impact on char-
acteristics of nanoparticles in bioconvective flow. Irfan et al.14 displayed the roles of chemical terms on transient 
energy equation. Ahmed et al.15 illustrated the carbon nanotubes flow between Riga sheets in existence of viscous 
dissipation. Kumar et al.16 employed the non-Fourier heat flux model for investigation of magnetic force effect on 
Carreau fluid convective transient flow. Ali et al.17 demonstrated hidden events during magnetohydrodynamic 
(MHD) migration in a permeable media. Soomro et al.18 employed Finite difference method (FDM) for dual 
solution of nanoparticle migration over a cylinder. They used water as pure fluid. Reddy et al.19 depicted the 
impact of magnetic terms on fluid flow along a sheet considering heat sink. Raizah et al.20 illustrated the power 
law nanofluid natural convection inside a titled permeable duct. The furthermost recent articles about Nano sized 
particles transportation by involving various methods were reported by Shah et al.9,21,22. Choosing active working 
fluid becomes popular subject in recent decade23–51.

The main aim of current research is to simulate and examine nanoparticles migration within a cubic porous 
cavity under the influence of constant magnetic force. Hydrothermal behaviors for various permeability, Lorentz 
and buoyancy forces are mainly focused and shown through graph.

Geometry Explanation
Figure 1 displays the permeable cubic cavity which is full of alumina. Cold, adiabatic and hot surfaces are depicted 
in this graph. One direction magnetic force has been involved. (θz = 0.5 π = θx).

Simulation by Mesoscopic Method
Mesoscopic method. To find the temperature and velocity, distribution functions were used namely (g and f).  
Boltzmann equations help to find functions g and f. According to assumptions exist in38, we have:
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Figure 1. Current porous cubic cavity.

Figure 2. Diagram of D3Q19 model.

σ(Ω · m)−1 k(W/m.k) Cp(j/kgk) ρ(kg/m3)

Pure water 0.05 0.613 4179 997.1

Al2O3 10−12 25 765 3970

Table 1. Properties of Water, Al2O3.

Coefficient values Al2O3−Water

a6 −298.19819084

a7 −34.532716906

a8 −3.9225289283

a9 −0.2354329626

a10 −0.999063481

a1 52.813488759

a2 6.115637295

a3 0.6955745084

a4 4.174555527E-02

Table 2. Related coefficient for alumina.

Mesh size 51 × 51 × 51 61 × 61 × 61 71 × 71 × 71 81 × 81 × 81 91 × 91 × 91

Nuave 0.13622 0.14805 0.15061 0.15073 0.15097

Table 3. Nuave over the hot surface with various grid sixes when Da = 100, φ = 0.04, Ra = 105, and Ha = 60.
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Here τc, Δt, τv and ci are, relaxation time for T, time step, relaxation time for u and lattice velocity.
D3Q19 model is good method for such problem (as shown in Fig. 2):
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Body forces can calculate as:
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To calculate scholars we have:

Figure 3. Verification of current LBM code for (a) free convention40; (b) nanofluid flow41.
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Figure 4. Impacts of magnetic forces on (a) isotherm, (b) x velocity, (c) z velocity, (d) isokinetic energy at 
Y = y/L = 0.5 when φ = 0.04, Da = 0.001, Ra = 103.
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Working fluid. Density, (ρβ)nf, (ρCp)nf, σnf, μnf and knf are (39):
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Figure 5. Impacts of magnetic forces on (a) isotherm, (b) x velocity, (c) z velocity, (d) isokinetic energy at 
Y = y/L = 0.5 when Ra = 103, Da = 100, φ = 0.04.
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Figure 6. Impacts of magnetic forces on (a) isotherm, (b) x velocity, (c) z velocity, (d) isokinetic energy at 
Y = y/L = 0.5 when Ra = 105, Da = 0.001, φ = 0.04.
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Figure 7. Impacts of magnetic forces on (a) isotherm, (b) x velocity, (c) z velocity, (d) isokinetic energy at 
Y = y/L = 0.5 when Ra = 105, Da = 100, φ = 0.04.
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Figure 8. Various values of Nuave for different Ra, Da, Ha.
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Tables 1 and 239 can be used to find needed parameters. Nuave and Nuloc over the hot surface are:
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Mesh Independency and Validation
No alter should be seen in outputs by changing mesh sizes. So, various sizes must be employed. As an example, 
we presented Table 3. Figure 3 illustrates the agreement of Lattice Boltzmann Method (LBM)40,41. Also, previous 
paper42 indicates that this code is verified for MHD flow.

Results and Discussion
Water-Aluminum oxide mixture hydrothermal behavior in a permeable three dimensional domain was modeled 
with mesoscopic method. Numerical outputs are depicted the variations of magnetic force (Ha = 0 to 60), buoy-
ancy term ( =Ra 10 , 103 4 and 105) and Darcy number (Da = 0.001 to 100).

Nanofluid behavior with change of Ra Ha,  and Da are displayed in Figs 4–7. In cases with low Ra and Da, 
convection mode is not strong enough to change flow style and isotherms has shape of geometry. Convection 
enhancements with increase of permeability and isotherms convert to complex shape. Thermal plume appears as 
a result of strong convection mode. Employing magnetic forces makes conduction to be more sensible and ther-
mal plumes vanish. Due to reduction effect of Ha on velocity, Ec detracts with rise of Ha. By augment of buoyancy 
force, main vortex stretch in z direction and convection mode rises.

Changes in Nuave due to altering variables are illustrated in Fig. 8. Equation (17) is extracted for Nuave:
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Due to augment in temperature gradient with rise of permeability and buoyancy terms, Nuave is enhancing 
function of Da Ra, . Furthermore, conduction mode boosts with augment of Hartmann number. Thus, Nuave 
detracts with rise of magnetic force.

Conclusions
In the current article, uniform magnetic force impacts on momentum equations were considered in a 3D porous 
enclosure. Mesoscopic approach was applied to analyze alumina nanofluid in these conditions. Brownian motion 
impact can changes the properties of working fluid. LBM was involved to report the impacts of Ha, Ra, Da 
on nanofluid behavior. Outcomes display that interaction of nanoparticles augments with augment of Da,Ra. 
Isotherms become less complex with applying magnetic force.
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