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A data-informatics method to 
quantitatively represent ternary 
eutectic microstructures
Irmak sargin & scott p. Beckman

Many of the useful properties of modern engineering materials are determined by the material’s 
microstructure. Controlling the microstructure requires an understanding of the complex dynamics 
underlying its evolution during processing. Investigating the thermal and mass transport phenomena 
responsible for a structure requires establishing a common language to quantitatively represent the 
microstructures being examined. Although such a common language exists for some of the simple 
structures, which has allowed these materials to be engineered, there has yet to be a method to 
represent complex systems, such as the ternary microstructures, which are important for many 
technologies. Here we show how stereological and data science methods can be combined to 
quantitatively represent ternary eutectic microstructures relative to a set of exemplars that span the 
stereological attribute space. our method uniquely describes ternary eutectic microstructures, allowing 
images from different studies, with different compositions and processing histories, to be quantitatively 
compared. By overcoming this long-standing challenge, it becomes possible to begin to make progress 
toward a quantitatively predictive theory of ternary eutectic growth. We anticipate that the method of 
quantifying instances of an object relative to a set of exemplars spanning attribute-space will be broadly 
applied to classify materials structures, and may also find uses in other fields.

Materials design involves observing and cataloging materials structures, understanding the underlying relation-
ship between the multilevel structures and resulting material properties, and developing processing routes to 
prepare materials with the properties that yield optimal engineering performance1. It relies upon the existence 
of a universally agreed upon language to quantitatively represent and subsequently catalog the observed struc-
tures2. One of the most fundamental components of a material’s hierarchical structure is the microstructure; 
however, there is yet to be a consensus regarding the language for quantitatively representing many complex 
microstructures.

Recent attempts at microstructural quantification have involved data-driven and machine learning based 
approaches3–7. Principal component analysis (PCA), a statistical method that has been successfully applied to 
identify trends in complex multivariate materials data8–10, has also found application in the quantitative rep-
resentation of microstructures. PCA was used by Zabaras et al. to construct a dynamic library of single phase 
polyhedra microstructures11,12. Instead of focusing on the many sub-features of the microstructures, each was 
considered as a single entity that was quantified by a set of coefficients. Single grain microstructures were used 
as input to PCA and were combined with a support vector machine algorithm for classification11,12. PCA also 
has been used in stochastic modeling of microstructures. The spatial relations were described using two-point 
correlations and the overall state of the structure was treated as a statistical distribution2,13–16. The variance of the 
two-point correlations was examined in PCA and this allowed the creation of a structure-property map in PCA 
space2,13. This approach allows the simultaneous classification and structure-property analysis of multiple com-
plex microstructures14 including, for example, the structure-diffusivity relationship in porous transport layers of 
polymer electrolyte fuel-cells15, and the structure-plasticity relationship in non-metallic inclusion/steel composite 
material systems16. A similar method has been used to couple phase field simulations with spatial correlations to 
quantify and classify the evolution of microstructural changes in ternary eutectic structures17,18.

In this work we also focus on the ternary eutectic microstructures, as an exemplar. Even simple ternary micro-
structures exhibit a high degree of morphological variation due to the complex dynamics present during their 
evolution. The significant advances that have been made in understanding the solidification of regular binary 
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eutectic compounds19,20 are based on the common language used to quantitatively describe the resulting micro-
structure, i.e., the lamellar and rod morphologies. The absence of a universal language to quantitatively represent 
the ternary eutectic microstructures has prohibited the development of an accurate theory of ternary eutectic 
solidification and this motivates our study.

Initial classification efforts described ternary eutectic microstructures as a combinations of the lamellar and 
rod morphologies observed in the regular binary eutectic microstructures21–23, but this approach was unable to 
represent the multitude of complex morphologies observed in experiments24–28. Currently, the most widely used 
classification scheme for ternary eutectic morphologies is given by Ruggiero and Rutter29 and its analytical solu-
tion is an extension of Jackson and Hunt’s analytical solution of binary eutectics30; three distinct growth modes 
are identified: semi-regular brick (SRB), lamellar (LAM), and rod-hexagon (RHN)31,32. A small set of geometric 
features, such as fixed eutectic spacings and the fixed spacing ratio of phases are used to describe the relative scale 
of these microstructures. These approaches, although yielding important insights, have yet to produce a universal 
representation of ternary eutectic microstructures that can be used to develop a predictive model of solidification. 
As a result, new parameters have been suggested to describe the microstructures33,34. The greatest challenge for 
developing a quantitatively correct theory of ternary eutectic solidification is the creation of a universal language 
to allow a representation of the observed structures.

We demonstrate a data informatics approach to quantitatively represent the ternary eutectic microstructure. 
The microstructures examined are from the ternary eutectic Al-Cu-Ag system and are taken from refs35,36, along 
with the stereological descriptors used to describe them. Although there is a continuum of possible structures, 
the data-informatics method presented here allows any microstructure to be uniquely referenced to the three 
idealized morphologies identified in refs29,31,32. This approach directly allows for the integration of data spanning 
sources. In addition, the resulting numerical regression is applicable to ternary eutectic microstructures of other 
compositions.

Results
Dataset. It was reported in refs35,36 that three variations of the semi-regular brick structure were observed 
in samples produced by directional solidification processed over the velocity range 0.0005 mm/s to 0.018 mm/s. 
In the low-velocity range, 0.0005 mm/s to 0.001 mm/s, an ordered semi-regular brick structure was observed; 
at mid-velocity range, 0.001 mm/s and 0.01 mm/s, the intermetallic phases, Ag2Al(hcp) and Al2Cu(tet), began 
connecting to their nearest same phase neighbors resulting in a more elongated form; at higher velocities the 
microstructure somewhat resembled the lamellar morphology. Due to the relatively slow diffusion rate of Ag in 
liquid, at high velocities the Ag2Al(hcp) phase had a more fragmented morphology as compared to the Al2Cu(tet) 
phase, which continued to maintain a lamellar form. At the highest velocities Al(fcc) lost its elongated form, 
adopting a more circular shape, similar to Ag2Al(hcp), and the periodicity between intermetallic phases also 
became less regular. The morphological changes in the images were smooth with increasing velocity. Examples of 
these microstructures are shown in Fig. 1.

These observations, while instructive for understanding the Al(fcc)-Ag2Al(hcp)-Al2Cu(tet) ternary eutectic 
system, do not provide a quantitative representation that allows the development of a general theory of solidifica-
tion, nor do they allow for comparison of these microstructures to those reported from other studies. Well-known 
stereological descriptors that define the scale of the phases provide a quantification of the microstructure, but do 
not accurately capture all the qualitative changes observed in the images35. For example, Fig. 1(e) shows that the 
relative eutectic spacing remains constant for all growth velocities. This quantitative result does not explain the 
apparent microstructural differences observed in Fig. 1(a–d). Sargin and Napolitano concluded that scale defin-
ing attributes alone are insufficient to quantitatively represent the microstructures and developed descriptors that 
describe both the shape and scale of the phases35,36.

The stereological attributes used in the data analysis, consist of three different elements. The first element 
involves the quantification of area, perimeter, length, and width of each phase. The phase fractions are obtained 
from area measurement. The values are then averaged across each image. The second element is analysis of 
Fourier transform patterns from single-phase masked images. For each Fourier transform pattern, a radial and 
angular distribution plot is generated. The radial and angular order parameters are defined as the height over 
width of the peaks in the distribution plots. The final element is the analysis of the phase boundary distribution 
according to the angle and type. The 19 stereological attributes used in this study are given in Table 1.

Rather than compare microstructures to each other directly, a quantitative representation is constructed that 
describes the microstructures relative to the ideal SRB, LAM, and RHN ternary eutectic microstructures pro-
posed by Ruggiero and Rutter29,31,32. The ideal microstructural images with equilibrium phase fractions, shown in 
Fig. 1(g–i), are generated such that the scale of the microstructures are consistent with that of the sample pulled 
at 0.001 mm/s. The phases are assigned the same pixel values as the masked experimental ones, 2, 255, and 127 
for Al(fcc), Ag2Al(hcp), and Al2Cu(tet), respectively. The stereological attributes extracted for these three are 
combined with data from refs35–37, discussed above, to yield the dataset.

Data analysis. The dataset is standardized and PCA is performed. The scree plot in Fig. 2 shows that 90% of 
the variance in the dataset is accounted for by the first four principal components (PCs). The loadings of these 
PCs are given in Table 2 and the score plots are given in Fig. 3.

The distinction between experimental and ideal microstructures is the source of greatest variance in the data-
set, as shown in Fig. 3(a–c), and is captured by PC1. In contrast, the score plot of PC2, PC3, and PC4, in Fig. 3(d), 
shows that the experimental microstructures are bracketed by the ideal SRB, LAM, and RHN structures. The 
loadings of PC2, PC3, and PC4 have a larger variability that PC1 demonstrating that each PC represents unique 
stereological information. PC1 is removed for the remainder of the analysis due to its primarily characterizing the 
trivial distinction between the experimental and ideal structures.
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The principal component transformation is distance preserving, i.e., the relative distances between samples 
in attribute space remain the same in PC space, therefore it is possible to use the relative distance between exper-
imental and ideal microstructures in PC space to quantify the similarity of experimental microstructures to the 
ideal ones. The experimental scores are projected into the plane defined by the SRB, LAM, and RHN scores, as 
shown in Fig. 4. This allows each experimental microstructure to be uniquely triangulated in terms of its fraction 
similarity to the ideals. The fraction similarity to the SRB, LAM, and RHN structures is determined for each 
microstructure and the results are plotted in Fig. 5. The growth velocity is used to label each microstructure in 
the figure.

A partial least squares (PLS) regression is used to quantify the relationship between a microstructure’s 
stereological attributes and its fraction similarity to the ideal structures. To cross validate the regression, the 
leave-one-method is used. This approach helps compensate for the relatively small sample population. The result-
ing regression has a mean squared error (MSE) of 4.8 × 10−5, 7.5 × 10−5, and 1.6 × 10−5 for SRB, LAM, and RHN, 
respectively.

It is known from the PCA that not all 19 of the stereological attributes are significant and it is found that using 
only 9 attributes yields a regression with MSE 1.4 × 10−3, 6.0 × 10−4, and 4.0 × 10−4 for SRB, LAM, and RHN, 
respectively. Reducing the number of attributes allows the most significant ones to be identified and assists future 
studies by reducing the stereological analysis needed. The predicted regression results using only 9 attributes are 
compared to regression results using all 19 attributes in Fig. 5. The regressions are written

Figure 1. Summary of the previous work. (a–d) Representative microstructures observed for directionally 
solidified ternary eutectic Al(fcc), Ag2Al(hcp), and Al2Cu(tet) for a variety of velocities from ref.35: (a) 
0.0006 mm/s; (b) 0.004 mm/s; (c) 0.010; and (d) 0.012 mm/s;. For (a–c) the black phase is Al2Cu(tet), Al(fcc) is 
gray, and Ag2Al(hcp) is white. For (d) Al2Cu(tet) and Al(fcc) are reversed with Al2Cu(tet) being gray and Al(fcc) 
black. (e) The phase spacing as a function of velocity35,36. (f) The microstructure observed at 0.009 mm/s. (g–i) 
The ideal ternary eutectic microstructures as described in refs29,31,32: (g) semi-regular brick (SRB); (h) lamellar 
(LAM); and (i) rod-hexagon (RHN). Al(fcc), Ag2Al(hcp), and Al2Cu(tet), are assigned the pixel values 2, 255, 
and 127 respectively.
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where An are the measured attributes and Cn are the coefficients given in Table 3.

Discussion
It has been shown that ternary eutectic microstructures cannot be quantitatively represented using simple 
geometric measures, nor can they be represented using stereological analysis of individual features35. Here we 
demonstrate that it is possible to decompose ternary eutectic microstructures using stereological attributes and 
then apply informatics methods to quantify the similarity of the microstructure relative to the ideal SRB, LAM, 
and RHN structures.

The directionally solidified microstructures’ fractional similarity to the ideal LAM, SRB, and RHN structures 
is shown in Fig. 5. Analysis of the results tells us that for velocities less than 0.001 mm/s the structures are strongly 

Abbreviation Attribute

L/W1 Length over width ratio of Al(fcc) in log10

L/W2 Length over width ratio of Ag2Al(hcp) in log10

L/W3 Length over width ratio of Al2Cu(tet) in log10

A/P1 Area over perimeter ratio of Al(fcc) in natural log10

A/P2 Area over parameter ratio of Ag2Al(hcp) in log10

A/P3 Area over parameter ratio of Al2Cu(tet) in log10

SF1 Shape factor (Area2/4π Area) of Al(fcc) in log10

SF2 Shape factor (Area2/4π Area) of Ag2Al(hcp) in log10

SF3 Shape factor (Area2/4π Area) of Al2Cu(tet) in log10

AO1 Angular Order of Al(fcc) in log10

AO2 Angular Order of Ag2Al(hcp) in log10

AO3 Angular Order of Al2Cu(tet) in log10

RO1 Radial Order of Al(fcc) in log10

RO2 RadialOrder of Ag2Al(hcp) in log10

RO3 Radial Order of Al2Cu(tet) in log10

PF1 Phase Fraction of Al(fcc)

PF2 Phase Fraction of Ag2Al(hcp)

PF3 Phase Fraction of Al2Cu(tet)

APB Orientation difference between Al(fcc)/Al2Cu(tet) and 
Al2Cu(tet)/Ag2Al(hcp) phase boundaries in degrees

Table 1. The stereological attributes used here and described in ref.35.

Figure 2. The individual and cumulative explained variances.
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represented as SRB; for example, the microstructure produced by solidifying at 0.0006 mm/s is determined to 
have a structural character of (0.55/0.25/0.20) (SRB/LAM/RHN). Increasing the solidification velocity results 
in a reduction of SRB character and increase in the LAM character. For velocities ranging between 0.0025 and 

Attribute PC1 PC2 PC3 PC4

L/W1 0.506 −0.335 0.700 0.024

L/W2 0.631 −0.794 0.050 0.033

L/W3 0.564 −0.554 −0.626 −0.043

A/P1 −0.835 0.387 −0.402 −0.130

A/P2 −0.894 0.280 −0.383 −0.088

A/P3 −0.953 −0.043 −0.261 −0.003

SF1 −0.376 0.883 −0.089 −0.189

SF2 −0.674 −0.468 0.507 −0.072

SF3 −0.720 −0. 231 0.380 −0.307

AO1 0.823 −0.129 −0.481 −0.004

AO2 0.884 −0.340 −0.257 −0.093

AO3 −0.904 −0.151 −0.309 −0.088

RO1 0.869 0.435 0.050 0.007

RO2 0.936 0.158 0.219 0.086

RO3 0.982 0.132 0.053 0.143

PF1 0.791 0.290 0.191 −0.510

PF2 −0.870 −0.427 −0.145 −0.039

PF3 −0.089 0.136 −0.123 0.997

APB 0.005 0.318 0.701 0.198

Table 2. Loadings of the first four PCs.

Figure 3. The PC scores of microstructures shown for the first four PCs: (a) PC1, PC2, and PC3; (b) PC1, 
PC2, and PC4; (c) PC1, PC3, and PC4; (d) PC2, PC3, and PC4. The gray scale symbols are the experimental 
microstructures, the blue square is the ideal SRB, the green upside down triangle is the ideal LAM, and the red 
polygon is the ideal RHN.
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0.010 mm/s the average character is (0.21/0.58/0.21). At higher velocities the microstructure becomes a mixture 
of the LAM and RHN features, and at a velocity of 0.012 mm/s the character is (0.20/0.45/0.35). These quantitative 
predictions are in excellent agreement with the features qualitatively observed in Fig. 1: Fig. 1(a) demonstrates 
SRB features for low velocities, Fig. 1(b,c) demonstrate a primarily LAM structure, and Fig. 1(d) demonstrates a 
mixing of the LAM and RHN features.

Figure 4. The PC scores projected onto the plane defined by the SRB, LAM, and RHN structures in PC-space 
defined by PC2, PC3, and PC4. The gray scale symbols are the experimental microstructures, the blue square is 
the ideal SRB, the green upside down triangle is the ideal LAM, and the red polygon is the ideal RHN.

Figure 5. The fraction similarity to SRB, LAM, and RHN ploted versus solidification velocity. Filled symbols 
are fractions obtained from triangulated values in PCA, the empty symbols are the PLS regression results using 
all 19 attributes, and half-filled symbols show the results from a 9 attribute PLS regression.

Semi-regular brick Lamellar Rod-hexagon

n Att. βn σn Cn Att. βn σn Cn Attr. βn σn Cn

1 APB 0.0794 0.0050 0.0021 APB −0.0881 0.0092 −0.0023 SF1 0.0676 0.0034 0.4368

2 AO1 −0.0545 0.0035 −0.0749 RO1 −0.0691 0.0077 −0.2744 L/W1 −0.0551 0.0033 −0.2753

3 SF2 0.0516 0.0040 0.1447 SF1 −0.0678 0.0085 −0.4384 RO1 0.0426 0.0034 0.1693

4 L/W1 0.0468 0.0045 0.2338 AO2 0.0583 0.0093 0.1270 P/A1 0.0396 0.0028 0.0434

5 P/A2 −0.0389 0.0038 −0.0619 PF2 0.0565 0.0065 0.9054 L/W2 −0.0390 0.0022 −0.2258

6 P/A1 −0.0342 0.0033 −0.0374 AO1 0.0551 0.0063 0.0757 SF2 −0.0368 0.0027 −0.1031

7 AO2 −0.0331 0.0051 −0.0721 PF1 −0.0462 0.0044 −0.6310 PF2 −0.0310 0.0033 −0.4973

8 L/W3 −0.0331 0.0055 −0.1805 P/A3 −0.038 0.0102 −0.0581 P/A3 0.0308 0.0055 0.0470

9 SF3 0.0328 0.0019 0.1021 AO3 0.0260 0.0059 0.0537 PF1 0.0266 0.0022 0.3630

Table 3. The attributes and coefficients for the PLS regression of SRB, LAM, and RHN. Here βn is standardized 
coefficient and σn the standard deviation. Cn is the coefficient used in the PLS regression. In this table the 
attributes are listed in order of decreasing importance.

https://doi.org/10.1038/s41598-018-37794-y


www.nature.com/scientificreports/

7Scientific RepoRts |          (2019) 9:1591  | https://doi.org/10.1038/s41598-018-37794-y

Looking closely at the results in Fig. 5 we see a large change in predicted character going from 0.009 mm/s 
to 0.010 mm/s. Such a large change in microstructure for an incremental change in velocity is unexpected, but 
careful examination of the 0.009 mm/s structure, shown in Fig. 1(f), and the 0.010 mm/s, shown in Fig. 1(c), val-
idates this prediction. Although at this time it is unclear the physical origin of the changes, it is apparent that our 
analysis method accurately and quantitatively captures them.

Our confidence in this approach to represent the microstructures is due to the overall robustness of the anal-
ysis methods and data. First, PCA is a distance preserving transformation, meaning that the relative stereological 
similarities of the samples in attribute space is preserved when transformed to PC space. The first four PCs cap-
ture 90% of the attribute variance, meaning that the resolution loss due to truncation is on the order of the uncer-
tainty introduced from other sources, such as the inherent variability from the experimental methods. Second, 
the first PC clearly captures the large difference between the ideal and experimental images. This is immediately 
observable from the score plots in Fig. 3(a–c). Discarding the trivial information from PC1 refines the data, leav-
ing the important differences in the remaining PCs. This is analogous to masking the through beam in an electron 
diffraction experiment allowing access to the fine grained information in the diffracted data. Third, even though 
only a limited number of images are available, each image is information rich and the stereological analysis makes 
redundant measurements across each image. The attributes used in the analysis are not single measurements, but 
are averages from 25 different images taken from each sample. Fourth, this method is able to quantify the dra-
matic changes in the microstructures as the solidification velocities change, for example the crossover between 
SRB and LAM at 0.001 mm/s. The emergence of RHN at velocities greater than 0.012 mm/s also is clearly demon-
strated. Fifth, the method presented here is purely based on experimental microstructures, comparing them to 
a small set of idealized archetypal structures. It does not require any theoretical inputs that may bias the results.

The PLS regression can be used for determination of fraction similarity to SRB, LAM, and RHN of any invar-
iant ternary eutectic structure, independent of alloy system, i.e., the attributes have no explicit compositional 
dependence. The regression also is independent of the velocity and thermal gradient because the ideal standards 
used in the mapping do not depend on processing.

Conclusions
An approach is demonstrated that accurately and quantitatively represents ternary eutectic microstructures by 
classifying them according to their relative similarity to the ideal SRB, LAM, and RHN microstructures. The 
method is sufficiently general that it can be applied to any directionally solidified invariant ternary eutectic micro-
structure regardless the alloy system. Therefore it provides the common language necessary for the development 
of a general theory of ternary eutectic microstructure evolution during directional solidification.

Although this study is focused on microstructure, the data analysis process can be applied to quantitatively char-
acterize any collection of structures or objects that have well-defined bracketing ideals. The essential elements of the 
approach are the identification of ideal standards, the identification of quantifiable attributes, the use of the attributes 
and PCA to classify the structures, the determination of the relevant PCs needed to explain the sample variance, and 
the exclusion of the trivial PCs that merely highlight the difference between the ideal and actual structures.

Methods
In the dataset, the length over width, area over perimeter, shape factor, angular order, and radial order attributes 
were subjected to a logarithmic transformations. Attribute standardization was used to avoid bias due to scaling 
differences. Standardization was applied according to the equation,

μ σ= −X X( )/ ,S
i i

X X

where XS
i was the standardized value of the data set, μx was the mean and σX was the standard deviation.

Following this, PCA was applied and the distances and similarities of experimental structures to the ideal ones 
were calculated. The microstructures were characterized relative to the ideal ones by projecting them into the 
plane defined by the SRB, LAM, and RHN structures in PC2-PC3-PC4-space. The PC1 component was discarded 
because it primarily contained the information distinguishing the experimental and ideal images. The projected 
microstructures were bound by a triangle defined by the SRB, LAM, and RHN, which allowed the similarity of 
each microstructure to be determined in terms of its unique position relative to the ideal structures.

A PLS regression was used to determine the microstructures’ fraction similarity to SRB, LAM, and RHN as 
a function of the microstructural attributes. The scikit-learn’s38 PLS package with the nonlinear iterative partial 
least squares (NIPALS) algortihm was used. The optimal number of components to be used in the PLS regression 
was obtained by the leave-one-out cross-validation method. For SRB and RHN 8 PCs were used and for LAM 9. 
The minimum number of attributes needed to accurately represent the triangulated data was determined to be 9. 
The 9-attribute linear equation for SRB, LAM, and RHN, were determined independent of each other.
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