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Maximizing Electrokinetic Energy 
Conversion via the Intersecting 
Asymptotes Method
Abraham Mansouri1 & Larry Kostiuk2

It has been shown in earlier studies that the maximum electrokinetic conversion efficiency between flow 
and electric work (e.g., electrokinetic power generation) occurs when electric double-layer (λ) overlaps 
and there is no electroneutral zone in a nanometer-scale channel. This result has been shown through 
cumbersome and lengthy numerical and theoretical studies. The case is made here that complications 
associated with solving the coupled set of governing equations i.e. Poisson, Nernst-Planck, and 
Navier-Stokes (PNPNS) could be drastically reduced to a two-step solution by method of intersecting 
asymptotes.

The theory of electrokinetic transport in micro/nano channels, particularly in the analysis related to the calcula-
tion of maximum electrokinetic energy conversion has been developed over the years, with several key studies1–12. 
The pressure-driven electrokinetic flows in such geometries can be modeled in the framework of a coupled prob-
lem between modified Navier-Stokes and Poisson-Nernst-Planck equations, where the electrochemical transport 
of electrolyte solution and the ion transports by convection, diffusion, and migration are described, respectively. 
In this paper we employ the method of intersecting asymptotes to simplify the electrokinetic energy conversion 
problem. This method has been employed to explore complicated multi-physics phenomena and it is helpful to 
describe the phenomenon in the simpler extremes (asymptotes) in which it may manifest itself. The intersec-
tion of asymptotes method provides a direct and shortcut to capture the most important characteristics of the 
problem13. The method consists of only two steps, initially to find the functional form of the solution in the two 
possible extremes, in case of the current problem i.e. electrokinetic transport in a nanochannel with radius of 
“r” the two extreme cases are: thin (λ ≪ r) and thick (λ ≫ r) double layer assumptions. In the second step, the 
two asymptotes graphically are intersected to determine the radius of a nanochannel that identifies a potential 
extremum (in this case a maximum) in the electrokinetic energy conversion efficiency.

In electrokinetic power generation the source of current is the transport of ions by pressure driven flows. 
The origin of such streaming current is the electrical state of the fluid-substrate interface that creates a spatial 
distribution in the free charge density, which is then transported by the fluid velocity, u, parallel to the walls. The 
streaming current is the product of velocity field and net charge density and is given by.
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The description of the free charge density ρ(r) depends upon whether we apply the thin or thick double-layer 
assumptions. We begin by invoking the thin double-layer assumption and, for simplicity, the Debye-Huckel 
approximation in which the electrical potential within the double layer is assumed to be small (<25.7 mV at 
25C for water-glass interface). The streaming current can then be written as a function of either constant surface 
change density or constant surface potential as below14,15.
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where ε is the fluid permittivity, ζ is the zeta potential, σ is the surface charge density, λ ∼ ε
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length and εζ = σλ, µ is the viscosity, ΔP/L is pressure gradient, T is the temperature, Kb is Boltzmann constant 
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and r is the radius of the channel. We now invoke the other extreme i.e. the thick double-layer assumption where 
the total surface charge on the nanochannel should be balanced by the excess of counterions within the electrolyte 
solution and streaming current can be then written as16.
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The theoretical electrokinetic energy conversion efficiency of fluid flow to electric power in a single nanochan-
nel can be obtained by dividing the rate of electric work over the rate of flow work. The rate of electric work is 
expressed by =w I Rel

2  where I is the streaming current and R is the total electrical resistance of the nanochannel. 
The electrical resistance of a nanochannel is a function of electrolyte conductivity (K) and geometry and its 
expressed as =

π
R L

r K2  where L is the length of nanochannel. The rate of flow work is the product of volumetric 
flow rate (Q) and pressure difference across the nanochannel Δ Δ=w Q Pfl . The theoretical electrokinetic energy 
conversion is simply expressed as η = 
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. The quest for optimal/maximizing energy conversion efficiency has 

been long and drives us to seek simpler solutions in this study. First consider the thin-double layer assumption 
where double layer thickness is much smaller than the radius of the channel. It can be shown that for a thin double 
layer, the electric conductivity of the electrolyte solution is inversely proportional to the square of double layer 
thickness ∼ ∼ ∼ε
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2 2  where D is the ion diffusivity17,18. The volumetric flow rate is estimated by 
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2 2 2 and surface area A ~ r2 in a circular channel. Substituting above correlations into the 
efficiency equation, it can be further simplified as below.
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The efficiency for thin-double layer assumption (i.e. a microchannel) can be expressed as a function of λ( )r

2
, it 

increases rapidly with Debye screening length and decrease with channel radius and the maximum power varies 
as Pmax ~ r2. Now considering the thick-double layer assumption where double layer thickness is much larger than 
the radius of channel. It can be shown that for a thick-double layer, due to balance between surface charges and 
counterions inside the nanochannel the electric conductivity of the electrolyte solution is directly proportional to 
the surface charge on the channel wall and is inversely proportional to channel radius ∼ σK

r
 19. Substituting pre-

vious correlations into the efficiency equation for thick double layer assumption, it can be further simplified as 
below.
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The efficiency for the thick-double layer assumption (i.e. a nanochannel) can be expressed as a function of 
λ −( )r

1
, and contrary to thin-double layer assumption, it decreases with Debye length and increases with the nan-

ochannel radius and the maximum power varies as Pmax ~ r5. Similar to a circular nanochannel, the efficiency of 
electrokinetic energy conversion in a nanoslit is directly proportional to both nanoslit height and surface charge 
density2.

Figure 1. Intersection of asymptotes method, the maximum of electrokinetic energy conversion efficiency 
occurs where electric double layer overlaps.
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What we have determined so far are the two asymptotes of the curves of electrokinetic energy conversion 
efficiency (η) versus non-dimensional Debye length λ( )r

 with respect to channel radius. As shown in Fig. 1 by 
plotting the two asymptotes we find the maximum electrokinetic energy conversion efficiency occurs within the 
range of double-layer overlap i.e. roptimum ~ λ. The extended electric double layer enhances the concentration of 
counter-ions in the center of the nanochannel where the velocity fields are extreme thus maximizing the effi-
ciency1–12. Daiguji et al. through a detailed numerical study showed the efficiency of electrokinetic energy conver-
sion in a nanoslit is also maximized when Debye length is in the order of half of channel height. In double layer 
overlap regime, a unipolar electrolyte solution is generated inside the nanochannel to sustain the electrical neu-
trality2. In Fig. 1 the thin and thick models become increasingly inaccurate as they approach the other model’s 
point of validity, yet they produce the same result at value of unity on x-axis. Similar analysis can be performed 
for electroosmotic pumping (reverse effect of streaming potential/power generation, i.e. generating fluid flows by 
applying potential differences) where η = Δ Δ

pumping
P Q
I R2 . Yao et al. showed that maximum electrokinetic energy 

conversion efficiency in electroosmotic pumping also occurs in double-layer overlap regimes20. In addition, 
non-equilibrium thermodynamic theory has shown that the maximum efficiency in either direction of electrok-
inetic energy conversion is the same21.

We have shown through a simple but effective mathematical method (intersecting asymptotes) that the elec-
trokinetic energy conversion efficiency can be maximized in the range of double layer overlap. While our findings 
are in excellent agreement with previous detailed modeling studies, we showed that the method of intersecting 
asymptotes is a powerful and useful tool for simplifying sophisticated multi-physics systems. We anticipate that 
further applications of this method will facilitate the solution of electrokinetic optimization problems.
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