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Scanning the genomes of parents 
for imprinted loci acting in their  
un-genotyped progeny
Inga Blunk1,2, Manfred Mayer2, Henning Hamann3 & Norbert Reinsch  2

Depending on their parental origin, alleles at imprinted loci are fully or partially inactivated through 
epigenetic mechanisms. Their effects contribute to the broader class of parent-of-origin effects. 
Standard methodology for mapping imprinted quantitative trait loci in association studies requires 
phenotypes and parental origin of marker alleles (ordered genotypes) to be simultaneously known for 
each individual. As such, many phenotypes are known from un-genotyped offspring in ongoing breeding 
programmes (e.g. meat animals), while their parents have known genotypes but no phenotypes. By 
theoretical considerations and simulations, we showed that the limitations of standard methodology 
can be overcome in such situations. This is achieved by first estimating parent-of-origin effects, which 
then serve as dependent variables in association analyses, in which only imprinted loci give a signal. As a 
theoretical foundation, the regression of parent-of-origin effects on the number of B-alleles at a biallelic 
locus — representing the un-ordered genotype — equals the imprinting effect. The applicability to real 
data was demonstrated for about 1800 genotyped Brown Swiss bulls and their un-genotyped fattening 
progeny. Thus, this approach unlocks vast data resources in various species for imprinting analyses and 
offers valuable clues as to what extent imprinted loci contribute to genetic variability.

Genomic imprinting is an epigenetic mechanism in which the expression of genes is partially or entirely limited 
to one of the two inherited alleles. The effects of imprinted genes can be considered parent-of-origin effects 
(POEs) as they appear as phenotypic differences between heterozygotes depending on their parental allele origin1. 
The existence of imprinting is well established in plants, insects and mammals2. In avian species, imprinting is 
not confirmed as studies have resulted in contradictory results3–6. In plants, imprinting has been established to 
occur in maize7–9, Arabidopsis thaliana10–14, rice15,16, sorghum17 and castor beans18. The majority of imprinted 
genes in plants have been found in the endosperm and only a few are known to be expressed in the embryo19. In 
mammals, less than 1% of all genes are thought to be imprinted1,20. Imprinting has, however, crucial functions 
in stem cells, neuronal differentiation and growth21. It is thus responsible for a wide range of diseases in humans. 
Well known examples are Prader–Willi syndrome22 and Angelman syndrome23. In livestock, imprinted genes 
have considerable effects on the expression of agriculturally important traits. Variance-component analyses have 
revealed significant contributions of imprinted genes to the total genetic variance of traits in beef cattle and 
pigs24–28. With respect to pigs, a pioneering discovery was a purely paternally expressed polymorphism within 
the porcine IGF2, which was found to affect muscle mass and fat deposition traits29,30. The gene was detected 
by applying a line-cross design, where lines in a P0 generation (assumed to be fixed for the alleles B and b at the 
quantitative trait loci [QTLs], respectively) are crossed to create an F1 generation of individuals being heterozy-
gous at these QTLs (summarised in Sandor and Georges31). Intercrossing these individuals generates an F2 pop-
ulation with equal frequencies of the four ordered genotypes BB, Bb and bB, bb. When the average phenotypes 
of Bb and bB can be statistically distinguished, i.e. a difference can be observed, the existence of an imprinted 
QTL (iQTL) is indicated. This, however, requires the knowledge of the parental allele origin (ordered genotype). 
Ordered genotypes are also needed in genome-wide association studies of POEs. For example, to account for 
POEs, Belonogova et al.32 added a vector p — containing the difference between the numbers of maternally and 
paternally derived B-alleles — as a second step in a model called GRAMMAR (rapid association using mixed 
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model and regression33). Ordered genotypes also form the basis for genomic relationship matrices that account 
for imprinting34. To determine the ordered genotype of an offspring, conclusions on the parental allele origin can 
usually be drawn from the genotypes of its parents. However, if both parents are heterozygous, it is not possible to 
determine the offspring’s ordered genotype32. Then, if available, markers adjacent to the considered locus (haplo-
type information) may indicate the parental allele origin and thus the offspring’s ordered genotype. Furthermore, 
to detect iQTLs, phenotypic information is necessary in addition to ordered genotypes. This is a common issue 
in livestock, where the traits of interest are often measured in progeny which are often ungenotyped (e.g. milk 
production traits35) in contrast to genetically influential parents, such as bulls in dairy cattle. Therefore, there is a 
large amount of existing data that could be used for imprinting analyses.

To overcome the limitations of the currently applied methods of analysis for the detection of iQTLs, we pro-
pose a novel approach where estimated POEs (ePOEs) of parents are exploited to map imprinted genes expressed 
in their progeny. In the first step, phenotypic information can be summarised by applying a mixed imprinting 
model (first described in Blunk et al.27) that describes POEs as differences between two sex-specific transmitting 
abilities (TAs) for each parent. In the second step, the ePOEs are used as dependent variables in a model, where 
un-ordered genotypes of parents constitute the explanatory variable related to a particular fixed marker effect 
and a random polygenic effect accounts for the unconsidered genetic variability in the POEs. This novel approach 
does not require ordered genotypes or both genotypes and phenotypes from the same individuals. This principle 
is demonstrated in simulated data and is applied to empirical data consisting of genotyped Brown Swiss sires with 
ePOEs for slaughter traits. First, we provide theoretical justification by investigating the regression of POEs on the 
number of B-alleles at an imprinted locus in a random mating population.

Theory
Here, we consider the regression of POEs on the number of B-alleles as a population parameter for a biallelic 
imprinted locus in a random mating (Fisher-Wright) population without selection and mutation. The alleles B 
and b have respective frequencies of p and q = 1 − p. Differences between the phenotypic means of the ordered 
genotypes (BB, Bb, bB, bb) are described by the additive effect a  (BB − bb = 2a), the dominance effect 
d (0.5(Bb + bB) = d; assuming a centering of genotypes at the midpoint of the two homozygotes) and the imprint-
ing effect i (Bb − bB = 2i), as described in Knott et al.36, Mantey et al.37 and the review by Lawson et al.1. Note that 
a somewhat different parameterization has been given by Spencer38. Parent-specific allele-substitution effects39 
are given for male parents as α α= + + = +–a q p d i i( )p  and for female parents as α α= + =– – –a q p d i i( )m . 
The quantity α = + –a q p d( )  is known as the allele-substitution effect in a standard Mendelian case40. In the 
presence of genomic imprinting, a locus exerts its effect on the offspring either under a male or a female expres-
sion pattern. In the former, the average phenotype of a parent’s offspring equals half of its breeding value ‘as father’ 
and in the latter, half of its breeding value ‘as mother’24,25. For the ordered genotypes BB, Bb, bB and bb, where the 
first allele is paternally derived, these breeding values can be expressed as functions of parent-specific substitution 
effects and allele-frequencies (Table 1). By following the definition in previous studies on variance components 
(e.g. Blunk et al.27), we define genotype-specific POEs as differences between the two sex-specific TAs for each 
genotype or, equivalently, as half the difference between both kinds of breeding values. For the four ordered gen-
otypes, the POEs are 2qi, (q − p)i, (q − p)i, and −2pi, in the same order as above (Table 1).

For our purposes, we need to know the expectation and variance of the POEs in the population. The expecta-
tion is E(POE) = p22qi + 2pq(q − p)i − q22pi = 0, and the variance is given by Var(POE) = p24q2i2 + 2pq(q − p)2i2  
+ q24p2i2 = 2pqi2, which is equal to the imprinting variance at the locus, as derived by de Koning et al.39. Moreover, 
we are interested in the relationship between the number of B-alleles (gene count, gc), which has the expectation 
2p and variance 2pq, and POEs. Their covariance can be derived as:

= − + − − − − =Cov POE gc p p qi pq p q p i q p pi pqi( , ) (2 2 )2 2 (1 2 )( ) (0 2 )2 2 ,2 2

which translates into a correlation of r = 4p2q2i2. In summary, for a single imprinted locus, we have the covar-
iance matrix:
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Finally, we arrive at the regression of the POEs on gene count, which is:

genotype frequency gene count BV as father BV as mother POE

BB p2 2 2q(α + i) 2q(α − i) 2qi

Bb pq 1 (q − p)(α + i) (q − p)(α − i) (q − p)i

bB pq 1 (q − p)(α + i) (q − p)(α − i) (q − p)i

bb q2 0 − 2p(α + i) − 2p(α − i) − 2pi

Table 1. Ordered genotypes with their respective population genotype frequencies, number of B-alleles 
(gene count), breeding values (BVs) as father and as mother and parent-of-origin effects (POEs). The allele 
frequencies of B and b are denoted by p and q = 1 − p. The parameters α and i are the allele-substitution effect 
and the imprinting effect.
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This final result shows that the regression of the POEs on the number of B-alleles of the same locus equals the 
imprinting effect. Next, we demonstrate how estimates of this population parameter can serve for marker-based 
imprinting analyses of simulated and real data.

Data Background
Simulated data. Importantly, POEs can be estimated for genotyped parents even when their phenotypes are 
not known, as it is often the case in livestock. In practice, ePOEs can first be obtained24,25,27,28 and, after a deregres-
sion step, be regressed on the number of B-alleles at a marker locus. In the light of the results for the single locus 
model, the resulting regression coefficient can then be interpreted as the imprinting effect of an iQTL in linkage 
and/or associated with the marker. Reliabilities of ePOEs are a prerequisite for deregression41. Only recently, their 
efficient calculation using mixed-model methodology has been described27,28.

We simulated two types of populations; the first comprised two generations, while the second contained 
three generations. Phenotypes were always available for the last generation only, while parents and grandparents 
remained without known phenotypes. The two-generation population was simulated to prove the applicability 
of the principle. One hundred unrelated parents were drawn from a base population. These parents were then 
inter-mated in a cross-classified manner, resulting in 100 × 100 full-sib families of size three. In this way, each 
parent was mated as father to all 100 parents (including itself), which acted as mothers. Vice versa, each parent 
was mated as mother to all 100 parents (including itself), which acted as father. This gave rise to 100 × 3 maternal 
half-sibs per parent. Thus, imprinted alleles were passed from each parent to progeny with both of the two possi-
ble parental expression patterns.

In the three-generation pedigree, sources of family information contributed to the ePOEs of the individuals 
in generations one and two. These sources were the parent-average (PA), records of the final progeny and records 
of the progeny’s final progeny. The naïve utilization of ePOEs as dependent variables would negatively influence 
the outcome of association studies as shown for breeding values in Ekine et al.42. Thus, deregressed and weighted 
ePOEs, free from the influence of the PA, were needed. The three-generation population was simulated to illus-
trate the effects of the PA-correction, deregression and weighting. Ten grandparents were randomly chosen from 
the base population and produced 100 full-sib families, whose variable size was chosen from a Poisson distri-
bution with a mean of 5.0. This led to 514 parents in the second generation, which were again inter-mated in a 
cross-classified manner. The number of full-sibs per family in the third generation was also Poisson distributed 
with a mean of 5.0. Only a fraction of all possible progeny (3%) with phenotypes was retained so that 41,273 
records remained for the analysis. The full-sib families contained one to four phenotyped offspring each.

In both population types, 15 mutually unlinked marker genotypes were simulated, where five were in linkage 
disequilibrium (LD) with QTLs. The LD was created by first drawing the QTL alleles from a binomial distribution 
depending on their allele frequencies. The alleles of the adjacent markers were then drawn from a conditional 
distribution, where an initial LD of 0.1 among founders was assumed. The first QTL at marker locus two (minor 
allele frequency [MAF] = 0.4) was chosen to be biparentally expressed (Mendelian QTL) contributing 30% to a 
total additive genetic variance of 1.35. A purely paternally and a purely maternally expressed QTL each contrib-
uted 5% to the total additive genetic variance and 25% to the total imprinting variance of 0.27. These were linked 
to the marker loci five (MAF = 0.5) and eight (MAF = 0.5). The marker loci 11 (MAF = 0.5) and 14 (MAF = 0.5) 
were both linked to partially imprinted QTLs with opposite POEs, which contributed 30% to the total additive 
genetic variance and 25% to the total imprinting variance. A residual variance of 2 generated a heritability of 0.40 
for the simulated trait, and the imprinting variance overall accounted for 20% of the total additive genetic vari-
ance. The trait was created by adding additive and imprinting effects according to the simulated QTL genotypes. 
All genetic distances between associated markers and QTLs were set to 10 centiMorgans in the base population. 
For each of the two populations, 100 repetitions were simulated by drawing new genotypes and residual effects 
without altering family sizes or pedigree structures.

Next, we compared the results for imprinted and un-imprinted (Mendelian) QTLs under both our new and 
the traditional approach. Therefore, four different kinds of analyses, labelled 1A, 1B, 2A and 2B, were applied to 
the two-generation data. First, in analyses 1A and 1B, we made use only of the un-ordered genotypes and ePOEs 
and TAs of the 100 parents. Second, in two consecutive association analyses (2A, 2B), we assumed that the phe-
notypes and ordered genotypes of the 30,000 offspring were available. To find associations with imprinted loci, 
in analysis 2A an adapted version of a measured genotype model43 was applied. Analysis 2B considered additive 
effects only by neglecting the imprinting effect.

Finally, to illustrate the effects of the PA-correction, deregression and weighting, the ePOEs from the 
three-generation data were used for association analyses. In analysis 3A, ePOEs were left completely untreated, 
while in 3B they were deregressed and PA-corrected, and in 3C, the ePOEs were additionally weighted. A sum-
mary of the analyses is provided in Table 2.

Brown Swiss data. The ePOEs and parental TAs as well as their reliabilities were derived from an imprinting 
analysis of Brown Swiss cattle slaughterhouse data published in detail in Blunk et al.27. They were derived for up to 
428,710 sires and dams based on the routinely recorded performance of their progeny, which were up to 173,051 
fattening bulls (exact numbers vary from trait to trait). The imprinting variance contributed a significant propor-
tion to the total genetic variance in the net body weight (BW) gain (carcass weight divided by age [g/d]), carcass 
muscularity and carcass fatness. While muscularity was described using five monetary grades reflecting price 
differences, fatness was categorised by scores ranging from 1 (lean) to 5 (very fat). Assuming these traits to be 
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normally distributed, ePOEs were first generated applying a linear imprinting model (these traits are subsequently 
indicated with the subscript L). Then, ePOEs were generated applying a threshold imprinting model assuming the 
traits to be binomially distributed (subscript T). As data were routinely obtained, animal care guidelines were not 
obtained.

Upon agreement of all involved organisations, genotypes were made available from the central genome data-
base, which is maintained for breeding purposes at LKV Bayern in Munich. Data retrieval was assisted by the 
Institute for Animal Breeding at the Bavarian State Research Centre for Agriculture. After quality control, 37,443 
genotypes remained for 1,857 sires for the net BW gain and 37,433 genotypes remained for 1,831 sires for the 
muscularity and fatness traits.

The genome was scanned via single marker regression, where ePOEs, defined as deviations of the TAs as dam 
from the TAs as sire, were regressed on their marker gene counts individually. With respect to the TAs (derived 
from the reduced imprinting model), both kinds (TAs as sire and TAs as dam) were used as dependent variables. 
Both ePOEs and TAs were PA-corrected, deregressed and weighted adapting the approximate method published 
in Garrick et al.41 for breeding values. When their deregressed reliabilities were <3%, they were discarded. With 
regard to ePOEs, 1,793 remained for the net BW gain with an average reliability of 25.86%; 1,033 remained for 
muscularity(L) with an average reliability of 9.73%; 1,720 remained for muscularity(T) with an average reliability of 
14.01%; 1,277 remained for fatness(L) with an average reliability of 10.63%; and 1,649 remained for fatness(T) with 
an average reliability of 12.51%. As discussed in detail later, the sensitivity to c, which was chosen to calculate the 
weighting of ePOEs and which defines the proportion of the imprinting variance not captured by markers41, was 
not particularly high in the simulation study. Therefore, c was limited to 0.1, 0.5 and 0.8. These values were only 
applied during the genome scan for ePOEs on the net BW gain to investigate the effect of changing c within a real 
data framework. A c of 0.1 was chosen to analyse the ePOEs on all other traits.

Results and Discussion
Simulated data. To investigate whether ePOEs are suitable to detect iQTLs, they were used as dependent 
variables regressed on the gene counts of 100 unrelated parents in the simulated two-generation data (analysis 
1A). At the fully imprinted marker loci (five and eight), the average p-values ranged from p = 0.012 to p = 0.025, 
indicating the presence of imprinted loci (1A in Fig. 1; Table 3). The signals at the marker positions 11 and 14 
(linked to partially expressed iQTLs) were visible with average p-values of 0.010, respectively. In contrast, the 
mean estimated effect at marker locus two (linked to a purely Mendelian QTL) did not significantly deviate from 
zero. As expected, the same pattern of signals was observed when phenotypes and ordered marker genotypes of 
offspring were used in a measured genotype model to detect iQTLs in analysis 2A (2A in Fig. 1; Table 3). Together, 
these results provide proof of principle that associations with iQTLs can be detected by regressing ePOEs on 
un-ordered genotype information. In comparison to ePOE-analysis 1A, higher average signals (in terms of −log10 
p-values) indicated the positions of iQTLs (2A in Fig. 1) when phenotypes of offspring served as the dependent 
variable (analysis 2A). However, ordered marker genotypes of 30,000 individuals with records were necessary to 
observe this result, whereas un-ordered genotypes of only 100 parents without records were used in analysis 1A. 
Therefore, using ePOEs as dependent variables constitutes a suitable alternative to detect iQTLs especially when 
ordered marker genotypes are not available for individuals with phenotypes or phenotypes are not observed 
for the individuals with marker genotypes. The ePOEs and reliabilities can be directly estimated for parents by 
applying the reduced imprinting model27. This model is also available in a sire-maternal grandsire version, which 
is particularly helpful when there are large data sets. This was demonstrated in Blunk et al.28, where more than 1.3 
Mio records of Simmental fattening bulls were analysed.

When, in contrast to ePOEs, estimated TAs were used as dependent variables (analysis 1B), mean p-values 
ranging from 0.002 to 0.011 indicated QTLs at all loci with a Mendelian component, i.e. purely Mendelian and 
partially imprinted loci (1B in Fig. 1; Table 3). The mean effects estimated for the two fully imprinted markers 
did not significantly deviate from zero, with mean p-values of 0.328 and 0.369. This demonstrates that TAs, or, 
equivalently, breeding values, are only suitable to detect QTLs contributing to Mendelian genetic variation but not 
to detect fully imprinted loci, nor do such analyses offer any clue as to the imprinted nature of partially imprinted 

analysis model dependent variable (y) genotypic information

1A y = μ + bxa + e ePOEs un-ordered

1B y = μ + bxa + e TAs un-ordered

2A y = μ + baxa + bpxp + gs + gd + e observed phenotype un-ordered and ordered

2B y = μ + baxa + gs + gd + e observed phenotype un-ordered

3A y = μ + bxa + u + e ePOEs un-ordered

3B y = μ + bxa + u + e ePOEs (deregressed, PA-corrected) un-ordered

3C y = μ + bxa + u + e ePOEs (deregressed, PA-corrected, weighted) un-ordered

Table 2. Overview of analyses using different models and genotypic information. The dependent variable y is 
either the parent-of-origin effect of a parent (ePOE), the transmitting ability of a parent (TA) or the observed 
phenotype of an offspring. In analysis 3, the ePOEs were deregressed, parent-average (PA) corrected (3B), and 
weighted (3C); xa is the gene content of an un-ordered genotype (parental allele origin unknown) at a marker 
locus; xp has the values of 0, 1, −1, and 0 for the ordered genotypes BB, Bb, bB and bb (parental allele origin 
known); b, ba, and bp are the regression coefficients; the random variables u, gs (effect of the father’s gamete) and 
gd (effect of the mother’s gamete) account for the stratification of the population into families; μ is the general 
mean and e is the residual.
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QTLs. The same is true for the model for observed phenotypes in analysis 2B, that did not consider imprinting, 
since only an additive effect was included. At all marker loci, the mean test statistics indicated the existence 
of QTLs without the possibility to distinguish Mendelian and imprinted loci, exactly as was the case with TAs 
(Table 3).

With regard to the estimation of marker effects, estimates were of similar magnitude at all marker loci when 
ePOEs were used as dependent variables in analysis 1A and when the model for phenotypes included an imprint-
ing effect in analysis 2A (Fig. 2; Supplementary Table S1). Note, however, that the sign was reversed. The sign of 
ePOEs depends on their definition in the imprinting model27, which can be either the genetic effect as father minus 
the genetic effect as mother or the reverse. Neither the estimation of the imprinting variance nor the detection 
of iQTLs depends on the sign of that difference as it has no effect on the absolute value of the marker effect and 
its estimate. When, in contrast to ePOEs, estimated TAs were used as dependent variables (analysis 1B), the 
estimates were about half the magnitude of those observed when the model for phenotypes included an additive 
effect in analyses 2A and 2B (Fig. 2; Supplementary Table S1). Since a TA equals half the breeding values, this was 
expected.

To illustrate the effects of the PA-correction, deregression and weighting, the ePOEs from the three-generation 
data were used in analyses 3A, 3B and 3C. In analysis 3A, ‘untreated’ ePOEs of parents were regressed on their 
own un-ordered marker genotypes. Again, the mean p-values indicated that ePOEs can be used to detect 
imprinted loci, although a further loss of power must be noted in comparison to analysis 1A (Table 3). The loss of 
power may be explained by a loss of LD between the QTLs and their markers due to more recombination events 
since the base generation until alleles are transmitted to the last (third) generation. With an initial LD of 0.1 
among founders, their distance was large (10 centiMorgans), so the LD decreased rapidly from one generation 
to the next. As the ePOEs of individuals in generation two showed an undesired regression to their PA with an 
average reliability of 0.80, the ePOEs were deregressed and PA-corrected in analysis 3B. In comparison to the 
results in analysis 3A, only minor changes in the mean F-values and p-values were observed (Table 3). In contrast, 
the deregression and PA-correction increased the mean estimates of marker effects by almost one-third so that 
they approximated the estimates observed when ePOEs from the two-generation data were used as dependent 
variables in analysis 1A (Fig. 2; Supplementary Table S1). Due to their heterogeneous variance, ePOEs were addi-
tionally weighted in analysis 3C. With regard to the test statistics, no particular differences could be observed in 
comparison to analysis 3B (Table 3). Moreover, neither the mean marker effect estimates nor their variation and 
standard errors differed (Fig. 2; Supplementary Table S1). To calculate the weighting of ePOEs, a c-parameter was 

Figure 1. Boxplots of the −log10 p-values and their means (red line) for 15 markers in simulated two-
generation population (with 100x replications) from different kinds of analyses: Estimates of the parent’s 
parent-of-origin effects (analysis 1A) and transmitting abilities (analysis 1B) were regressed on their un-ordered 
genotype; phenotypes of offspring were regressed on their own ordered genotype (analysis 2A) and un-ordered 
genotype (analysis 2B). Quantitative trait loci (QTLs) showed biparental, paternal, maternal, partial paternal 
and partial maternal expression patterns at markers 2, 5, 8, 11 and 14, respectively; no other markers were 
associated with any QTL.
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needed. An examination of the mean c-parameters across all replications demonstrated that a grid-search, which 
was performed to choose a suitable c-parameter, did not favour c-values in a certain range because no particular 
differences could be observed between markers. However, the standard deviations reflected strong fluctuations 
among replications. The log-likelihoods changed little in relation to the development of c (Table 3). This indicates 
a flat log-likelihood function and thus a low sensitivity to c. According to Garrick et al.41, this sensitivity depends 
on the heterogeneity of the information content in the data. Thus, due to the straightforward simulation design, a 
low sensitivity could have been expected from the outset.

To summarise, no particular changes in the test statistics could be observed due to deregression, PA-correction 
or weighting of ePOEs. With regard to the effect estimates, deregression and PA-correction did have an impact, 
whereas weighting had only a minor role (Fig. 2; Supplementary Table S1).

Brown Swiss data. Parent-of-origin effects. Of 37,443 single nucleotide polymorphisms (SNPs), one SNP 
(ARS-BFGL-NGS-101636) on the Bos taurus autosome (BTA) 11 was associated with ePOEs estimated in the net 
BW gain assuming a genome-wide false discovery rate (FDR) of 5% (Fig. 3; Table 4). As shown in Supplementary 
Fig. S1, SNP ARS-BFGL-NGS-101636 can be assigned to an intron of REEP1. The imprinting status of REEP1 
is unknown. This applies also to its human and mouse orthologs. Imumorin et al.44 identified bovine iQTLs in 
regions containing orthologs of imprinted genes in mouse and human. One bovine ortholog (HADHB) was 
located on BTA11 and was found in a region harbouring iQTLs with an effect on weaning weight. However, 
this gene is located about 24.75 mega base pairs (Mb) away from the marker locus ARS-BFGL-NGS-101636. 
Furthermore, ARS-BFGL-NGS-101636 displayed low LD with its surrounding markers (r2 < 0.20). The high-
est LD (r2 = 0.34) was calculated for the SNP BTA-97072-no-rs, located in a non-coding region at 47.52 Mb 
(Supplementary Fig. S1). Thus, a causal variant may be expected within or very close to REEP1. Mutations in the 
human ortholog of the bovine REEP1 are related to neurodegenerative disorders such as hereditary spastic par-
aplegia, a syndrome characterised by progressive lower-limb spastic paralysis45. Furthermore, Reep1 expression 
has been suggested to regulate the adipogenesis in white adipose tissue in mice. In Reep1-null mice, the expres-
sion of pro-adipogenesis markers was reduced, whereas the expression of anti-adipogenesis markers was upregu-
lated. Thereby, Reep1-null mice were observed to be thinner, albeit not lighter, than their wild-type counterparts. 
Males showed a significant decrease in the proportion of total adipose tissue46.

To investigate the effect of c within a real data framework, we scanned the genome for ePOEs on the net BW 
gain, varying this parameter. With a change from c = 0.1 to c = 0.8, the estimated effects increased, whereas the 

analysis

2 5 8 11 14 others

Men Pat Mat Pat/Men Mat/Men no

1A
Fimp 1.137 14.21 13.48 15.17 14.41 0.798–1.224

pimp 4.5e-01 1.2e-02 2.5e-02 1.0e-02 1.0e-02 4.6e-01–5.4e-01

1B
Fadd 15.93 2.153 1.913 20.24 21.47 0.743–1.358

padd 1.1e-02 3.3e-01 3.7e-01 2.0e-03 2.0e-03 4.7e-01–5.5e-01

2A
Fadd 634.3 66.22 58.98 755.6 792.8 0.886–1.247

padd 7.9e-7 3.3e-09 5.0e-08 9.6e-104 2.8e-88 4.4e-01–5.4e-01

2A
Fimp 1.068 48.28 40.69 51.29 51.97 0.930–1.481

pimp 4.7e-01 3.8e-07 2.6e-05 5.8e-08 4.4e-08 4.1e-01–5.1e-01

2B
Fmkr 634.3 66.35 59.00 757.3 794.0 0.888–1.249

pmkr 7.9e-71 3.4e-09 4.4e-08 7.9e-104 4.1e-88 4.3e-01–5.4e-01

3A
Fimp 1.647 25.84 22.91 27.27 33.39 0.806–1.353

pimp 4.2e-01 3.0e-02 4.9e-02 1.8e-02 1.7e-02 4.5e-01–5.6e-01

3B
Fimp 1.664 26.10 23.19 27.43 33.68 0.813–1.341

pimp 4.0e-01 2.6e-02 4.6e-02 1.7e-02 1.8e-02 4.5e-01–5.6e-01

3C

Fimp 1.632 26.08 23.29 27.48 33.67 0.803–1.379

pimp 4.1e-01 2.7e-02 4.6-e02 1.6e-02 1.7e-02 4.5e-01–5.6e-01

c 0.328 0.340 0.311 0.328 0.324 0.316–0.327

csd 0.332 0.348 0.332 0.343 0.333 0.327–0.334

logL 341.340 353.061 351.759 353.671 356.445 340.967–341.339

Table 3. Average F-statistics (F) and p-values (p) for all analyses and markers linked to quantitative trait loci 
(QTLs) with biparental (Men), paternal (Pat), maternal (Mat), partial paternal (Pat/Men) and partial maternal 
(Mat/Men) expression patterns. For markers not linked to QTLs (others), ranges are given. Subscripts imp 
and add indicate separate tests related to imprinting, or Mendelian effects, while mkr indicates an unspecified 
single effect marker test from model 2B. Estimates of the parent’s parent-of-origin effects (1A) and transmitting 
abilities (1B) were regressed on their un-ordered genotype; phenotypes of offspring were regressed on their own 
ordered (2A) and un-ordered (2B) genotype. Estimated parent-of-origin effects were analysed untreated (3A), 
deregressed and corrected for parent average (3B), and deregressed, corrected for parent-average and weighted 
(3C). For 3C, the average weighting parameter c, its standard deviation (sd) between repeated simulations and 
the average log-likelihood is also given.
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p-values decreased (Table 4). Thus, as expected, real data with an increasing amount of heterogeneous informa-
tion leads to a higher sensitivity to c.

In addition to ARS-BFGL-NGS-101636, an association significant assuming a chromosome-wide FDR of 5% 
was found for BTA-97072-no-rs nearby on BTA11 when c equalled 0.5. When c equalled 0.8, further significant 
markers (chromosome-wide FDR of 5%) were detected on BTA24 (Fig. 3; Table 4). Except for two SNPs, they are 
closely located in an area containing the genes MYOM1 and YES1. The first encodes the Myomesin-1 protein, 
which was found, among others, to provide a scaffold of myosin filaments47. The latter is involved in cytokinesis 
and cell cycle mechanisms48. The imprinting status of these genes is not known in cattle or in mice. However, with 
regard to the YES1 ortholog in mice, an adjacent gene (Il6) on chromosome 5 at 30.01 Mb is imprinted49.

With regard to muscularity(L), two SNPs significant assuming a chromosome-wide FDR of 5% (Fig. 3; Table 4) 
were found in non-coding areas on BTA7 (74.53 Mb) and BTA18 (35.58 Mb). While the existence of imprinted 

Figure 2. Boxplots of the marker effects and their means (red line) for all analyses and markers linked to 
quantitative trait loci (QTLs) with biparental (marker 2), paternal (marker 5), maternal (marker 8), partial 
paternal (marker 11) and partial maternal (marker 14) expression patterns. Subscripts imp and add indicate 
separate tests related to imprinting, or Mendelian effects, while mkr indicates an unspecified single effect marker 
test from model 2B. Estimates of the parent’s parent-of-origin effects (1A) and transmitting abilities (1B) were 
regressed on their un-ordered genotype; phenotypes of offspring were regressed on their own ordered (2A) and 
un-ordered genotype (2B). Estimated parent-of-origin effects were analysed untreated (3A), deregressed and 
corrected for parent average (3B), and deregressed, corrected for parent-average and weighted (3C).
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genes on BTA7 is unknown, four maternally imprinted genes on BTA18 have been reported49. However, these 
genes are clustered in a region from 64.26 Mb to 64.54 Mb. SNPs within this cluster and the SNP found on BTA18 
were independent, with r2 < 0.02. Furthermore, the significance for the SNP found on BTA18 could not be repro-
duced when the ePOEs estimated for muscularity(T) were analysed. Instead, a significant SNP (chromosome-wide 
FDR of 5%) was found in a non-coding area on BTA7. As this marker is distantly located at 38.41 Mb, no relation-
ship can be assumed to the SNP found on BTA7 when ePOEs on muscularity(L) were analysed.

With regard to fatness(L), no significant SNPs were found. However, for fatness(L) the smallest number of 
records was available because 798 ePOEs were discarded from the analysis due to their low reliabilities. This 
might have considerably reduced the power to detect imprinted loci. With regard to fatness(T), 45 SNPs sig-
nificant assuming a 5% chromosome-wide FDR were found on BTA5. As described in detail later, a series of 
these SNPs were also observed to be significantly associated with the parental TAs in fatness(L) and fatness(T). 
The strongest signals were displayed by SNPs surrounding TROAP and FAIM2. These genes are located in the 
regions from 30.65 Mb to 30.66 Mb and 30.15 Mb to 30.18 Mb, respectively. Some SNPs, being significantly asso-
ciated with ePOEs, are located within or proximal to these genes (Table 4). So far, no imprinted loci on BTA5 are 
known in cattle. However, the gene Slc38a4 is known to be imprinted in mice49. The bovine ortholog is located on 
BTA5 close to the genes TROAP and FAIM2 in a region from 33.61 Mb to 33.65 Mb. In a comparative expression 

Figure 3. Marker loci in relation to their −log10 p-values generated by regressing estimated parent-of-origin 
effects (ePOEs) on marker genotypes. Net body weight (BW) gain was analysed with varying c-parameters of 
0.1, 0.5 and 0.8. The ePOEs for carcass muscularity and carcass fatness were generated using a linear (subscript 
L) and threshold model (subscript T). Red line = 5% genome-wide false discovery rate (FDR); dashed 
line = 10% genome-wide FDR; blue diamonds = markers significant assuming a chromosome-wide FDR of 5%.
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trait SNP effect se p-value chr bp gene

Net BW gain0.1 ARS-BFGL-NGS-101636 −7.4336 1.3011 1.109e-08*** 11 48473153 REEP1

Net BW gain0.5 ARS-BFGL-NGS-101636 −7.9069 1.3433 3.946e-09*** 11 48473153 REEP1

BTA-97072-no-rs 3.6728 0.9061 5.048e-05* 11 47522289

Net BW gain0.8 ARS-BFGL-NGS-101636 −8.2353 1.3701 1.894e-09*** 11 48473153 REEP1

BTA-97072-no-rs 3.7979 0.9260 4.110e-05* 11 47522289

ARS-BFGL-NGS-111462 3.0791 0.7535 4.378e-05* 24 3601352

ARS-BFGL-NGS-37285 −3.7057 0.9391 7.951e-05* 24 36201079

ARS-BFGL-NGS-96321 3.5995 0.9355 1.1890-04* 24 37709361 MYOM1

ARS-BFGL-NGS-104327 −3.5138 0.9273 1.510e-04* 24 40056388

BTA-05662-no-rs 3.1706 0.8647 2.463e-04* 24 36077466

Hapmap59495-rs29020511 −4.1534 1.1353 2.543e-04* 24 33038121

ARS-BFGL-NGS-31453 4.4021 1.2100 2.740e-04* 24 14704121

Hapmap48158-BTA-102889 −3.3790 0.9348 3.001e-04* 24 38899975

BTA-57995-no-rs 3.3137 0.9313 3.736e-04* 24 36003718 YES1

BTA-57998-no-rs 3.2913 0.9311 4.091e-04* 24 36024062 YES1

Muscularity(L) BTB-01217732 −1.1920 0.2825 2.441e-05* 7 74537346

Hapmap34397-BES7_Contig335_1167 −1.0794 0.2467 1.208e-05* 18 35583594

Muscularity(T) Hapmap41111-BTA-94756 −0.2527 0.0554 5.072e-06* 7 38413207

ARS-BFGL-BAC-33671 −0.1407 0.0335 2.655e-05* 20 41576197

Fatness(T) BTA-73718-no-rs 0.1610 0.0359 7.311e-06* 5 61790994

Hapmap41950-BTA-72999 −0.1663 0.0373 8.118e-06* 5 26082666

Hapmap39431-BTA-74343 0.2050 0.0473 1.482e-05* 5 80695234 FAR2

ARS-BFGL-NGS-55084 −0.1464 0.0347 2.493e-05* 5 60513092

Hapmap39353-BTA-73120 −0.1477 0.0354 3.093e-05* 5 27777281

ARS-BFGL-NGS-91751 −0.1624 0.0392 3.400e-05* 5 28573792

ARS-BFGL-NGS-112542 0.1729 0.0423 4.332e-05* 5 30159843 FAIM2

ARS-BFGL-NGS-113311 −0.1490 0.0368 5.210e-05* 5 27633265 KRT75

Hapmap41784-BTA-17439 0.1663 0.0423 8.383e-05* 5 82036800

ARS-BFGL-NGS-7567 −0.1685 0.0433 1.025e-04* 5 28331294 SCN8A

ARS-BFGL-NGS-77906 −0.1367 0.0356 1.208e-04* 5 24533402 TMCC3

ARS-BFGL-NGS-10291 0.1525 0.0398 1.281e-04* 5 24512405 TMCC3

ARS-BFGL-NGS-43909 −0.1748 0.0473 2.168e-04* 5 30879776

BTB-00226634 0.1250 0.0344 2.815e-04* 5 44695924

Hapmap42984-BTA-58358 −0.2632 0.0725 2.830e-04* 5 54449817

BTA-73464-no-rs 0.1294 0.0357 2.860e-04* 5 42918584 PTPRR

ARS-BFGL-NGS-7799 0.1250 0.0345 2.906e-04* 5 44936099

ARS-BFGL-NGS-53461 0.1242 0.0344 3.049e-04* 5 30659497 TROAP

ARS-USMARC-614 0.2543 0.0710 3.411e-04* 5 45722126 IL22

ARS-BFGL-NGS-15520 0.1263 0.0356 3.878e-04* 5 65986618 GNPTAB

ARS-BFGL-NGS-15787 −0.1319 0.0372 3.899e-04* 5 66157408

Hapmap47760-BTA-85576 −0.1253 0.0355 4.180e-04* 5 65998778

ARS-USMARC-657 0.1523 0.0435 4.653e-04* 5 45834943 IFNG

Hapmap42150-BTA-25138 −0.1239 0.0354 4.703e-04* 5 32819286

ARS-BFGL-NGS-20969 0.1508 0.0435 5.207e-04* 5 62920850

ARS-BFGL-NGS-38038 −0.1817 0.0524 5.235e-04* 5 27992179 NR4A1

ARS-BFGL-NGS-8796 0.1202 0.0350 5.987e-04* 5 29095603

ARS-BFGL-NGS-118817 −0.1885 0.0552 6.420e-04* 5 31739928

ARS-USMARC-652 0.1630 0.0478 6.490e-04* 5 45807839

ARS-USMARC-675 0.2044 0.0600 6.631e-04* 5 31164990 ADCY6

ARS-BFGL-NGS-717 0.1202 0.0354 6.812e-04* 5 32861996

ARS-BFGL-NGS-30677 0.1163 0.0346 7.627e-04* 5 43565856

BTA-73685-no-rs 0.1234 0.0367 7.751e-04* 5 60929878

ARS-BFGL-NGS-7725 −0.1154 0.0344 7.835e-04* 5 27839649 KRT7

ARS-BFGL-NGS-38020 0.1147 0.0346 9.111e-04* 5 29264678

ARS-BFGL-NGS-92420 0.1136 0.0344 9.721e-04* 5 33078266

ARS-BFGL-NGS-45045 −0.1177 0.0357 9.880e-04* 5 63899453

Hapmap24085-BTA-143102 −0.2532 0.0772 1.043e-04* 5 46364432

Continued
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analysis of SLC38A4 in 75 bovine tissue types (fetal and adult), Zaitoun and Khatib50 did not find any indication 
that SLC38A4 is imprinted in cattle. Another fact giving rise to some uncertainty is that the SNPs found for fat-
ness(T) on BTA5 were not observed when ePOEs on fatness(L) were analysed. However, as mentioned earlier, the 
lowest number of records and the smallest average of reliabilities were observed for ePOEs estimated in fatness(L). 
Furthermore, the heritability estimated for fatness(L) (h2 = 0.23) in Blunk et al.27 was far below the heritability 
estimated for fatness(T) (h2 = 0.46). These facts might have considerably reduced the power to detect imprinted 
loci when ePOEs on fatness(L) were analysed. With regard to fatness(T), another SNP significant assuming a 5% 
chromosome-wide FDR (ARS-BFGL-NGS-36861) was found in a non-coding region on BTA9 (Table 4). This 
chromosome hosts the imprinted PLAGL1 and the imprinted IGF2R. They are located in areas from 82.41 Mb 
to 82.47 Mb and from 97.63 Mb to 97.74 Mb, respectively. ARS-BFGL-NGS-36861 falls in between at 88.81 Mb. 
The LD to SNPs proximal to PLAGL1 (r2 ≤ 0.03) and to SNPs within IGF2R (r2 ≤ 0.02), however, suggests that 
ARS-BFGL-NGS-36861 is a fully independent signal. Another significant SNP (chromosome-wide FDR of 5%) 
was found in a non-coding region at 13.95 Mb on BTA29. An imprinting cluster is located on BTA29 incorporat-
ing the genes IGF2 and H19. However, this cluster is distantly located in the region from 49.32 Mb to 50.15 Mb.

To conclude, our results identify potentially imprinted genes on BTA5 and BTA11, affecting the carcass fatness 
and net BW gain, respectively. Their imprinting status cannot be established from the results of this study alone. 
Moreover, as ePOEs were used as dependent variables, it remains unclear whether their effects actually arose from 
genomic imprinting or another parent-specific genetic phenomenon (e.g. maternal genetic effects). To answer 
this question, follow-up studies are necessary to gain deeper insights.

Transmitting abilities. Due to strong similarities between the results for the TAs as sire and the TAs as dam, find-
ings for the latter are subsequently omitted from Tables. The same holds true for the results found in traits analysed 
via the threshold model. Moreover, only markers found to be significant assuming a 5% and 10% genome-wide 
FDR are listed (Table 5). Detailed figures can be found in the Supplementary Material (Supplementary Fig. S4; 
Supplementary Table S2; Supplementary Table S3).

With regard to net BW gain, only one SNP, located in a non-coding region on BTA28, was found to be signifi-
cantly associated with the parental TAs assuming a chromosome-wide FDR of 5% (Fig. 4; Supplementary Fig. S4; 
Supplementary Table S2; Supplementary Table S3).

With regard to muscularity(L), six SNPs on BTA10 were associated with the parental TAs assuming a 5% 
genome-wide FDR (Fig. 4; Table 5). Except for one SNP, these findings were reproduced for both parental TAs 
estimated in muscularity(T). Three SNPs can be assigned to the gene UNC13C and one SNP to the gene AQP9. 
Their effects are of similar magnitude (Table 5), and slightly higher effects were observed when the TAs as dam 
were analysed (Supplementary Table S3). This holds true for muscularity(L) as well as for muscularity(T). Both 
genes are protein coding; however, their functions are still unclear in cattle. They are located in the regions from 
52.15 Mb to 52.19 Mb (AQP9) and from 55.71 Mb to 56.41 Mb (UNC13C). Moderate lambdas (up to 1.042 for 
the TAs as sire) indicate almost no genome-wide inflation of p-values51, as shown for the muscularity traits in 
the Q-Q plot in Fig. 4. However, SNPs located in UNC13C and AQP9 are not fully independent, with r2 > 0.24 
(for LD patterns and gene assignments on BTA10 see Supplementary Fig. S3). Therefore, whether causal variants 
are located in either UNC13C, AQP9 or in both cannot clearly be determined. According to the CattleQTLdb 
(Release 3252), a QTL associated with lean meat yield was found in Holstein-Friesian on BTA10 at 56.10 Mb, a 
region which is located within UNC13C53. Apart from the findings on BTA10, further markers significantly asso-
ciated with the TAs estimated in the muscularity traits were found on BTA20, BTA23 and BTA28. Associations on 
BTA20 were only found for the TAs as dam assuming a chromosome-wide FDR of 5%. They cannot be assigned 
to genes. However, Doran et al.53 detected SNPs on BTA20, which were strongly associated with carcass confor-
mation and were <1 Mb away from the gene GHR. In the current study, one of the SNPs on BTA20 is located only 
41.75 Kb away from GHR.

trait SNP effect se p-value chr bp gene

BTA-74351-no-rs −0.1511 0.0466 1.168e-03* 5 80256799 TMTC1

BTA-72978-no-rs −0.1293 0.0398 1.175e-03* 5 25699752 NCKAP1L

BTA-73296-no-rs −0.1248 0.0386 1.200e-03* 5 26526934

ARS-BFGL-NGS-23025 0.1127 0.0351 1.338e-03* 5 66976106 PAH

ARS-BFGL-NGS-107085 −0.1545 0.0484 1.420e-03* 5 28660813 BIN2

BTB-01477536 −0.1139 0.0359 1.500e-03* 5 43417275 CNOT2

ARS-BFGL-NGS-34352 0.1115 0.0351 1.507e-03* 5 49842685 SRGAP1

ARS-BFGL-NGS-36861 −0.2174 0.0499 1.321e-05* 9 88814138

Hapmap33865-BES2_Contig389_1251 −0.1857 0.0426 1.280e-05* 29 13959142

Table 4. Single nucleotide polymorphisms (SNPs) significantly associated with parent-of-origin effects 
(ePOEs) estimated for net body weight (BW) gain, carcass muscularity and carcass fatness. Net BW gain was 
analysed with varying c-parameters of 0.1, 0.5 and 0.8. The ePOEs for carcass muscularity and carcass fatness 
were generated using a linear (subscript L) and threshold model (subscript T). The estimated SNP effects are 
provided with standard errors (se) and p-values. Their base pair (bp) positions on chromosomes (chr) and 
known genes are indicated. ***5% genome-wide false discovery rate; *5% chromosome-wide false discovery 
rate.



www.nature.com/scientificreports/

1 1ScIeNtIFIc REPORTS |           (2019) 9:654  | DOI:10.1038/s41598-018-36939-3

A SNP on BTA23 was found to be significantly associated with both parental TAs estimated in muscularity(L) 
and muscularity(T) with a 5% genome-wide FDR. However, it is located within a non-coding region, and markers 
found to be significantly associated with carcass conformation in Doran et al.53 are distantly located. Another 

trait SNP effect se p-value chr bp gene

Muscularity(L) BTB-00429961 −1.2325 0.2099 4.3065e-09*** 10 56093653 UNC13C

ARS-BFGL-NGS-21100 −1.2186 0.2098 6.2669e-09*** 10 56116909 UNC13C

BTB-01911175 1.2083 0.2100 8.7539e-09*** 10 56140822 UNC13C

BTB-00430730 1.1607 0.2118 4.2323e-08*** 10 55535781

Hapmap51030-BTA-69263 1.2283 0.2521 1.0970e-06*** 10 52190618 AQP9

Hapmap50767-BTA-72346 1.2731 0.2852 8.0751e-06*** 10 60145660 HDC

ARS-BFGL-NGS-24556 −0.8659 0.2029 1.9888e-05** 10 51980270

Hapmap36252-SCAFFOLD195517_10504 −1.0007 0.2352 2.0960e-05** 10 58707718 TMOD2

ARS-BFGL-NGS-27708 −0.8953 0.2105 2.1071e-05** 10 55510249

Hapmap58597-rs29013533 −0.8634 0.2049 2.5192e-05** 10 58097440

BTB-01125630 1.5872 0.3834 3.4723e-05** 10 57912228

Hapmap59786-rs29012019 −0.8747 0.2123 3.7975e-05** 10 55611885

ARS-USMARC-Parent-DQ984827-rs29012019 −0.8721 0.2121 3.9402e-05** 10 55611885

ARS-BFGL-NGS-114479 1.1821 0.2798 2.3777e-05** 16 33402551

ARS-BFGL-NGS-40515 −0.9244 0.2048 6.3823e-06*** 23 10593430

Fatness(L) ARS-BFGL-NGS-67309 0.0240 0.0057 2.5727e-05*** 2 114710664

ARS-BFGL-NGS-38020 0.0328 0.0052 2.9461e-10*** 5 29264678

Hapmap39353-BTA-73120 −0.0335 0.0055 7.9597e-10*** 5 27777281

ARS-BFGL-NGS-53461 0.0292 0.0052 1.7002e-08*** 5 30659497 TROAP

ARS-BFGL-NGS-91751 −0.0332 0.0059 1.9337e-08*** 5 28573792

ARS-BFGL-NGS-92420 0.0293 0.0053 2.5670e-08*** 5 33078266

ARS-BFGL-NGS-30168 0.0266 0.0054 8.8196e-07*** 5 111313740 SYNGR1

ARS-BFGL-NGS-98156 0.0255 0.0053 1.5540e-06*** 5 27869236

Hapmap42150-BTA-25138 −0.0257 0.0054 2.2840e-06*** 5 32819286

ARS-USMARC-675 0.0410 0.0087 2.5085e-06*** 5 31164990 ADCY6

Hapmap51043-BTA-73218 0.0230 0.0049 2.8574e-06*** 5 29622395 LARP4

ARS-BFGL-NGS-107085 −0.0330 0.0071 2.9176e-06*** 5 28660813 BIN2

ARS-BFGL-NGS-112542 0.0288 0.0063 4.0947e-06*** 5 30159843 FAIM2

BTA-72978-no-rs −0.0274 0.0060 4.2470e-06*** 5 25699752 NCKAP1L

Hapmap23022-BTA-161235 −0.0245 0.0053 4.2916e-06*** 5 31613026

ARS-USMARC-629 0.0310 0.0068 5.6301e-06*** 5 25738874 GTSF1

ARS-USMARC-657 0.0281 0.0062 5.8398e-06*** 5 45834943 IFNG

BTA-73209-no-rs 0.0230 0.0051 6.6548e-06*** 5 29496625 DIP2B

ARS-BFGL-NGS-68582 −0.0251 0.0056 7.7038e-06*** 5 111380409

ARS-BFGL-NGS-717 0.0240 0.0055 1.0656e-05*** 5 32861996

ARS-BFGL-NGS-7725 −0.0220 0.0051 1.3210e-05*** 5 27839649 KRT7

BTA-73392-no-rs 0.0243 0.0056 1.4981e-05*** 5 32104484

ARS-BFGL-NGS-8796 0.0227 0.0054 2.9035e-05*** 5 29095603

ARS-USMARC-652 0.0282 0.0069 4.0453e-05** 5 45807839

BTA-28787-no-rs 0.0221 0.0054 4.4479e-05** 5 37925443

ARS-BFGL-NGS-11851 0.0226 0.0055 4.5188e-05** 5 32426908

UA-IFASA-2781 0.0218 0.0054 5.3496e-05** 5 29989860 ASIC1

ARS-BFGL-NGS-43909 −0.0282 0.0070 5.4350e-05** 5 30879776

Hapmap55179-rs29024483 0.0231 0.0055 2.9496e-05*** 13 38830375 DZANK1

Hapmap55095-rs29010810 0.0260 0.0065 7.0403e-05** 13 27589301

ARS-BFGL-NGS-4866 −0.0317 0.0079 5.3215e-05** 16 50095343

ARS-BFGL-NGS-18515 0.0231 0.0055 2.2798e-05*** 19 29219211 NTN1

Table 5. Single nucleotide polymorphisms (SNPs) significantly associated with transmitting abilities (TAs) 
as sire estimated for net body weight (BW) gain, carcass muscularity and carcass fatness. The TAs for carcass 
muscularity and carcass fatness were generated using a linear (subscript L) and a threshold model (subscript T). 
The estimated SNP effects are provided with standard errors (se) and p-values. Their base pair (bp) positions on 
chromosomes (chr) and known genes are indicated. ***5% genome-wide false discovery rate; **10% genome-
wide false discovery rate.



www.nature.com/scientificreports/

1 2ScIeNtIFIc REPORTS |           (2019) 9:654  | DOI:10.1038/s41598-018-36939-3

marker significantly associated (chromosome-wide FDR of 5%) with both TAs estimated in the muscularity(T) 
was found on BTA28 within the gene KCNMA1 (32.82 Mb to 33.58 Mb). Its function with regard to the carcass 
conformation in cattle is unknown. However, Doran et al.53 identified a QTL with an effect on lean meat yield 
close to this gene at 33.60 Mb (CattleQTLdb; Release 3252).

With respect to fatness(L), 22 SNPs on BTA5 were found to be associated with the TAs as sire assuming a 
genome-wide FDR of 5%. The smallest p-values (p < 2.6e-08) were displayed by markers surrounding TROAP 
located in a region from 30.65 Mb to 30.66 Mb. Overall, 41 further SNPs on BTA5 were significant assuming 
a genome-wide FDR of 10% or a chromosome-wide FDR of 5%. They were replicated for the TAs as dam as 
well as for the parental TAs estimated in fatness(T). Some SNPs are located within genes other than TROAP 
(Table 5). However, due to their moderate to high LD to SNPs located within TROAP, most of them may not be 
causal but indicators for causal variants within or proximal to TROAP (Supplementary Fig. S2). According to the 
CattleQTLdb (Release 3252), haplotypes with an effect on backfat breeding values are closely located to TROAP 
in a region from 32.6 Mb to 34.2 Mb54. Further significant SNPs (genome-wide FDR of 5% and 10%) were found 
on BTA2, BTA13, BTA16 and BTA19 when the TAs as sire estimated in fatness(L) were used as dependent vari-
ables (Fig. 4; Table 5). The SNP on BTA13 is located in the gene DZANK1, which is positioned in an area from 
38.78 Mb to 38.83 Mb. McClure et al.55 found a QTL with an effect on fat thickness within this area (CattleQTLdb; 
Release 3252). With regard to SNPs solely found when TAs as dam were analysed, a SNP significant assuming a 5% 
chromosome-wide FDR was revealed for fatness(T) on BTA29 (Supplementary Fig. S4; Supplementary Table S3). 
The SNP (13.59 Mb) is located far from IGF2 (50.04 Mb to 50.06 Mb). Therefore, a connection seems unlikely.

To conclude, the strongest indications for markers associated with TAs observed in the muscularity and fat-
ness traits were found on BTA10 and BTA5, respectively. These signals mainly pointed to variants located within 
or proximal to the genes UNC13C (BTA10) and TROAP (BTA5). Scanning the genome for effects on TAs, which 
were estimated in the muscularity and fatness traits via linear and threshold models, led to results of high consist-
ency. This suggests — at least for the categorical traits under consideration — that the linear and threshold models 
perform equally well at capturing the underlying genetic variation.

Figure 4. Marker loci in relation to their −log10 p-values generated by regressing transmitting abilities (TAs) 
as sire on marker genotypes. The TAs for carcass muscularity and carcass fatness were generated using a linear 
(subscript L) and threshold model (subscript T). Red line = 5% genome-wide false discovery rate (FDR); dashed 
line = 10% genome-wide FDR; blue diamonds = markers significant assuming a chromosome-wide FDR of 5%.



www.nature.com/scientificreports/

13ScIeNtIFIc REPORTS |           (2019) 9:654  | DOI:10.1038/s41598-018-36939-3

General Discussion
From the single-locus population model with imprinting it was derived that the regression of true POEs on allele 
counts equals the imprinting effect. This was the foundation for our simulation study, by which estimates of 
POEs were related to marker alleles. In a two-step procedure, ePOEs and their reliabilities were first obtained by 
employing appropriate mixed models. In this way, information on parent-of-origin-specific genetic effects was 
extracted from un-genotyped offspring and summarised for genotyped parents. In a second step, the deregressed 
ePOEs then served as dependent variables to be regressed on allele counts of marker alleles, indicating the asso-
ciation of an iQTL with the marker. Most importantly, in this way, the complete lack of any genotype information 
for progeny and the phenotypes of the parents could be overcome. This is a substantial step forward compared to 
previously published methods for association mapping of imprinted loci, as these require data where phenotypes 
and ordered genotypes are known for the same individuals (GRAMMAR32,33; measured-genotype approach43). 
Available marker information could, in principle, already be integrated in the estimation of ePOEs by replacing 
the numerator relationship matrix in the mixed model through a combined marker and pedigree-based relation-
ship matrix H56. Following Wang et al.57, ePOEs of genotyped parents could then be transformed into marker 
effects and potential QTL-regions be made visible. However, significance testing of such marker effects has, to our 
best knowledge, not yet been described in the literature.

The Brown Swiss beef traits data set is a meat animal example, where phenotype-providing progeny never 
become parents and remain un-genotyped. In livestock genetics, other candidate data show the same charac-
teristics, e.g. in dual-purpose Simmental28 or Gelbvieh cattle58. In other cases, however, accumulating data from 
ongoing breeding programmes may often also comprise a certain proportion of phenotyped progeny that also 
has ordered genotypes available (e.g. Guo et al.59) and, to a certain fraction, may also be parents themselves (e.g. 
Jiang et al.60). This calls for analyses of mixed data, where the vector of dependent variables contains ePOEs for 
genotyped parents, as a summary of information from un-genotyped progeny, and the phenotypes of genotyped 
progeny. Their respective counterparts on the explanatory side of the model are marker allele counts and ordered 
genotype information. Thus, including ePOEs in marker-based imprinting analyses enables researchers to make 
full use of available information which otherwise would remain un-accessible.

How power and cost effectiveness of the measured-genotype approach43 (with genotypes on progeny only) 
and our new approach compare depends on several factors. For the use of ePOEs sufficient data of adequate struc-
ture (sires and dams have to be related) are required to estimate variance components. Another important point 
is the average reliability of ePOEs. With genotyped progeny we also need to assign resources to the genotyping of 
their parents, otherwise we cannot derive the parental origin of marker alleles. In general, our new approach is 
obviously well suited for further studies of the importance of POEs in species where large progeny groups can be 
produced or are available and their phenotypic information can be combined into reliable estimates of parental 
POEs. This is especially the case in plants and some animal species with large half-sib families, such as horses, 
cattle or birds.

Some authors have stressed the fact that POEs may be caused by other phenomena than imprinting alone, 
e.g. by maternal genetic effects61. Accordingly, ePOEs may pick up such effects, especially when not explic-
itly accounted for in the model for POE-estimation (e.g. Blunk et al.27,28). Other potential confounders are 
Y-chromosomal and mitochondrial effects, which, however, seem to be negligible at least for beef traits24,25,62. 
However, if present, the latter would not show any signal of association with purely autosomal markers, as inves-
tigated in the Brown Swiss analysis. Moreover, model-specification is also important for the ability to find asso-
ciations between different kinds of imprinted loci and markers. Models that account for all kinds of genomic 
imprinting simultaneously, no matter if paternal, maternal, fully or partial, have not been described in the liter-
ature before24,25. When such models are used for POE-estimation, all types of imprinted loci can, in principle, be 
located in the genome, as was successfully demonstrated in the simulation study. Nevertheless, follow-up studies 
are necessary, as for other approaches like mapping in line-cross experiments39, in order to confirm both genomic 
imprinting and its exact type.

As shown for breeding values in Ekine et al.42, preprocessing the ePOEs is necessary to achieve reliable marker 
effect estimates and to avoid large false-positive rates. With regard to the weighting, c was limited to 0.1 to ana-
lyse the muscularity and fatness traits. When the ePOEs on net BW gain were analysed, c was varied, which led 
to some changes in the p-values and estimated effects. As this indicates a degree of sensitivity to c, varying this 
parameter with regard to the muscularity and fatness traits might have resulted in the detection of additional 
associations. However, as no effect of the weighting was observed in the simulation study, it remains questionable 
whether changing c actually results in true associations or in an inflation of effects. Thus, whether the associations 
found on BTA24 for ePOEs on the net BW gain constitute true associations or false-positives remained unclear 
when c was set to 0.8. Analyses with greater amounts of data would help investigating the true imprinting status 
of loci, especially regarding the SNPs found on BTA24.

Note that the approximate method of deregression and PA-correction according to Garrick et al.41 did not 
allow the deregression of two genetic effects simultaneously, which would, however, be appropriate using models 
that consider imprinting by including two genetic effects. In an article on the international genetic evaluation of 
beef cattle weaning weight63, the separate deregression of direct genetic effects and maternal genetic effects was 
described. A correction was presented, in which the contributions of the second correlated effect to the variance 
of the first are eliminated, when the first genetic effect is deregressed. With the help of a λ-value, corrected herit-
ability was computed both for the direct and maternal effect, which can be interpreted as equivalent heritability 
under a single trait model63. The same principle could be applied to the reduced imprinting model (for details see 
the Supplementary Material). However, using an adapted λ-value in the approximation method by Garrick et al.41  
did not have any impact as the λ-value was cancelled out (proof is provided in the Supplementary Material).

In summary, the possibility to detect imprinted loci by regressing ePOEs of parents on the gene counts of 
their un-ordered marker genotypes has not been recognised before. Fields of application are, in principle, all 
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kinds of pedigreed populations, be it animals or plants, where genotyping of parents has become part of routine 
breeding procedures, or, possibly even in human populations with available detailed genealogies64. Apart from 
whole-genome scans, targeted analyses may also concentrate on associations in and around known imprinted 
genes. Further research will aim at more general analyses that include phenotypes from individuals also providing 
ordered genotype information. In any case, vast repositories of already collected phenotypes will now become 
accessible for imprinting analyses by applying our new approach.

Methods
Simulated data. To estimate the ePOEs (needed for the analyses 1A, 3A, 3B, and 3C) for each parent 
together with their respective reliabilities, the phenotypic information from the progeny in the last generations 
were summarised by applying a reduced imprinting model (as described in Blunk et al.27). Estimates for the TAs 
(needed for analysis 1B) were derived from a reduced animal model that assumes no imprinting (as described in 
Neugebauer et al.24,25). Then, the model:

μ= + + +y bx u e ,i i
a

i i

was applied consecutively for each marker. The dependent variable yi was either the ePOE (analyses 1A, 3A, 3B, 
and 3C) or the TA of individual i (analysis 1B), μ was the general mean and ei represents the residual. The term xi

a 
is the gene content (0, 1 or 2 for the respective known marker genotypes BB, Bb and bb) of individual i at the par-
ticular marker under consideration and b is the regression coefficient. A significant test result of the hypothesis 
H0: b = 0 indicates the association of a marker with an iQTL in case the dependent variable is an ePOE (analysis 
1A) and the association of a marker with an additive QTL in case yi is a TA (analysis 1B). Tests were done sepa-
rately for each marker via a conditional Wald F-test using the ASReml-package (Release 3.065) and ASReml-R 
(Version 366). The random variable ui models the unaccounted genetic variability and was assumed to have a 
variance of Var(u) = Aσ2 with A as the numerator relationship matrix (derived from the pedigree), which was 
included to account for the stratification of the population into families. Note, in the analyses 1A and 1B, ui was 
not included because the individuals with genotypes were unrelated founders. A summary of analyses is provided 
in Table 2. To find associations with imprinted loci, in analysis 2A an adapted version of a measured genotype 
model43:
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was applied consecutively to each marker. Here yi is the observed phenotype. The regression coefficient ba can be 
interpreted as the additive effect of the locus. The regression coefficient bp delivers an estimate for the difference 
between the two types of heterozygotes Bb and bB, i.e. for the imprinting effect. The term xi

p has the values of 0, 
1, −1, and 0 for the ordered genotypes BB, Bb, bB and bb, respectively. The association with an iQTL is equivalent 
to a test of H0: bp = 0. It was assumed that the random gametic effects gi

s (effect of the father’s gamete) and gi
d 

(effect of the mother’s gamete) had different variances σs
2 and σd

2 from a multivariate normal distribution, with the 
variance:

σ σ

σ σ

















= ⊗
















g

g
GVar ,

s

d
s

d

2
sd

sd
2

with G as the gametic relationship matrix67,68. These random gametic effects were included to account for the 
stratification of the population into families. Analysis 2B considered additive effects only by neglecting b xp i

p. A 
test for H0: ba = 0 was performed for each marker separately.

With regard to the analyses 3A, 3B, and 3C, the deregression, PA-correction and weighting of the ePOEs 
were achieved by adapting the approximate method published in Garrick et al.41 for breeding values, which is 
described in detail in the Supplementary Material for ePOEs. To define parameter c, which is needed to calculate 
the weightings, a grid search was conducted, where c was progressively increased with a step size of 0.05 accord-
ing to a proposal in Gorjanc et al.69. The c-parameter generating the greatest log-likelihood was chosen for each 
considered marker.

Brown Swiss data. The ePOEs and parental TAs as well as their reliabilities were derived from an imprinting 
analysis of Brown Swiss cattle slaughterhouse data published in detail in Blunk et al.27. The reduced imprinting 
model was used to estimate the ePOEs as well as the TAs.

Genotype information was acquired from two versions (v1 and v2) of the BovineSNP50 BeadChip (Illumina, 
San Diego, CA, USA). Thirty SNPs map to the same position (base pairs). Note that they were kept for the anal-
yses. Using PLINK version v1.0770, genotypes were excluded based on low frequencies (MAF < 0.05) and a 
Hardy-Weinberg equilibrium test (p ≤ 10−5). Neither animals nor genotypes were dismissed due to bad genotyp-
ing quality as missing genotypes were imputed beforehand (BEAGLE version 3.3.271).

The genome was scanned via single marker regression, where ePOEs (defined as deviations of the TAs as dam 
from the TAs as sire), the TAs as sire and the TAs as dam were regressed on their marker gene counts individu-
ally. The marker effect’s deviation from zero was tested by conducting a conditional Wald F-test using ASReml 
(Release 3.065). To control the type I error rate, the significance threshold of p-values was adjusted according 
to the genome-wide FDR72. Weaker signals only exceeding a chromosome-wide FDR of 5% were additionally 
reported. The unexplained genetic variance due to the relationships between sires was captured by including the 
inverse of the additive genomic relationship matrix73. The matrix was constructed with all available markers, i.e. 
the marker tested was not excluded from the matrix74. As it was not of full rank, its blending73 with 5% of the 
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numerator relationship matrix A was required. Matrix A only contained the relationships between the animals 
with genotypes and was generated using the kinship2 R-package version 1.6.475 in R76.

Except otherwise specified, all positions of SNPs and further genetic information were obtained from the 
UCSC Genome Browser (http://genome.ucsc.edu/) based on the Bos Taurus UMD3.1.1/bosTau8 (assembly date: 
Dec. 2009). Pairwise LD between SNPs was specified as r2 estimated using Haploview (version 4.277). Information 
about the known imprinting status of genes was derived from the geneimprint database49.

Data Availability
Simulated data. The code used to generate the simulated data is freely available from the corresponding au-
thor upon request. The simulation results as well as corresponding programmes to visualise these results (F-values, 
p-values, estimated marker effects and standard errors for each marker and replication) are available at: https://doi.
org/10.22000/81.

Brown Swiss data. The Brown Swiss data merely served as an application example for our new method. The 
datasets are not publicly accessible as they were made available on a confidential basis due to commercial sensivity. 
The data would be available from our co-author Henning Hamman upon reasonable request but restrictions apply to 
the availability of these data (Material Transfer Agreement). Programmes to visualise the results as well as locations 
of SNPs and their p-values are, however, available for all traits at the above mentioned link.

References
 1. Lawson, H. A., Cheverud, J. M. & Wolf, J. B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 14, 

609–617 (2013).
 2. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).
 3. Tuiskula-Haavisto, M. et al. Quantitative trait loci with parent-of-origin effects in chicken. Genet. Res. 84, 57–66 (2004).
 4. Rowe, S. J., Pong-Wong, R., Haley, C. S., Knott, S. A. & de Koning, D. J. Detecting parent of origin and dominant QTL in a two-

generation commercial poultry pedigree using variance component methodology. Genet. Sel. Evol. 41, 6, https://doi.
org/10.1186/1297-9686-41-6 (2009).

 5. Frésard, L. et al. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res. 42, 3768–3782 (2014).
 6. Wang, Q. et al. Next-generation sequencing techniques reveal that genomic imprinting is absent in day-old gallus gallus domesticus 

brains. PLoS One 10, e0132345, https://doi.org/10.1371/journal.pone.0132345 (2015).
 7. Kermicle, J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 68–85 (1970).
 8. Waters, A. J. et al. Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23, 

4221–4233 (2011).
 9. Zhang, M. et al. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. 

Proc. Natl. Acad. Sci. USA 108, 20042–20047 (2011).
 10. Gehring, M., Missirian, V. & Henikoff, S. Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS 

One 6, e23687, https://doi.org/10.1371/journal.pone.0023687 (2011).
 11. Hsieh, T. F. et al. Regulation of imprinted gene expression in arabidopsis endosperm. Proc. Natl. Acad. Sci. USA 108, 1755–1762 (2011).
 12. McKeown, P. C. et al. Identification of imprinted genes subject to parent-of-origin specific expression in arabidopsis thaliana seeds. 

BMC Plant Biol. 11, 113, https://doi.org/10.1186/1471-2229-11-113 (2011).
 13. Wolff, P. et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet. 7, 

e1002126, https://doi.org/10.1371/journal.pgen.1002126 (2011).
 14. Pignatta, D. et al. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3, e03198, 

https://doi.org/10.7554/eLife.03198 (2014).
 15. Luo, M. et al. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS 

Genet. 7, e1002125, https://doi.org/10.1371/journal.pgen.1002125 (2011).
 16. Zhang, H. Y. et al. Parental genome imbalance causes post-zygotic seed lethality and deregulates imprinting in rice. Rice 9, 43, 

https://doi.org/10.1186/s12284-016-0115-4 (2016a).
 17. Zhang, M. et al. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine 

methylation. Plant J. 85, 424–436 (2016b).
 18. Xu, W., Dai, M., Li, F. & Liu, A. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of 

castor bean. Nucleic Acids Res. 42, 6987–6998 (2014).
 19. Rodrigues, J. A. & Zilberman, D. Evolution and function of genomic imprinting in plants. Genes Dev. 29, 2517–2531 (2015).
 20. Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. Trends Genet. 21, 457–465 (2005).
 21. Plasschaert, R. N. & Bartolomei, M. S. Genomic imprinting in development, growth, behavior and stem cells. Development 141, 

1805–1813 (2014).
 22. Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. 

Endocrinol. Invest. 38, 1249–1263 (2015).
 23. Margolis, S. S., Sell, G. L., Zbinden, M. A. & Bird, L. M. Angelman Syndrome. Neurotherapeutics 12, 641–650 (2015).
 24. Neugebauer, N., Luther, H. & Reinsch, N. Parent-of-origin effects cause genetic variation in pig performance traits. Animal 4, 

672–681 (2010a).
 25. Neugebauer, N., Räder, I., Schild, H. J., Zimmer, D. & Reinsch, N. Evidence for parent-of-origin effects on genetic variability of beef 

traits. J. Anim. Sci. 88, 523–532 (2010b).
 26. Tier, B. & Meyer, K. Analysing quantitative parent-of-origin effects with examples from ultrasonic measures of body composition in 

Australian beef cattle. J. Anim. Breed. Genet. 129, 359–368 (2012).
 27. Blunk, I., Mayer, M., Hamann, H. & Reinsch, N. A new model for parent-of-origin effect analyses applied to Brown Swiss cattle 

slaughterhouse data. Animal 11, 1096–1106 (2017a).
 28. Blunk, I., Mayer, M., Hamann, H. & Reinsch, N. Parsimonious model for analyzing parent-of-origin effects related to beef traits in 

dual-purpose Simmental. J. Anim. Sci. 95, 559–571 (2017b).
 29. Jeon, J. T. et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat. Genet. 21, 

157–158 (1999).
 30. Nezer, C. et al. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat. Genet. 

21, 155–156 (1999).
 31. Sandor, C. & Georges, M. On the detection of imprinted quantitative trait loci in line crosses: Effect of linkage disequilibrium. 

Genetics 180, 1167–1175 (2008).
 32. Belonogova, N. M., Axenovich, T. I. & Aulchenko, Y. S. A powerful genome-wide feasible approach to detect parent-of-origin effects 

in studies of quantitative traits. Eur. J. Hum. Genet. 18, 379–384 (2010).

http://genome.ucsc.edu/
https://doi.org/10.22000/81
https://doi.org/10.22000/81
http://dx.doi.org/10.1186/1297-9686-41-6
http://dx.doi.org/10.1186/1297-9686-41-6
http://dx.doi.org/10.1371/journal.pone.0132345
http://dx.doi.org/10.1371/journal.pone.0023687
http://dx.doi.org/10.1186/1471-2229-11-113
http://dx.doi.org/10.1371/journal.pgen.1002126
http://dx.doi.org/10.7554/eLife.03198
http://dx.doi.org/10.1371/journal.pgen.1002125
http://dx.doi.org/10.1186/s12284-016-0115-4


www.nature.com/scientificreports/

1 6ScIeNtIFIc REPORTS |           (2019) 9:654  | DOI:10.1038/s41598-018-36939-3

 33. Aulchenko, Y. S., de Koning, D. J. & Haley, C. Genomewide rapid association using mixed model and regression: a fast and simple 
method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177, 577–585 (2007).

 34. Nishio, M. & Satoh, M. Including imprinting effects in genomic best linear unbiased prediction method for genomic evaluation. 
Proc. 10th World Congr. Genet. Appl. Livest. Prod., 17–22 August 2014, Vancouver, BC, Canada, 472 (2014).

 35. Magee, D. A. et al. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with 
performance traits in Irish Holstein-Friesian cattle. BMC Genet. 11, 93, https://doi.org/10.1186/1471-2156-11-93 (2010).

 36. Knott, S. A. et al. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. 
Genetics 149, 1069–1080 (1998).

 37. Mantey, C., Brockmann, G. A., Kalm, E. & Reinsch, N. Mapping and exclusion mapping of genomic imprinting effects in mouse F2 
families. J. Hered. 96, 329–338 (2005).

 38. Spencer, H. G. The correlation between relatives on the supposition of genomic imprinting. Genetics 161, 411–417 (2002).
 39. De Koning, D. J., Bovenhuis, H. & van Arendonk, J. A. M. On the detection of imprinted quantitative trait loci in experimental 

crosses of outbred species. Genetics 161, 931–938 (2002).
 40. Falconer, D. S. & Mackay, T. F. C. An introduction to quantitative genetics (edition 4, Longman Group, Harlow, Essex, UK, 1996).
 41. Garrick, D. J., Taylor, J. F. & Fernando, R. L. Deregressing estimated breeding values and weighting information for genomic 

regression analyses. Genet. Sel. Evol. 41, 55, https://doi.org/10.1186/1297-9686-41-55 (2009).
 42. Ekine, C. C., Rowe, S. J., Bishop, S. C. & de Koning, D. J. Why breeding values estimated using familial data should not be used for 

genome-wide association studies. G3 (Bethesda) 4, 341–347 (2014).
 43. Boerwinkle, E., Chakraborty, R. & Sing, C. F. The use of measured genotype information in the analysis of quantitative phenotypes 

in man. I. Models and analytical methods. Ann. Hum. Genet. 50, 181–194 (1986).
 44. Imumorin, I. G. et al. Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Front. Genet. 2, 44, https://

doi.org/10.3389/fgene.2011.00044 (2011).
 45. Züchner, S. et al. Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am. J. Hum. 

Genet. 79, 365–369 (2006).
 46. Renvoisé, B. et al. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. 

Hum. Mol. Gen. 25, 5111–5125 (2016).
 47. Grove, B. K., Cerny, L., Perriard, J. C. & Eppenberger, H. M. Myomesin and M-protein: expression of two M-band proteins in 

pectoral muscle and heart during development. J. Cell Biol. 101, 1413–1421 (1985).
 48. Jung, J. et al. Clues for c-Yes involvement in the cell cycle and cytokinesis. Cell Cycle 10, 1502–1503 (2011).
 49. Jirtle, R. L. Geneimprint. http://www.geneimprint.org/ [last accessed in July 2017].
 50. Zaitoun, I. & Khatib, H. Assessment of genomic imprinting of SLC38A4, NNAT, NAP1L5, and H19 in cattle. BMC Genet. 7, 49, 

https://doi.org/10.1186/1471-2156-7-49 (2006).
 51. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).
 52. Hu, Z. L., Park, C. A. & Reecy, J. M. Developmental progress and current status of the Animal QTLdb. Nucleic Acids Res. 44, 

D827-D833 (2016). CattleQTLdb Release 32: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index [last accessed in July 2017].
 53. Doran, A. G., Berry, D. P. & Creevey, C. J. Whole genome association study identifies regions of the bovine genome and biological 

pathways involved in carcass trait performance in Holstein-Friesian cattle. BMC Genomics 15, 837, https://doi.org/10.1186/1471-
2164-15-837 (2014).

 54. Li, C. et al. Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a 
commercial line of Bos taurus. J. Anim. Sci. 82, 967–972 (2004).

 55. McClure, M. C. et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in 
commercial Angus cattle. Anim. Genet. 41, 597–607 (2010).

 56. Legarra, A., Aguilar, I. & Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92, 
4656–4663 (2009).

 57. Wang, H., Misztal, I., Aguilar, I., Legarra, A. & Muir, W. M. Genome-wide association mapping including phenotypes from relatives 
without genotypes. Genet. Res. Camb. 94, 73–83 (2012).

 58. Engellandt, T. & Tier, B. Genetic variances due to imprinted genes in cattle. J. Anim. Breed. Genet. 119, 154–165 (2002).
 59. Guo, X. et al. Genomic prediction using models with dominance and imprinting effects for backfat thickness and average daily gain 

in Danish Duroc pigs. Genet. Sel. Evol. 48, 67, https://doi.org/10.1186/s12711-016-0245-6 (2016).
 60. Jiang, J. et al. Dissection of additive, dominance, and imprinting effects for production and reproduction traits in Holstein cattle. 

BMC Genomics 18, 425, https://doi.org/10.1186/s12864-017-3821-4 (2017).
 61. Hager, R., Cheverud, J. M. & Wolf, J. B. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. 

Genetics 178, 1755–1762 (2008).
 62. Reinsch, N., Engellandt, T., Schild, H. J. & Kalm, E. Lack of evidence for bovine Y-chromosomal variation in beef traits. A Bayesian 

analysis of Simmental data. J. Anim. Breed. Genet. 116, 437–445 (1999).
 63. Phocas, F., Donoghue, K. & Graser, H. U. Investigation of three strategies for an international genetic evaluation of beef cattle 

weaning weight. Genet. Sel. Evol. 37, 361–380 (2005).
 64. Hemminki, K. & Vaittinen, P. National database of familial cancer in Sweden. Genet. Epidemiol. 15, 225–236 (1998).
 65. Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, 

HP1 1ES, UK. https://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf [last accessed in July 2017] (2009).
 66. Butler, D., Cullis, B. R., Gilmour, A. R. & Gogel, B. J. ASReml-R reference manual version 3, https://www.vsni.co.uk/downloads/

asreml/release3/asreml-R.pdf [last accessed in July 2017] (2009).
 67. Gibson, J. P., Kennedy, B. W., Schaeffer, L. R. & Southwood, O. I. Gametic models for estimation of autosomally inherited genetic 

effects that are expressed only when received from either a male or female parent. J. Dairy Sci. 71((Suppl. 1), 143 (1988).
 68. Schaeffer, L. R., Kennedy, B. W. & Gibson, J. P. The inverse of the gametic relationship matrix. J. Dairy Sci. 72, 1266–1272 (1989).
 69. Gorjanc, G., Woolliams, J. A. & Hickey, J. M. Hierarchical quantitative genetic model using genomic information. Proc. 10th World 

Congr. Genet. Appl. Livest. Prod., 17–22 August 2014, Vancouver, BC, Canada, 068 (2014).
 70. Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 

559–575 (2007). http://pngu.mgh.harvard.edu/purcell/plink/ [last accessed in March 2017].
 71. Browning, B. L. & Browning, S. R. A unified approach to genotype imputation and haplotype phase inference for large data sets of 

trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).
 72. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. 

Soc. Series B (Methodological) 57, 289–300 (1995).
 73. VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).
 74. Gianola, D., Fariello, M. I., Naya, H. & Schön, C. C. Genome-wide association studies with a genomic relationship matrix: a case 

study with wheat and arabidopsis. G3 (Bethesda) 6, 3241–3256 (2016).
 75. Sinnwell, J. P., Therneau, T. M. & Schaid, D. J. The kinship2 R package for pedigree data. Hum. Hered. 78, 91–93 (2014).
 76. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 

(2015). http://www.R-project.org/ [last accessed in July 2017].
 77. Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 

263–265 (2005).

http://dx.doi.org/10.1186/1471-2156-11-93
http://dx.doi.org/10.1186/1297-9686-41-55
http://dx.doi.org/10.3389/fgene.2011.00044
http://dx.doi.org/10.3389/fgene.2011.00044
http://www.geneimprint.org/
http://dx.doi.org/10.1186/1471-2156-7-49
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
http://dx.doi.org/10.1186/1471-2164-15-837
http://dx.doi.org/10.1186/1471-2164-15-837
http://dx.doi.org/10.1186/s12711-016-0245-6
http://dx.doi.org/10.1186/s12864-017-3821-4
https://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf
https://www.vsni.co.uk/downloads/asreml/release3/asreml-R.pdf
https://www.vsni.co.uk/downloads/asreml/release3/asreml-R.pdf
http://pngu.mgh.harvard.edu/purcell/plink/


www.nature.com/scientificreports/

17ScIeNtIFIc REPORTS |           (2019) 9:654  | DOI:10.1038/s41598-018-36939-3

Acknowledgements
The authors gratefully acknowledge K. Schlettwein (FBN) for assistance with figures and N. Melzer (FBN), J. 
Klosa (FBN) and B. Garske (FBN) for their support. Many thanks for the financial support from the H. Wilhelm 
Schaumann-Stiftung, Hamburg. All authors appreciate the grateful willingness of R. Fries (Chair of Animal 
Breeding, Technical University of Munich) and I. Russ (Tierzuchtforschung e.V., Munich) to share genotypic 
data jointly with German Brown Swiss breeding organizations. We also thank J. Duda (LKV Bayern, Munich), R. 
Emmerling and K.-U. Götz (both Bavarian State Research Center for Agriculture, Institute for Animal Breeding) 
for their friendly assistance in retrieving genotypic data. The publication of this article was funded by the Open 
Access Fund of the Leibniz Association and the Open Access Fund of the Leibniz Institute for Farm Animal 
Biology (FBN).

Author Contributions
I.B. wrote the simulation programmes, carried out the analyses, interpreted the results and prepared the 
manuscript. N.R. supervised the analyses and participated in the design of the study, the interpretation of the 
results and in the preparation of the manuscript. M.M. participated in the design of the study and supported 
the analyses, especially on statistical matters. H.H. supervised and assisted the data retrieval and supported the 
preparation of the Brown Swiss data. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36939-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

http://dx.doi.org/10.1038/s41598-018-36939-3
http://creativecommons.org/licenses/by/4.0/

	Scanning the genomes of parents for imprinted loci acting in their un-genotyped progeny
	Theory
	Data Background
	Simulated data. 
	Brown Swiss data. 

	Results and Discussion
	Simulated data. 
	Brown Swiss data. 
	Parent-of-origin effects. 
	Transmitting abilities. 


	General Discussion
	Methods
	Simulated data. 
	Brown Swiss data. 

	Acknowledgements
	Figure 1 Boxplots of the −log10 p-values and their means (red line) for 15 markers in simulated two-generation population (with 100x replications) from different kinds of analyses: Estimates of the parent’s parent-of-origin effects (analysis 1A) and trans
	Figure 2 Boxplots of the marker effects and their means (red line) for all analyses and markers linked to quantitative trait loci (QTLs) with biparental (marker 2), paternal (marker 5), maternal (marker 8), partial paternal (marker 11) and partial materna
	Figure 3 Marker loci in relation to their −log10 p-values generated by regressing estimated parent-of-origin effects (ePOEs) on marker genotypes.
	Figure 4 Marker loci in relation to their −log10 p-values generated by regressing transmitting abilities (TAs) as sire on marker genotypes.
	Table 1 Ordered genotypes with their respective population genotype frequencies, number of B-alleles (gene count), breeding values (BVs) as father and as mother and parent-of-origin effects (POEs).
	Table 2 Overview of analyses using different models and genotypic information.
	Table 3 Average F-statistics (F) and p-values (p) for all analyses and markers linked to quantitative trait loci (QTLs) with biparental (Men), paternal (Pat), maternal (Mat), partial paternal (Pat/Men) and partial maternal (Mat/Men) expression patterns.
	Table 4 Single nucleotide polymorphisms (SNPs) significantly associated with parent-of-origin effects (ePOEs) estimated for net body weight (BW) gain, carcass muscularity and carcass fatness.
	Table 5 Single nucleotide polymorphisms (SNPs) significantly associated with transmitting abilities (TAs) as sire estimated for net body weight (BW) gain, carcass muscularity and carcass fatness.




