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Stem cell exosomes inhibit 
angiogenesis and tumor growth of 
oral squamous cell carcinoma
Leonie Rosenberger1, Marcelo Ezquer2, Fernando Lillo-Vera3,4, Paulina L. Pedraza2, 
María Ignacia Ortúzar1, Paz L. González3, Aliosha I. Figueroa-Valdés1,4, Jimena Cuenca1,3,4, 
Fernando Ezquer2, Maroun Khoury1,3,4 & Francisca Alcayaga-Miranda3,4

Recently, exosomes secreted by menstrual mesenchymal stem cells have been identified as inhibitory 
agents of tumor angiogenesis and modulators of the tumor cell secretome in prostate and breast 
cancer. However, their direct effect on endothelial cells and paracrine mediators have not yet been 
investigated. Using a carrier-based cell culture system to test the scalability for exosome production, we 
showed that different types of endothelial cells present specific kinetics for exosomes internalization. 
Exosome-treatment of endothelial cells increased cytotoxicity and reduced VEGF secretion and 
angiogenesis in a dose-dependent manner. Using the hamster buccal pouch carcinoma as a preclinical 
model for human oral squamous cell carcinoma, we demonstrated a significant antitumor effect of 
intra-tumoral injection of exosomes associated with a loss of tumor vasculature. These results address 
up-scaling of exosome production, a relevant issue for their clinical application, and also assess 
menstrual stem cell exosomes as potential anti-angiogenic agents for the treatment of neoplastic 
conditions.

Head and neck cancer, with oral squamous cell carcinoma as its major subtype, ranks among the ten most com-
mon cancer types worldwide1. Despite advances in treatment and diagnosis, its five-year survival rate is only 
around 50%1,2. The presence of metastases is the most important prognostic indicator of survival3,4 and depends 
on the formation and establishment of new blood vessels, a process known as tumor angiogenesis3,5–7. In fact, 
overall survival is reduced with hypoxic, angiogenic and vascular endothelial growth factor (VEGF)-expressing 
tumors8,9. Therefore, targeting tumor angiogenesis is a promising approach of cancer therapy in head and neck 
cancer.

Exosomes are small secreted membrane vesicles that mediate intercellular communication with a specific 
molecular content that is dependent on their parent cell’s signature10–12. Recent studies show that mesenchymal 
stem cell (MSC)-derived exosomes exert paracrine effects on angiogenesis13,14. Since the exosomal content is 
linked to the cell of origin12, it is not surprising that both pro- and anti-angiogenic effects of exosomes secreted 
by MSCs of different tissues are reported in the literature15–19. These opposing effects reflect the influence of the 
tissue-specific microenvironment on the exosomal cargo signature of MSCs and their biological function on 
target cells20,21. The endometrium harbors a specific type of MSC, termed menstrual mesenchymal stem cell 
(MenSC) that is shedded during menstruation22–24. This phase of the endometric cycle is characterized by an 
angiostatic environment associated with the expression of Thrombospondin-1, mainly during the secretory 
phase which includes menstruation25. We have recently shown that MenSC-exosomes act as potent inhibitors 
of tumor-induced angiogenesis in a xenograft prostate tumor model and also have anti-angiogenic effects on the 
breast cancer cell secretome15. On the other hand, no effect was observed on pancreatic cancer cell lines15. The fact 
that MenSC-exosomes show diverse effects on specific tumor types underscores the importance of studying the 
different cancer cell types to determine the scope of possible exosome-based treatments. Furthermore, the direct 
effect of MenSC-exosomes on endothelial cells and their secretome has not yet been described.
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Exosome production involves three sequential steps: Cell culture with exosome-free media; collection of the 
conditioned medium, which contains secreted exosomes, and purification of the exosomes using different centrif-
ugation protocols26. In current laboratory practice, adherent cells are mostly grown in 2D culture on plastic dishes 
or flasks. However, from this manufacturing process a limited quantity of exosomes is obtained - a fact that com-
plicates translation of exosome treatments into the clinic. There has been much research on up-scaling to address 
this issue, especially at the level of cell culture systems, using successfully technologies such as microcarriers in 
stirred bioreactors and hollow-fiber bioreactors27,28. However, the shift from conventional bench-scale cell cul-
ture to large-scale culture platforms might alter the cellular phenotype or the metabolic status and consequently 
cause changes in the composition and function of exosomes. Thus, it is critical to evaluate whether the exosome 
product obtained from each manufacturing process maintains physical and proteomic characteristics as defined 
by the International Society of Extracellular Vesicles (ISEV)29 as well as their bioactive properties in target cells28.

In this work, we developed a platform of scalable exosome production using fiber-based microcarriers called 
BioNOC II and compared the yield to traditional dish cell culture. Subsequently, we studied the biological effect 
of the obtained MenSC-exosomes on endothelial cells in vitro and assessed the effect of exosome treatment on 
angiogenesis and tumor growth in vivo using the hamster buccal pouch (HBP) carcinoma model - a preclinical 
model that closely mimics the human OSCC30. This work provides relevant information about an anti-angiogenic 
therapy based on MenSC-exosomes and demonstrates for the first time the cytotoxic effect they exert on endothe-
lial cells in vitro as well as a reduction of the tumor vasculature and tumor growth in vivo.

Materials and Methods
MenSC characterization, exosome Purification and Characterization, Cytotoxicity, ELISA, tube formation and 
gene expression analysis are detailed in the supplementary data.

This work was revised and approved by the Ethics Committee of the Universidad de los Andes.
All animal studies were revised and approved by the Ethic Committee of Facultad de Medicina Clinica 

Alemana-Universidad del Desarrollo (Chile).
All experiments were carried out according to international standards and guidelines.
MenSC and UCMSC were obtained and used with the written and informed consent of donors following the 

institutional guidelines of Universidad de los Andes.

Cell Culture. MenSC and umbilical cord (UC) MSC were isolated from menstrual fluid of the umbilical 
cord of three different healthy donors each and characterized according to ISCT31 criteria as we have previously 
described15,22,32. Human dermal fibroblasts were purchased from Lonza (cat. CC-2511, Lonza, Walkersville, MD 
USA). Human umbilical cord vein endothelial cells (HUVEC) and human microvascular endothelial cell line 
(HMEC-1) were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). HUVEC 
and fibroblasts were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (15-018-CV, Corning, New 
York, USA) supplemented with 10% fetal bovine serum (FBS) (Lonza, Walkersville, MD USA), 1% Penicillin/
Streptomycin (P/S) (Life Technologies, Carlsbad, CA, USA) and 1 mM L-glutamine (Life Technologies). 
HMEC-1 cells were cultured in endothelial cells growth media 2 (EGM-2) (cc4147, Lonza). All cells were regu-
larly tested for mycoplasma contamination using a mycoplasma detection kit (G238, Applied Biological Materials 
Inc., Richmond, BC, Canada). All cells were cultured in humidified incubation chambers at 37 °C with 5% CO2.

Exosome Production. For exosome production, MenSC, UCMSC and fibroblasts between passage 4 and 
8 were expanded in traditional 2D adherent cell culture and then seeded on BioNOC II micro carriers (CESCO 
Bioengineering, Taichung, Taiwan). For seeding, 8 × 106 cells resuspended in 50 milliliters (ml) of DMEM with 
10% FBS, 1% L-glutamine and 1% P/S and layered on top of two grams (g) of sterilized BioNOC II in a filter cap 
250 ml Erlenmeyer flask (CLS431144, Sigma-Aldrich, Missouri, USA). The cells were maintained in static incu-
bation during the first 16 hours (h) and were then supplemented with additional 200 ml of medium. For further 
culturing, the cells were maintained under constant agitation at 20 rounds per minute (rpm) on a rocking shaker 
(SK-R1807-E, DLAB Scientific, Beijing, China) in a humidified incubation chamber at 37 °C with 5% CO2. To 
assess cell confluence, five micro carriers were removed each day, washed with phosphate buffered saline (PBS) 
three times and the cell nuclei were stained with Hoechst solution 1:2,000 for 10 minutes (min) (63493, Sigma 
Aldrich). When the cells reached 70% confluence on the carriers, they were washed three times with 250 ml of 
PBS and their medium was changed to FBS-free, phenol red-free DMEM (17–205-CV, Corning) containing 1 mM 
L-glutamine and 1% P/S. After 72 h the supernatants were collected for exosome purification.

Exosome Treatment. For exosome treatment, HUVEC or HMEC-1 cells were seeded at 2,500 and 5,000 
cells/well in 96-well plates (using 100 µl medium), 10,000 and 20,000 cells/well in 24-well plates (using 300 µl 
medium) and 100,000 and 200,000 cells/well in 6-well plates (using 600 µl medium), respectively. After 48 h their 
growth medium was changed to DMEM with 1% P/S and 1% L-glutamine for HUVEC and endothelial basal 
medium (EBM) (CC-3156, Lonza) for HMEC-1. MenSC-exosomes were added at different concentrations to cell 
cultures for periods of 2–24 h depending on each cell type and experimental condition. Controls were performed 
with PBS vehicle instead of exosomes. Unless stated otherwise, experiments were repeated three times. Unless 
explicitly stated otherwise, MenSC-exosomes were used and referred to as exosomes or exos.

Exosome Internalization. One hundred micrograms (µg) of pure exosomes were labeled with total protein 
stain CFSE (C34554, Thermo Fisher, Waltham, MA, USA) in 1 ml PBS according to the manufacturer’s instruc-
tions, washed by ultracentrifugation at 100,000 G for 3 h and resuspended in PBS. Three hundred µg of pure 
exosomes were labeled with DiR (60017, Biotium) at 71 µM for 1 h at 37 °C and, after incubation, unincorporated 
dye was removed by gel filtration using Exosome Spin Columns (MW 3000) (4484449, Invitrogen, Carlsbad, CA, 
USA). As dye controls, the CFSE and DiR were mixed with PBS instead of exosomes and washed as described 
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above. The labeled exosomes were quantified using nano particle tracking analysis (NTA). HUVEC and HMEC-1 
cells were seeded at a density of 10,000 cells/well in a 24-well format. After 24 h, the incubations of 4, 8 and 
16 h were initiated with 38 × 103 stained part/cell, labeled with CFSE for HUVEC and with DiR for HMEC-1 
and in parallel with the corresponding dye control for 16 h. To quantitatively measure exosome uptake, the cells 
were trypsinized, washed with PBS and analyzed for CFSE or DiR signal using flow cytometry (FACS Canto II, 
Becton Dickinson (BD), Franklin Lakes, USA). For confocal microscopy images, HUVEC and HMEC-1 cells 
were seeded on top of a 10 mm cover glass coated with Poly-L-Lysine in a 4-well plate at 20,000 and 40,000 cells 
per well respectively. Cells were incubated with 20–50 × 103 part/cell DiR stained exosomes and after 4, 8 and 16 h 
of incubation, the cells were washed three times with PBS and then fixed for 30 min at room temperature (RT) 
with 4% paraformaldehyde (PFA). Nuclei were stained with Hoechst 33342 (63493, Sigma Aldrich) 1:2,000 for 
15 min at RT and preparations were mounted on a microscopy slide with fluorescence mounting medium (S3023, 
Dako, Santa Clara, CA, USA). Images were analyzed with confocal microscopy (SP8 AT CIAN, Leica, Wetzlar, 
Germany).

Apoptosis Assays. Apoptosis was determined by flow cytometry using Annexin V and 7-AAD stain. Cells 
were seeded in 24-well plates 48 h before the experiment. For exosome treatment, cells were incubated with 20 µg/ml  
(HUVEC) or 40 µg/ml (HMEC-1) exosomes in basal medium. After 8 h, cell supernatants were mixed with the 
trypsinized cells in order to include detached dead cells in the analysis and cells were stained with Annexin 
V-FITC (556419, BD, Franklin Lakes, USA) and 7-aminoactinomycin D (7-AAD) (420403, Biolegend, San Diego, 
CA, USA) in Annexin V binding buffer (422201, Biolegend, San Diego, CA, USA). Cells were analyzed via flow 
cytometry (FACS Canto II, Becton Dickinson) in FITC and PerCP5.5 and gates for quantification were set using 
single stain tubes. Flow cytometry data was analyzed using FlowJo v.10 (Ashland, Oregon, USA).

In Vivo. Oral squamous cell carcinoma (OSCC) was induced in 16 female 8 weeks old Syrian golden hamsters 
(Mesocricetus aureatus) by applying a N°4 camel-hair brush soaked with 50 µl of mineral oil (Sigma-Aldrich) 
or 50 µl of 0.5% 7,12-Dimethylbenzanthracene (DMBA) (Sigma-Aldrich) dissolved in mineral oil three times a 
week into their right buccal pouch33–35. Animals were housed at 22 ± 2 °C, with a 12:12 h light-dark cycle, water 
and food ad libitum, and body weight of the hamsters was measured twice a week. Twelve weeks after the initia-
tion of OSCC induction, hamsters were deeply anesthetized by inhalation of Sevoflurane (Abbot, Tokyo, Japan). 
Buccal pouches were uncovered and tumors were measured with a digital caliper and photographed using a 
digital camera (FUJIFILM-Finepi HS20 EXR). The lesion volume was calculated using the formula: tumor vol-
ume (mm3) = 0.52 × [width(mm)]2 × length (mm) and the tumor increase was estimated as the ratio between 
final and initial volumes36. After 16 weeks of exposure to DMBA, the tumors reached the carcinoma stage and 
the DMBA treatment was suspended. For exosome treatment, animals were randomly distributed to experimen-
tal groups when lesions reached the stage of carcinoma33,35. The animals were anesthetized, their buccal pouch 
exposed using forceps and MenSC-exosomes (20 µg in 50 µl PBS) or PBS (vehicle) were injected into the base 
of the tumor, twice a week for 2 weeks using a 30-gauge needle (Becton Dickinson). Two independent in vivo 
experiments were carried out.

Histopathology of Tumors. Four weeks after vehicle or exosome administration, hamsters were euth-
anized by an intraperitoneal injection of Xylazine and Ketamine. Buccal pouches were harvested and tumors 
were resected, weighted, and sagittally dissected into two parts, one of which was immediately frozen in liquid 
nitrogen and stored at −80 °C for gene expression studies, while the other was stored in 4% paraformaldehyde 
for histopathological analysis. Tissue sections of 4 µm were stained with hematoxylin and eosin (H&E) (Merck, 
Darmstadt, Germany) and visualized with a light microscope (DM2000, Leica). Two independent pathologists 
performed histological analysis in blind.

Fluorescein Angiography. Hamsters were injected intracardially with 400 µl of PBS containing 20 mg of 
2 × 106 molecular weight fluorescein-dextran (Sigma-Aldrich). Five minutes later, they were euthanized and 
tumors were fixed in 4% paraformaldehyde. Four-micrometer tumor slices were observed and photographed 
with the Fluoview FV10i confocal microscope (Olympus) and six random fields per animal were analyzed. The 
fluorescence area, representative of vascular lumen area, was quantified using the ImageJ 1.34 software, NIH37,38. 
To confirm the vascular lumen, labeled by fluorescein-dextran, tissue sections of 4 µm were deparaffinized, rehy-
drated, blocked with 5% of FBS and incubated overnight at 4 °C with a dilution of anti-VE-cadherin (sc-6458 
Santa Cruz, Santa Cruz, CA, USA). Then samples were washed and incubated for 2 h at RT with the secondary 
antibody (Alexa555). Cross-reactivity of the secondary antibody was tested by incubating samples without the 
primary antibody. Nuclei were counterstained with 4′6′-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich). 
Samples were analyzed by confocal microscopy.

Statistical Analysis. To compare two conditions, unpaired two-tailed student’s t-test were used. Statistical 
analyses were carried out using GraphPad Prism 5 (Graphpad Software, Inc. San Diego, CA, USA). Statistical 
significance was shown as *p < 0.05; **p < 0.01; ***p < 0.001. Error bars represent the standard error of the 
mean (SEM).

Results
Micro carrier-based cell culture is an efficient way to produce exosomes and does not alter stem 
cell characteristics. Since exosome production is a time-consuming process, we aimed at improving the 
standard protocol for exosome production15,26,39,40 in terms of yield and hands-on cell culture time. We cultured 
MenSC on micro-carriers (BioNOC) for exosome production. Firstly, we examined whether this distinct cul-
ture format would affect the MenSC stem cell characteristics. Supplementary Fig S1A shows the histograms for 
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positive MSC markers (CD73, CD90 and CD105) and negative markers (HLA-DR, CD14, CD19, CD34 and 
CD45) and a summary of percentage positive cells in table format comparing dish culture and carrier culture. 
Supplementary Fig S1B shows that MenSCs that were previously cultured on carriers or on traditional cell culture 
dishes differentiated equally well into adipocytes, chondrocytes and osteocytes. There was no difference in marker 
expression between the two culture systems and both were compliant with the ISCT guidelines31 for MSC char-
acterization, showing that growth in BioNOC carriers did neither compromise the MenSC immunophenotype 
nor their tri-lineage differentiation potential. Therefore, we conclude that MenSCs maintain their characteristics 
in BioNOC-based cell culture.

We then proceeded to characterize the exosomes that were secreted by BioNOC-cultured MenSCs. Figure 1A 
shows a schematic overview of the MenSC culture on the fiber-based micro carriers BioNOC II that was 
employed for exosome production. The exosome purification protocol was maintained as standard protocol using 
ultra centrifugation15,26,39,40. The enrichment of the exosomal markers CD63, Syntenin and CD9 as compared to 
cell lysate and the absence of cytoskeletal markers β-Actin and Vinculin and ER marker Calreticulin was con-
firmed via western blot (Fig. 1B, Supplementary Fig S2). CD63 and CD9 are tetraspanins enriched in endosomes 
where exosomes originate and Syntenin is a key regulator of exosome biogenesis. The exosomes produced from 
carrier-based culture maintained their characteristic morphology and had an average size of 62.1 ± 2.4 nm when 
analyzed by electron microscopy and 143.9 ± 1.5 nm when analyzed with NTA as shown in Fig. 1C and D, respec-
tively. For confluence determination, micro carriers were stained with fluorescent DNA stain Hoechst as shown 
in Fig. 1E. As shown in Fig. 1F, the carrier-based BioNOC II culture produces a significantly higher number of 
particles per ml of supernatant compared to dish culture. Since supernatant volume is a relevant measure and 

Figure 1. Carrier-based cell culture increases exosome yield. (A) Schematic overview of exosome production 
process. MenSC were expanded on 2D cell culture dishes and then seeded on BioNOC II. After 72 h in 
DMEM with 10% FBS, the medium was changed to serum-free DMEM for 72 h for exosome production. For 
purification, the supernatant was collected and processed in serial centrifugations. (B) Western Blot with 15 µg 
of cell lysate (Cells) and exosomes (Exo). To confirm the purity of the exosomes, positive exosomal markers 
CD63, Syntenin and CD9 and negative exosomal markers Vinculin (Vinc.) and Calreticulin (Calr.) and β-Actin 
(actin) were analyzed. (C) Scanning electron micrograph of purified exosomes, magnification 60,000x. (D) 
Size distribution of exosomes determined by nanosight showing that the highest abundance of particles was 
below 200 nm. (E) Hoechst-stained MenSC on BioNOC II carrier, showing a typical confluence for exosome 
production. (F) Yield of purified exosomes in PBS as Particles (part)/ml of initial cell culture supernatant (SN) 
are shown for 2D (N = 32) and 3D culture (N = 10). Analysis: unpaired t-test. Bar graphs show average values, 
error bars: SEM.
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limitation for subsequent purification steps in the ultra-centrifuge, we normalized the particle number to initial 
supernatant volume. On average, 1.2 × 108 ± 0.56 × 108 exosomal particles were produced per ml of supernatant 
in carrier-based culture, whereas traditional dish culture produced only 0.27 × 108 ± 0.06 × 108 particles per ml 
supernatant. Furthermore, the cell culture hands-on time for producing the same number of exosomes could be 
reduced dramatically since processing large numbers of cells in dish culture is very time-consuming. In conclu-
sion, BioNOC II-based culture of MenSC is a more time-efficient alternative for exosome production that does 
not alter the general exosomal characteristics.

Exosomes are internalized by endothelial cells. We have previously shown that MenSC-exosomes are 
internalized by tumor cells and modulate their angiogenic secretome15. To determine whether MenSC-exosomes 
would also have a direct effect on endothelial cells, we first assessed their internalization in two different types 
of endothelial cells: HUVEC and HMEC-1. Internalization was quantified in a time-dependent fashion detect-
ing stained exosomes within endothelial cells via FACS and confocal microscopy. As shown in Fig. 2A and B, 
exosomes were efficiently taken up by HUVEC and HMEC-1 cells on increasing amounts over the course of 16 h. 
The mean fluorescence intensity (MFI, geometric mean) of HUVEC increased from 832 ± 154 at 4 h to 1349 ± 196 
after 8 h and reached 2046 ± 336 after 16 h as more stained exosomes were internalized (CFSE-stained). The nega-
tive control at 4 °C had a MIF of 392 ± 110. The MIF of HMEC-1 was 1472 ± 556, 2908 ± 870, 11943 ± 1843 at 4, 8 
and 16 h, respectively and 14 ± 1 at 4 °C as they internalized stained exosomes (DiR-stained). The low MIF at 4 °C 
confirms an active internalization process of the exosomes into endothelial cells. A dye-only control was negative 
(data not shown) indicating that our washing steps successfully removed all free dye, such that any observed 
fluorescence signal stemmed from stained exosomes. To determine whether exosomes are actually internalized 
or only membrane-bound, we confirmed their cytoplasmic localization via confocal microscopy as shown in 
Fig. 2C. Exosomes for confocal microscopy were stained with DiR, shown in yellow. The confocal microscopy 
confirmed effective and time-dependent internalization of exosomes into HUVEC and HMEC-1.

Exosomes induce apoptosis in endothelial cells. As endothelial cells are responsible for angiogen-
esis, we wondered whether the anti-angiogenic effect of exosomes we have previously described15 would be 
related to direct cytotoxic effect on endothelial cells. To assess cytotoxicity, lactate dehydrogenase (LDH) activity 
in supernatants was measured. Indeed, we found that exosome treatment, even at short time-points, induced 
cytotoxicity in a dose-dependent manner in both endothelial cell types. In HUVEC, a significant increase in 
cytotoxicity was firstly achieved after 4 h of incubation with 20 µg/ml of exosomes, where the percentage of 
cytotoxicity was 8.1 ± 0.88% in control and 22.1 ± 1.67% after exosome treatment. After 8 h incubation, con-
trol values were at 9.9 ± 0.21% and exosome-treated cells at 18.4 ± 0.72% cytotoxicity (Fig. 3A). In the case of 

Figure 2. MenSC-exosomes rapidly enter endothelial cells in culture. (A,B) Representative histograms and 
quantification of exosome uptake analyzed via FACS for HUVEC (A) and HMEC-1 (B) at different time points. 
(C) HUVEC and HMEC-1 were incubated with DiR labeled exosomes and analyzed by confocal microscopy. 
Scale bar: 50 µm. Bar graphs show average values, error bars: SEM. N = 3.
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HMEC-1, 20 µg/ml were not sufficient to evoke a significant increase in cytotoxicity except after 2 h. Therefore, 
the dose was increased to 40 µg/ml for this cell line which lead to a significant increase in cytotoxicity after 2, 
4 and 8 h of incubation. The percentage cytotoxicity was 10.8 ± 0.66%, 11.6 ± 0.68%, 14.4 ± 0.83% in control 
and 15.6 ± 0.95%, 16.8 ± 0.45% and 22.6 ± 1.46% in exosome-treated HMEC-1 after 2, 4 and 8 h, respectively, as 
shown in Fig. 3B. Since LDH may also be present in exosomes, we tested they basal level of LDH activity in a full 
dose of MenSC-exosomes in DMEM and EBM and found that there was no detectable LDH activity originating 
from the exosomes (data not shown), demonstrating that the measured LDH stemmed from the endothelial 
cells. Due to the short half-life of free LDH, we did not assess longer time-points in the cytotoxicity assay as they 
would not represent an accumulative cytotoxicity of the whole incubation period. Cells were also analyzed with 
Annexin V and 7-aminoactinomycin D (7-AAD) stain which are used to label early and late apoptosis, respec-
tively. Annexin V binds to phosphatidylserine which is exposed during apoptosis and 7-AAD labels cells with 
damaged membranes. We found that the percentage of viable cells decreased significantly after 8 h exosome treat-
ment in HUVEC (Fig. 3C). The viability of control cells was 44.4 ± 4.2% and exosome- treated cells 31.5 ± 3.3% 
and apoptotic cells (Annexin V+ cells) comprised 54.8 ± 4.4% in control and 67.8 ± 3.4% in treated HUVEC. 

Figure 3. Exosomes induce cell death in endothelial cells. (A,B) Percentage cytotoxicity determined by LDH 
activity in HUVEC (A) and HMEC-1 (B) supernatant after 2, 4 and 8 h using 20 µg/ml and 40 µg/ml exosome 
treatment, respectively. (C) Annexin V/7-AAD viability stain analyzed HUVEC cells after 8 h of exosome 
treatment (20 µg/ml). (D) Annexin V/7-AAD viability for HMEC-1 cells after 8 h of exosome treatment (40 µg/
ml), viable cells correspond to lower bottom quadrant and apoptotic cells to top and bottom right quadrant. 
Analysis: unpaired t-test. Bar graphs show average values, error bars: SEM.
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Although the viability of HUVEC cells measured using Annexin V/7AAD staining was relatively low, this is 
most likely due to the process of cell detachment and post-detachment washing steps as the cell’s morphology 
in cell culture was not visibly altered and a non-starving control showed the same values (data not shown). Also 
in HMEC-1 cells, the cytotoxic effect of MenSC-exosomes could be confirmed using 40 µg/ml in the Annexin 
V/7-AAD assay (Fig. 3D). The percentage of viable cells was significantly decreased from 69.4 ± 2.8% in control 
to 45.6 ± 2.9% in exosome-treated HMEC-1. Apoptotic cells increased significantly with exosome-treatment as 
they comprised 19.5 ± 2.0% in control and 46.6 ± 2.0% in treated HMEC-1. These data indicate that exosomes 
have cytotoxic effects that induce cell death in endothelial cells.

Exosomes affect angiogenic activity of endothelial cells by modulating VEGF secretion. To test 
whether MenSC-exosomes could directly modulate the angiogenic potential of endothelial cells, we incubated 
HUVEC and HMEC-1 cells with exosomes for 8 and 24 h. Firstly, we determined VEGF secretion levels since 
this protein is the most relevant factor for angiogenesis41. Figure 4A shows that exosome-treatment significantly 
reduced VEGF secretion of HUVEC after 24 h of incubation from 318.0 ± 6.0 to 190.0 ± 22.0 pg/ml/1 × 106 cells. 
Interestingly, 8 h were not sufficient to evoke a significant reduction of VEGF levels (Supplementary Fig S3). 
The same figure shows a dose-response pattern when incubating HUVEC with 5, 10 and 20 µg/ml exosomes. 
Since exosomes reduced VEGF levels, we asked whether the endothelial cells’ overall angiogenic potential would 
equally be reduced by exosome treatment. Therefore, we carried out in vitro tube-formation assays on matrigel 
using conditioned medium of HUVEC treated with exosomes for 8 and 24 h. In accordance with VEGF levels, 
we observed that conditioned medium from 8 h did not affect angiogenesis (Supplementary Fig S4) but 24 h 
exosome-treated endothelial cells induced less tube formation than control cells (Fig. 4B). Figure 4C–E show 
that after 24 h exosome incubation, there was a significant decrease in total loops from 17.27 ± 1.63 to 7.0 ± 0.91, 
percentage of the covered area from 38.26 ± 1.82 to 29.72 ± 0.87, total branching points from 69.27 ± 3.8 to 
47.50 ± 2.7 and total tube length from 20940 ± 681.7 to 16890 ± 797.6 (Supplementary Fig S5) in exosome-treated 
HUVEC cells with respect to control HUVEC conditioned medium. DMEM was used as a negative technical con-
trol since it was the basal medium of the conditioned media and EGM was used as a positive technical control as it 
contains angiogenesis-promoting factors such as VEGF. In the case of HMEC-1, 40 µg/ml of exosomes induced an 

Figure 4. Inhibition of angiogenesis in vitro by exosome treatment. (A) VEGF secretion by HUVEC after 24 h 
treatment with 20 µg/ml MenSC-exosomes. (B) Representative photographs of HUVEC tube formation on 
matrigel in vitro, using 24 h HUVEC supernatant without (control) and with 20 µg/ml exosomes, magnification 
10x. The negative and positive controls were DMEM and EGM, respectively. (C) Total loops. (D) Percentage 
covered area. (E) Total branching points. (F) VEGF reduction in HMEC-1 after 24 h treatment with 40 µg/ml 
MenSC- exosomes. Analysis: unpaired t-test. Bar graphs show average values, error bars: SEM.
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important reduction of VEGF levels that was, however, not significant (p = 0.0686 (Fig. 4F). Since HMEC-1 need 
to be grown in growth factor-enriched medium but experiments were performed in basal medium, the HMEC-1 
conditioned medium was not able to induce tube-formation on HMEC-1-cells. In order to test whether the 
observed anti-angiogenic effect was MenSC-specific, we examined the effect of UCMSC-exosomes and dermal 
fibroblast exosomes on HUVEC cells as shown in supplementary Fig S6. Interestingly, these exosomes showed 
opposite effects with respect to MenSC-exosomes. UCMSC-exosomes induced a higher percentage of covered 
area of 61.23 ± 4.146 compared to the control with a percentage of 43.61 ± 2.611, a higher number of total loops 
with 26.67 ± 2.279 as compared to 14.22 ± 1.245 in the control and a larger total tube length of 24550 ± 953.3 
pixels as compared to 20620 ± 696.9 in the control. Similarly, fibroblast exosomes induced a higher percentage 
of covered area, more total loops and a longer total tube length (72.50 ± 3.113%, 41.00 ± 5.132 and 27880 ± 1616 
pixels, respectively). Taken together, these data suggest that the anti-angiogenic effect of MenSC-exosomes is a 
unique feature of this type of exosomes and not necessarily attributable to other cell types.

Exosomes inhibit tumor growth in vivo. Squamous cell carcinoma of the buccal pouch in the Syrian 
hamster closely models oral squamous cell carcinoma in humans as it has similar aberrant gene expression 
patterns30. We therefore argued that the anti-angiogenic effect of MenSC-exosomes might present advantages 
for the treatment of this tumor type. Four exosome injections (20 µg each) were carried out after the tumor 
reached a size of 50 mm3, as schematized in Fig. 5A. The exosome treatment could significantly inhibit tumor 
growth when compared to vehicle treated controls, even after only one injection, as early as day four (Fig. 5B,C). 
At end-point, 25 days after treatment initiation, the tumor volume was smaller in exosome treated tumors 
(101.4 ± 19.8 mm3) than in control tumors (354.0 ± 59.5 mm3). The same was observed in percentage of growth 
that was 206.2 ± 40.1% in exosome treated tumors with respect to baseline and 585.2 ± 40.8% in control tum-
ors. Exosome treated tumors maintained their size with a tumor volume of 48.39 ± 2.8 mm3, 46.09 ± 3.6 mm3, 
45.85 ± 12.2 mm3 and 54.54 ± 7.8 mm3 at days 0, 4, 7 and 12, respectively. Control tumors, on the other hand, 
grew steadily from 45.33 ± 20.0 mm3 to 79.11 ± 8.1 mm3, 92.015 ± 11.7 mm3 and 144.40 ± 24.8 mm3 at days 0, 
4, 7 and 12, respectively. The average tumor weight at day 25 was significantly lower in treated tumors as com-
pared to control (95 ± 23 mg and 237 ± 38 mg, respectively) and the hamsters’ body weight was not affected by 
the treatment which suggests that it had no harmful effects on the animals (Supplementary Fig S7). Since it had 
been observed that exosome treatment reduced angiogenesis in vitro, we analyzed tumor vasculature of vehicle 
and exosome-treated tumors at the experimental end-point. We found that both vessel density and vascular 
area were significantly reduced by exosome-treatment (Fig. 5D,E). The vessel density, quantified based on H&E 
stained histological sections, was reduced from 29.9 ± 3.1 in control to 16.3 ± 2.3 vessels/field in exosome treated 
tumors and the vascular area, quantified based on Dextran-Fitc stained histological sections, was reduced from 
2842.3 ± 252.2 to 840.3 ± 117.9 pixels. We also analyzed mRNA levels of Ki67, p53 and VEGF in tumors at the 
experimental end-point (day 25) but found no significant difference between exosome-treated and control tum-
ors (Supplementary Fig S8). The fold change of VEGF expression compared to the average of control tumors was 
on average 0.92 ± 0.30. In the case of p53, the fold change was 1.08 ± 0.34 and in the case of Ki67 0.73 ± 0.23.

Discussion
It is well-known that the therapeutic effects of stem cell therapy are in large proportion caused by their secreted 
factors. In the last years, these paracrine mechanisms have been linked to exosomes42,43, membrane-enclosed 
nanovesicles that shuttle biomolecular cargoes that can effectively alter the biological properties of target cells44. 
Since we expect that the number of clinical trials using exosome treatments will rapidly increase in the coming 
years, there is a need to develop a robust manufacturing technology that ensures enough exosomes to treat a 
significant number of patients. Along with this, it is critical to guarantee that the exosome-based product meets 
the requirements for its identification to control the manufacturing quality29,44. With this in mind, we presented 
in this report an alternative way for the up-scaling exosome production using the fiber-based micro-carriers 
BioNOC II. We showed that the micro-carrier based cell culture did not affect stem cell markers or differentiation 
potential of MenSCs, indicating that it is a feasible culture method for MSCs. Exosomes isolated using this meth-
odology presented round-shaped morphology and size and biochemical markers according to the criteria sug-
gested by the exosome community29. There are several advantages of BioNOC II carrier culture. First, exosome 
production costs can be reduced as compared to dish cell culture since less medium and plastic material is used. 
Also, BioNOC II micro-carriers can be easily purchased and implemented in a research laboratory since there is 
no need of pump systems or specific devices. It is therefore a convenient alternative to hollow-fiber bioreactors. 
Furthermore, hands-on time is significantly reduced in cell culture steps when compared to the large number of 
cell culture dishes which would be needed to bear the same number of cells. Finally, we showed that the particle 
yield per ml conditioned medium was superior to dish cell culture systems. Importantly, though, the control of 
environmental parameters during cell culture is key to avoid phenotypic and metabolic changes in cells that may 
result in an alteration of the exosomes cargoes28. In our present study, we could replicate the MenSC-exosome’s 
anti-angiogenic effect in tumors that we had obtained previously with exosomes from dish cell culture15. This 
suggests that the MenSC-exosomes were not altered by the change in culture method. Undoubtedly, to proceed 
towards the translational phases, it is also recommended to perform a functional characterization of exosomes 
defined by their content in proteins and nucleic acids. Knowing the active compounds in exosome-based prod-
ucts and their mechanism of action, will allow the implementation of effective quality control in the manufacture 
of exosome-based therapies and may reveal subtypes of exosomes with specific functions.

The uptake of the MenSC-exosomes by endothelial cells was an energy-dependent process. Each type of 
endothelial cells showed its own kinetics of exosomes internalization, confirming previous findings in other mod-
els that demonstrate that the mechanism of internalization is a specific process to each cell type45–47. The mech-
anism responsible for MenSC-exosome internalization was not studied in this work although it is an interesting 
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question to resolve. From an oncological point of view, it would be important to study the exosome internaliza-
tion in an acidic environment that mimics the tumor microenvironment since the pH is relevant in the regulation 
of the exosome uptake by cells48.

Functionally, we observed that exosome-treatment lead to cell death and reduced angiogenesis in endothelial 
cells. Previously, we have shown that MenSC-exosomes inhibited VEGF-secretion of tumor cells15 and here we 
could show that the same effect is obtained when directly incubating endothelial cells with exosomes. Therefore, 
the anti-angiogenic effects of MenSC-exosomes observed in vivo are likely due to a combination of effect on 
both, tumor and endothelial cells. One limitation of studying the endothelial cell line HMEC-1 is that they are 
dependent on media providing growth factors such as VEGF. This complicates longer incubation times with 
exosomes in basal medium. We further found that exosome treatment induced cell death and cytotoxicity in 
HUVEC and HMEC-1. Monocyte-derived exosomes have been shown to induce apoptosis in endothelial cells49 
but to our knowledge this is the first report of such an effect from MSC-exosomes. An interesting question for 

Figure 5. Tumor growth and angiogenesis is significantly reduced by exosome treatment. (A) Scheme of 
experimental design. Tumors were induced with four weeks of DMBA treatment and four injections of 
exosomes were administered every 3–4 days (B,C) Tumor growth in mm3 tumor volume and relative tumor 
growth.  indicates days of exosome treatment. Control tumors ar e shown as triangles and exosome treated 
tumors as circles. N = 9 (control), N = 8 (Exo). (D) Histological sections of tumors at day 25 (end-point) with 
Hematoxylin and eosin stain (H&E). Quantification of vessel density based on H&E sections is shown below.  
▲ indicates vessels. (E) Dextran-Fitc (green), VE Cadherin (red) and Hoechst (blue) stained histological 
sections of tumors at day 25 (end-point). Upper panel: complete tumors, lower panel: zoom of selected tumor 
area. VE-Cadherin is only shown for zoom (lower panel). Graph shows quantification of vascular area based on 
dextran stain. Analysis: unpaired t-test. Bar graphs show average values, error bars: SEM.
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future studies is whether a causal relationship exists between VEGF secretion and cytotoxicity in exosome-treated 
endothelial cells, addressing cytotoxic effect in vivo. We demonstrated in tube formation assays that the specific 
source of cells affects their exosomes’ function since UCMSC- and fibroblast exosomes showed pro-angiogenic 
properties. We have previously shown that exosomes derived from MSCs of bone marrow (BM), adipose tis-
sue (AT), umbilical cord (UC) and menstrual fluid shared physical and biochemical characteristics39. However, 
their biological actions still differed12,21 due to varying composition of their molecular content20. Recently, we 
have demonstrated opposing effects for exosomes derived from BMSC or MenSC on tumor angiogenesis15. This 
suggests that observed biological effects of exosomes from one type of MSC should not be extrapolated to those 
secreted by other MSCs. Likewise, the anti-angiogenic effect of MenSC-exosomes differs for different tumor cell 
lines15 indicating once again the need to study the effects of one type of exosomes on one specific type of cancer. 
This complements our results in previous publications, namely that bone marrow mesenchymal stem cell (BMSC) 
exosomes are pro-angiogenic15 and results of others describing a pro-angiogenic effect of UCMSCs50.

With this in mind, we decided to test the effect of MenSC-exosomes on the vasculature of the most prevalent 
neoplasm of the oral cavity, the OSCC. The functional experiments in the HBP carcinoma model demonstrate 
that MenSC-exosomes also exert an important anti-tumor effect in vivo. Our findings show that the anti-tumor 
effect was associated with a loss of the tumor vasculature, observed through the reduction of the number and 
size of the blood vessels. Based on our in vitro results, we hypothesize that the smaller tumor size was caused 
by weaker angiogenesis which is known to be relevant for tumor growth. However, the possibility that an 
angiogenesis-independent mechanism slowed the tumor growth which in turn led to reduced angiogenesis can-
not be ruled out completely. The difference in tumor growth was persistent until the end of the study (day 25) and 
the vessel density and number was also analyzed at this time-point. However, the VEGF expression analyzed by 
qPCR was not homogeneous at the experimental end-point in exosome-treated tumors and showed no overall 
difference with respect to control tumors. It is likely that MenSC-exosomes exert their anti-angiogenic effects 
not only via VEGF but also by VEGF-independent mechanisms which would explain why the treated tumors 
show diverse levels of VEGF mRNA despite having consistently smaller tumor volumes. Since exosomes contain 
several active compounds such as miRNAs and proteins, different miRNAs might cause effects in different sig-
naling pathways and cell functions. On the other hand, the similar VEGF levels in control and exosome-treated 
tumors could also be attributed to the time-point of analysis as animals were only sacrificed two weeks after the 
last exosome administration and it is known that VEGF-expression can quickly return to normal or even higher 
levels after withdrawing anti-angiogenic therapies51–53. The anti-angiogenic effect of MenSC-exosomes was pre-
viously described by us in prostate and breast cancer15. Whether MenSC-exosomes exert their effect through 
the transfer of proteins, miRNAs or a combination of both is a key question to resolve in future investigations. 
As mentioned above, deciphering the active compound(s) will provide a better understanding of the mecha-
nism of action of exosomes and pave the way to future enhancements of therapeutic effects while allowing bet-
ter predictions of drug interactions, side effects and patient responder status. In line with our findings, other 
groups have also shown an antitumoral effect of MSC-exosomes. Lee and colleagues demonstrated that murine 
BMSC-exosomes suppress the tumor angiogenesis by down-regulating VEGF expression in a breast tumor 
model, partially mediated by the transfer of miRNA-1616. Del Fattore and colleagues have shown that microvesi-
cles (MVs) secreted by BMSC and UCMSC inhibit the proliferation and induce apoptosis of glioblastoma cells21. 
Likewise, BMSC-microvesicles have been shown to be effective when inhibiting the growth of hepatic and ovarian 
cancer cells and Kaposi’s sarcoma both in vitro and in vivo54.

HBP is a suitable in vivo model to study human OSCC. HBP tumors share morphological and histological 
characteristics as well as expression patterns of many biochemical and molecular markers that are also expressed 
in human OSCC30,55. However, one limitation of the hamster model is the lack of commercially available reagents 
such as antibodies specific or cross-reactive to hamsters. This limits the extension of further research. In the 
future, it will be essential to test the effectivity of the exosomes in a model of metastatic disease. For this, it is nec-
essary that exosomes localize to the tumor sites in vivo after systemic administration. It has already been demon-
strated that exosomes secreted by different cell types are able to reach the tumor56–61. However, different types 
of exosomes could potentially show distinct innate homing abilities in vivo61. Therefore, it will be important to 
conduct studies specifically in MenSC-exosomes to evaluate their biodistribution and tumor homing properties.
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