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Robust in-silico identification of 
Cancer Cell Lines based on RNA and 
targeted DNA sequencing data
Raik Otto  1, Jan-Niklas Rössler1, Christine Sers2,3, Soulafa Mamlouk2,3 & Ulf Leser1

Cancer cell lines (CCL) are an integral part of modern cancer research but are susceptible to 
misidentification. The increasing popularity of sequencing technologies motivates the in-silico 
identification of CCLs based on their mutational fingerprint, but care must be taken when identifying 
heterogeneous data. We recently developed the proof-of-concept Uniquorn 1 method which could 
reliably identify heterogeneous sequencing data from selected sequencing technologies. Here we 
present Uniquorn 2, a generic and robust in-silico identification method for CCLs with DNA/RNA-seq 
and panel-seq information. We benchmarked Uniquorn 2 by cross-identifying 1612 RNA and 3596 
panel-sized NGS profiles derived from 1516 CCLs, five repositories, four technologies and three major 
cancer panel-designs. Our method achieves an accuracy of 96% for RNA-seq and 95% for mixed DNA-
seq and RNA-seq identification. Even for a panel of only 94 cancer-related genes, accuracy remains at 
82% but decreases when using smaller panels. Uniquorn 2 is freely available as R-Bioconductor-package 
‘Uniquorn’.

Cancer Cell Lines (CCLs) are a critical tool for cancer researchers which facilitate the reproduction of biological 
experiments, help investigate cancer etiology and aid in the functional characterization and validation of driver 
mutations. Additionally, usage of CCLs avoids ethical and legal issues when compared to patient-based studies1–4. 
CCLs are, however, susceptible to misidentification and cross-contamination1,5–8. A well-known case of misiden-
tification that negatively affected a wide range of researchers was the confusion of the widely used MDA-MB-435 
mammary CCL with the M14 melanoma CCL9. No nomenclature system that could help avoid idiosyncratic and 
misleading CCL-names has been universally adopted so far, leading to highly bewildering naming ambiguities 
such as ‘TT’ (CCL derived from thyroidal tissue) and ‘T.T’ (CCL derived from esophageal tissue), which are dif-
ferent CCLs with almost identical names10. Another example that underlines that CCL names cannot be reliably 
utilized to infer their relationship are the NCI/ADR-RES derived from the OVCAR-8; two CCLs with a common 
origin but significantly different names, obscuring their close relationship1,8,11. In total, 15–20% of all CCLs are 
misidentified1,12, while 18–36% are cross-contaminated13,14. Accordingly, many journals currently require authors 
to ensure identity of the CCLs they employed in experiments upon publication. There is, therefore, an underlining 
and pressing need for identification methods able to detect these critical sources of erroneous data in CCLs.

Traditionally, such identification is carried out using specific assays such as Short-Tandem Repeat (STR) gen-
otyping15, SNP panel identification assay (SPIA)5, MinION16 or Multiplex Cell Authentication (MCA)17. These 
assays are costly to perform, time consuming and require physical availability of all samples18. An increasingly 
attractive alternative or complement to such experiments is the in-silico identification of CCLs based on features 
of their DNA or RNA sequence5,16,17. In this setting, only the sequence information of the to-be-identified CCL 
(termed query) and CCLs of a reference-collection (termed reference library) are used. This has several advan-
tages: sequence features of the CCLs in the reference library can be obtained once and distributed electronically 
(no physical access required). Additionally, sequence features of the query CCL are often by-products of the orig-
inal experimentation (no additional cost). The comparison of the features can be performed quickly and in-silico 
without additional experimental efforts. Figure 1 compares the in-silico with the in-vitro approach. However, in 
practice such an approach can be difficult, as sequencing scope, method and the processing technology used to 
obtain the features of the reference library are often different from those of the query CCL, leading to notable 
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differences in the resulting sequence features. In a previous work18 we presented Uniquorn 1, a robust algorithm 
for in-silico CCL identification. However, Uniquorn 1’s statistical model was specifically designed for comparing 
features derived from whole exome sequences. It cannot be applied if, for instance, the reference CCL were exome 
sequenced, but only the transcriptome or only a panel of genes of the query CCL is available.

In this paper, we present Uniquorn 2, a robust in-silico CCL-identification method that can cope with a much 
larger heterogeneity between the sequence profiles to be compared than the first version of Uniquorn. In par-
ticular, it can compare DNA-derived features with those derived from RNA sequencing, and its model is robust 
enough to compare sequences of largely different scopes, such as exome sequences with those derived from a gene 
panel (Table 1).

We benchmarked Uniquorn 2 by identifying all identity-relationships in a set of 1612 RNA-sequenced CCLs 
(5309 related) and in a mixed set of 3596 RNA and DNA-sequencing CCL-profiles (11512 related). Ninety-six% 
of the relationships of the later RNA-seq CCL-profiles were correctly identified and 95% of the relationships were 
found in the mixed scenario i.e. when DNA-seq samples were used to identify RNA-seq samples and vice versa. 
A panel-seq scenario was benchmarked by synthetically limiting the 3596 mixed-scenario samples to the set of 
genes contained in the Clearseq/Agilent, TruSight/Illumina and Hotspot v2/Thermo Fisher panel, respectively. 
Panel-sequencing showed sensitivities of 83% (151 genes, Clearseq), 82% (94 genes, TruSight) and 65% (49 genes, 
Hotspot v2). The algorithm is freely available as R package ‘Uniquorn’ and contains the NCI-60 CCLs by default. 
Scientists can identify their own custom CCL-samples as well as publicly available CCL-samples.

Results
Identification of sequenced CCLs. CCLs are essential tools for cancer research but are also highly sus-
ceptible to misidentification, which makes the accurate identification of a CCL used in an experiment crucial. 
We recently published Uniquorn 1, a method to identify CCLs using variant profiles derived from exome DNA-
sequencing or from hybrid-capture DNA-sequencing. Here we present Uniquorn 2 which can robustly identify 
RNA and panel-sequenced CCLs derived from heterogeneous sequencing technologies while retaining Uniquorn 

Figure 1. Comparison of the gold-standard in-silico identification methods with Uniquorn 2. The gold-
standard ‘short tandem repeat counting’ (STR) method (top) compares tandem counts at specific genomic loci. 
STR-counts are generally unavailable in NGS-data and therefore, a CCL whose NGS data is available has to 
be additionally STR-genotyped which requires the physical availability of the to-be-identified CCL sample to 
conduct a polymerase chain reaction (PCR). Even in-silico identification methods that can utilize NGS-derived 
Single-Nucleotide Polymorphisms (SNPs) are dependent on the genotyping of the loci that harbor the SNPs. 
SNP-calls of specific loci however, may not be available due to panel sequencing of the to-be-identified CCL 
or are incomparable due to utilization of divergent sequencing platforms and filtering of SNP during driver-
mutation identification. The Uniquorn 2 in-silico workflow (bottom) requires neither physical availability nor 
genotyping of specific loci but in contrast works with every NGS-technology that genotypes small variants. 
Uniquorn 2 does require sets of reference CCLs, called libraries, to match the variants of the to-be-identified 
CCL and the reference CCLs. After calculating the variant overlap, a statistical test determines whether a variant 
overlap is sufficiently unlikely to occur by chance in which case the unknown CCL is predicted to be identical to 
the reference CCL i.e. is identified.

Property Uniquorn 1 Uniquorn 2

Technologies covered DNA DNA RNA

# of samples used for benchmarking 1984 3896

# of variants used within benchmarks 0.97 million 151 million

Benchmarked comparisons Hybrid-capture, Exome-seq Panels, Hybrid-capture, Exome-seq, Full-transcriptome

SNP-filtering* Yes No (RNA-seq, panel-seq)

Table 1. Differences between and commonalities of Uniquorn 1 and Uniquorn 2. Uniquorn 2 significantly 
extends Uniquorn 1 with respect to covered samples sizes, NGS-technologies and data processing. Furthermore, 
Uniquorn 2 is benchmarked on a much wider and much more heterogeneous set of CCLs. *SNP-filtering refers 
to the post-sequencing of sequencing data regarding SNPs, such as filtering based on minor allele frequencies.
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1’s ability and performance to identify DNA-sequenced CCLs. Furthermore, Uniquorn 2 no longer relies on SNP-
filtering, which brings its own problems (such as the concrete set of SNPs to filter) when using pre-computed 
profiles.

We benchmarked Uniquorn 2 on NGS data from 1612 RNA, 1080 DNA-exome and 904 targeted 
hybrid-capture sequenced CCLs from five repositories, in the following called libraries, which utilized four 
different sequencing technologies to adequately reflect the heterogeneity of a real-world scenario (Table 1 and 
Fig. 2). Four identification scenarios were benchmarked of which three were novel and not covered by Uniquorn 
1: RNA-seq identification (Table 2), mixed RNA-seq and DNA-seq identification (Table 3), panel-seq identi-
fication (Table 4) and Uniquorn 1’s DNA-seq only scenario (Supplementary Material Table 1). It was bench-
marked whether a CCL was correctly identified when comparing it to all reference CCL-profiles from all five 
reference libraries, leading to ~13 million CCL benchmark comparisons overall. Since a true positive prediction 
was only possible for about 11.000 of the ~13 million comparisons, our evaluations put special emphasis on the 
positive-predictive value (PPV).

Cross-validation benchmark. The first finding was that Uniquorn 2 could effectively identify 
full-transcriptome sequenced CCL-profiles: with default parameters (Weight Threshold 0.5), Uniquorn 2’s sensi-
tivity to identify RNA-sequenced CCLs reached 95.7%, its PPV 85.5% (Table 2). The rationale for choosing 0.5 as 
default weight threshold is shown in Supplementary Material (SM) Figs 1 and 2.

The second finding was that Uniquorn 2 could effectively identify CCL profiles in a real-word scenario: 
Heterogeneously created RNA-seq and DNA-seq CCL-profiles had to be identified by equally heterogeneously 
created reference CCL-profiles what resulted in an average sensitivity of 95% and average PPV of 90% (Table 3). 

Figure 2. Heterogeneity of the benchmark data with respect to variant-counts. (A) Absolute amount of variants 
per benchmarked library. (B) Mean amount of variants per profile per benchmarked library. All repositories 
differed by at least one power of two with respect to the amount of variants they contain i.e. are heterogeneous. 
Whiskers depict the standard deviation of the mean variant-counts.

Weight Threshold 1.0 0.5 0.25 0.0

Possible TPs 5309

True positives 5096 5082 5071 4192

False negatives 213 227 237 1117

False positives 850 860 865 1411

Sensitivity % 96.0 95.7 95.5 79.0

Specificity % 99

F1% 90.6 90.3 90.2 76.8

PPV % 85.7 85.5 85.4 74.8

Table 2. RNA-seq benchmark, showing the performance of Uniquorn 2 to identify full-transcriptome 
sequenced CCL-profiles. 1612 of such profiles were identified within five reference libraries containing 3596 
DNA and RNA-seq sequenced CCLs. Columns 2 to 5 show key measures dependent on the mutational 
inclusion weight (see methods). Inclusion weights 1.0, 0.5 and 0.25 showed comparable performance with 
sensitivities above 95%. 0.5 is the default parameter setting of the Uniquorn 2 R-package.
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Both RNA-seq and mixed-seq benchmarks showed extremely high specificity values (99.9% and higher) which 
were caused by the very large number of true negative predictions.

The 3596 available reference CCL profiles were reduced to the genomic regions covered by three of the 
most widely utilized ClearSight, TurSight and Hotspot v2 panels to simulate panel-seq benchmark profiles. 
Identification of the resulting 3 * 3596 = 10788 panel-profiles revealed as third finding that panel-seq profiles 
could be successfully identified with an average sensitivity of 82% and PPV of 68% if the panel covered more than 
100 genes (Table 4). Panels covering less than 100 genes were significantly less suited for CCL-identification with 
an average sensitivity of 60% and a PPV of 55%. Specificity always remained higher than 99%. False-negative and 
false-positive identifications were found to be predominantly caused by CCLs-profiles that covered less than 100 
genes.

Subsequently, it was analyzed what factors caused Uniquorn 2 to incorrectly classify i.e. identify a CCL-profile 
and it was determined that technological heterogeneity does not significantly impact Uniquorn 2’s sensitivity and 
F1 score (Fig. 3). However, although sensitivity and F1 score remained robust with respect to the utilized tech-
nology, sensitivity showed a strong positive correlation (r of 0.7) with the amount of genes covered by a profile. 
The uncovered sensitivity to amount-of-covered-genes relationship is depicted in SM Fig. 3 and the benchmark 
results for each library are shown in SM Fig. 4. The PPVs showed a limited bias with respect to utilized sequencing 
technology and no log-linear relationship to the amount of covered genes.

Discussion
Uniquorn 2 is optimized for the identification of CCLs whose variant profiles were obtained by heterogeneous 
technologies and diverging computational processing pipelines. Thus, it complements established methods by 
addressing some of their key limitations: 1) The physical CCL sample is not required, as it is, for instance, in the 
case of STRs-based identification, 2) Uniquorn 2 is agnostic to sequencing technology and thus able to reuse data 
provided by the creators of CCL libraries. We benchmarked the performance of the algorithm in high-diversity 
scenarios, which we consider best mimic the real situation, in laboratories dealing with CCL, confirming its 
ability to cope with various sequencing and data-processing technologies (Table 1). This considerably extends the 
functionality of Uniquorn 1 to also handle RNA and panel-sequenced CCLs (Tables 2 and 4).

Panel-seq profiles were simulated by reducing the amounts of covered genes of the 3596 available profiles from 
about 22000 down to 151, 94 and 49 covered genes, respectively. Differences in the identification efficiency of the 

Threshold 1.0 0.5 0.25 0.0

Possible TP 11512

TP 10951 10945 10937 9843

FN 561 567 575 1326

FP 1128 1106 1139 4626

Sensitivity % 95.1 95.1 95.0 85.5

Specificity % 99

F1% 92.8 92.9 92.7 85.5

PPV % 90.7 90.8 90.6 85.4

Table 3. Real-world use-case benchmark. Uniquorn 2’s ability to identify CCL-profiles created and identified 
by RNA-seq, DNA-exome and DNA-hybrid-capture CCL-profiles is shown to determine the expected real-word 
use-case performance. 3596 CCLs that were sequenced and processed with various technologies and algorithms 
were identified (see Tables 1 and 2 for technologies). The sensitivity was comparable to the RNA-seq benchmark 
(Table 2) with the exception of inclusion weight 0.5 which resulted in a higher F1-score and PPV than weight 
1.0. A performance drop can be observed for weight threshold 0.0 where all variants, informative and non-
informative, were utilized.

Panel ClearSight TruSight Hotspot v2

Genes 151 94 49

Possible TP 11512

TP 9505 9423 7525

FN 2007 2089 3987

FP 4591 4424 6097

Sensitivity % 82.6 81.9 65.4

Specificity % 99

F1% 74.2 74.3 59.9

PPV % 67.4 68.1 55.2

Table 4. Benchmark results for simulated panel-sized CCL-profiles. Uniquorn 2 achieves sensitivities of ~83%, 
~82% and ~65% while constantly showing a specificity of higher than 99% at default parameters for panel-seq 
identification.
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benchmarked panels (Agilent ClearSight, Illumina TruSight, Thermo-Fisher Hotspot v2) was therefore caused by 
differing amounts of covered genes and not due to heterogeneous technology since the variants call within the 
covered genes were identical for each panel. Significant differences regarding sensitivity, F1-score and PPV were 
detected between the panels, indicating that not the sequencing technology (Fig. 3) but the number of covered 
genes is most influential with respect to how efficiently a CCL profile can be identified (SM Fig. 3). Remarkably, 
the identification efficiency of panel-seq profiles was merely 12% to 13% lower than the efficiency measured 
for full transcriptome sized CCL-profiles although the panels covered orders of magnitude less genes than the 
full-transcriptome profiles. An exception was the hotspot v2 panel which showed a significantly decreased sensi-
tivity of 65% which was 30% lower than the full-transcriptome profile identification but as well only covered 49 
genes.

By manual inspection of benchmark results (SM Table 1) we found that false-negative identification is asso-
ciated with CCLs that had diverged significantly from their origin due to long-term subclonation or exposure 
to drug treatment e.g. the CEM-2, Jurkat and CCRF-CEM CCLs. This finding is supported by reports of the 
same phenomenon for the same CCLs when STR-identification was applied15. False-negative predictions where 
furthermore frequently associated with CCLs whose relationship-status could not be fully resolved due to an 
unclear nomenclature: E.g. when it was unclear whether CCLs with a similar name were different or identi-
cal CCLs or in the case of false-positive, whether CCLs with different names were nevertheless identical but 
counted as false-positive by the gold-standard (SM Table 2). We summarized numerous labeling inconsistencies 
(SM Table 3). Thus, low variant-counts and an unclear relationship caused by the absence of a generally applied 
CCL-nomenclature system are still the dominant causes of incorrect predictions.

Uniquorn 2 complements established methods in particular when those cannot be applied e.g. due to absence 
of a physical sample. The Uniquorn 2 method supports quality-assurance procedures in high-CCL-throughput 
laboratories since it seamlessly integrates into analysis pipelines to serve as a quick test for in-house or procured 
third-party CCL-profiles. The Uniquorn 2 method is freely available as Bioconductor R-package ‘Uniquorn’ (con-
tains both Uniqorn 1 & 2) and can be easily implemented.

Users of Uniquorn 2 can utilize their own sets of CCL-profiles as reference. However, as the run time of 
Uniquorn 2 is very low, it is advisable to always include a wide range of reference profiles to also detect unexpected 
contamination. The CGP and CCLE repositories contain 1695 CCL-profiles while showing a low false-negative 
rate as references and are freely available. The ‘Uniquorn’ R-package is ported with the limited NCI-60 reference 
panel but a tutorial that enables researcher to easily utilize the 1695 CGP and CCLE CCLs is documented in the 
‘Uniquorn’ Bioconductor vignette, see SM Table 1. The Klijn et al. and GDC CCL-repositories show suitable iden-
tification characteristics and can be obtained by application at the European Genome Archive.

Detailed analyses of factors influencing the identification of CCL-profiles such as SNP filtering are indi-
cated to further improve the Uniquorn 2 method. Moreover, a further extension to non-cancer CCLs, single or 
methyl-sequenced CCLs are viable subjects for future work to further expand the range of research fields which 
can utilize the Uniquorn 2 method.

Figure 3. Relationship between data heterogeneity and identification performance. CCL profile sequenced and 
processed by vastly different technologies and algorithms were identified and determined whether Uniquorn 2’s 
identification performance remained robust in spite of the data heterogeneity. Bars depict average performance, 
whiskers standard deviation. Profile sizes of the query CCL shrink dramatically from left (~2**10 variants) to 
right (~50 variants). Sensitivity and F1 score are highest when full transcriptome profiles are used and lowest 
for small panel-seq profiles but remain robust when faced with different technologies. In general, PPV decreases 
with the profile size with the exception of exome-seq and hybrid-capture technologies, which show a higher 
sensitivity than the more sizable full-transcriptome technologies.
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Material and Methods
General concept. We define the profile of a given sample c as the set of its variants var(c) - small INDELs and 
SNVs - that were obtained from genotyping c by some form of (next-generation) sequencing, where a variant is 
characterized by its start position, end position, and chromosomal location. Two variants are considered identical 
when all these values are identical. Given a sample q (query) whose identity is to be confirmed and a reference 
CCL-library L, Uniquorn 2 tests whether q was derived from any of the CCLs from L by comparing the var(c) 
profile of q to the profiles of all CCLs from L. For simplicity, we use from now on q to denote the profile of the 
query sample and l to denote the profile of a CCL from L. Note that Uniquorn 2 can also be used for searching q in 
multiple reference libraries. We assume that a single library consists of homogeneous CCL-profiles with respect 
to their laboratory of origin, technology, and bioinformatics processing, however we also assume that the tech-
nology used to obtain q is not the same as in any of the libraries; searching across technologies is one of the core 
abilities of our algorithm. We assume that all libraries are independent of one another.

Uniquorn 2 classifies q as identical to one or multiple l ∈ L by rejecting the null hypothesis h0 which states that 
the profiles of q and l overlap due to chance. An overview of the workflow is shown in Fig. 4. In the following, we 
describe the algorithm in detail.

Detailed workflow. 

 (1) Characteristic variants
For comparing profiles, Uniquorn 2 considers only the variants that are characteristic for l in L. We find 
these variants by computing a weight w(v) for every variant v found in any of the CCLs of L as follows:

= − −w v( ) : 2 f v( ) 1

where f(v) is the frequency of v in L. We consider v characteristic if w(v) is smaller than a user-selected 
threshold (default 0.5; the determination of default parameters: SM Figs 1 and 2).

 (2) Confidence score calculation
Uniquorn 2 compares the profile of q to all profiles in L. For a given l, let ml be the size of the profile overlap 
of q and l, and let mL be the number of variants contained in q and any CCL from L. We first compute the 
probability Pl = P(ml | q, l, L) to observe an overlap of size ml between the profiles of q and l by chance. 
Computing Pl requires the probability pl of finding a single match between q and specific l, which we esti-
mate as the relative size of the profile of l in L:

=p
l
L

:l

This formula mitigates the fact that profiles with a high variant-count are more likely to be matched by 
chance than CCL-profiles with a lower variant-count. Using pl, we calculate Pl as 1 minus the binomial 
cumulative distribution function based on the formula:

∑= − − −( )P
m
i

p p: 1 ( ) (1 )L
L

l
i

l
m iL

Subtraction from 1 was chosen following Mi et al.19 to obtain p-value suitable probabilities. We finally 
define the confidence CSq,l of q being derived from the same CCL as:

= − ⋅ PCS : 1 log ( )e Lq,l

 (3) Quantification of spuriousness and filtering of false positives
A particular problem when comparing profiles obtained from different genomic areas, such as a whole 
transcriptome derived profile with a panel-derived profile, is their strongly diverging count of variants 
(Fig. 2). For instance, a CCL library might have been characterized by RNA-seq, leading to significant 
amounts of ~29–212 many variant-calls per CCL-profile, whereas the query might have been subjected 
to panel-seq, which yields much smaller profiles (for a panel of 100 genes, typically not more than few 

Figure 4. Uniquorn 2 workflow. Uniquorn 2 selects small variants strongly associated with one or few reference 
CCL-profiles and matches these to the variants of the query profile. When the resulting overlap of characteristic 
variants between a reference and query passes all significance thresholds, the query is identified as the reference 
CCL. The gray-shaded area indicates the distinction of the Uniquorn 1 identification method which did not 
contain the second relative threshold.
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hundred variants are called). In such cases, there is an increased chance of observing spurious matches; 
however, these often cluster, i.e., we find the same (false) match in multiple CCLs of the library being 
studied. Furthermore, false positive predictions show an amount of matching variants that is comparable 
to the average amount of matching variants in L. To filter such cases, we first quantify the size-induced spu-
riousness SPL of the matches between q and all l. SPL is computed as the integral of the beta function based 
on the ratio between the average amount mavg and the maximum amount mmax of matching variants in L. 
We chose the integral of the beta-function due to the integral’s skewness, two-parameter positive integer 
domain for mavg, mmax and real-valued co-domain between and including 0 and 1.

Γ Γ

Γ
=

⋅

+( )
m m

m
SP :

( ) ( )

mL
max avg

max avg

In a second step, we filter all overlaps with less matches than threshold TL to exclusively retain overlaps that 
show a higher number of matches than expected by chance:

=





+ ⋅

−






T
m

:
m SP

1 SPL
L

L

avg max

 (4) Rejecting the null hypothesis

Eventually, three conditions have to be fulfilled for rejection of h0:

A) CSq,l has to be equal or greater than threshold t (default value is t = 3)
B) CQq,l must rank among the top-k positions of all l in L (default value k = 2)
C) ml must be significantly greater than the average overlap of all l in L, TL.

Evaluation. We benchmarked Uniquorn 2 using 3596 CCL-profiles derived from 1516 distinct CCL-samples 
from five libraries, each characterized by a different technology (Table 5). We utilized the 3596 profiles both as 
reference and as queries, resulting in 3596 identification tasks and roughly 13 Million individual comparisons. 
Each query profile possessed between one and nine matching reference profiles (median = 3) because many CCLs 
are contained in more than one library. In addition to obtaining key performance indicators (Tables 2–4), we 
also assessed whether the performance was biased related to certain properties of the profiles such as sequencing 
technology (Fig. 3 and SM Fig. 4).

Sensitivity was defined as the fraction of all predictions which correctly predicted that two CCLs profiles were 
similar and specificity as the fraction of all predictions which correctly stated that two CCL profiles were not 
similar.

Gold-standard creation. We created a gold-standard based on CCL names and literature research. Firstly, 
names of CCLs were either parsed from the VCF-files directly (Cellminer, GDC, Klijn et al.) or extracted from 
the meta-file that aggregated the variant-calls of all CCL-profiles into a single document (CCLE, CGP). Secondly, 
a pre-processing step removed all non-alpha-decimal characters and spaces from the names and capitalized the 
processed names. CCLs that differed only by a prefix or by a suffix, such as MDA-MB-435 and MDA-MB-435S, 
were considered candidates for being identical and validated using literature. Also, collisions of different CCLs 
that had the same name after the pre-processing e.g. TT and T.T were resolved by literature research. This pro-
cess resulted in 11508 identity-relationships of which 5309 are based on RNA-seq profiles. SM file 2 contains 
the gold-standard, SM File 3 contains the identity-definitions based on reports and a link to the reports where 
needed.

Panel data creation. The CCL profiles of all libraries we considered were obtained by either DNA or RNA 
sequencing. However, labs often only perform panel sequencing with their samples to save on cost and labor20. To 
test the capability of Uniquorn 2 to identify a panel-sequenced sample within an RNA or DNA sequenced library, 
we created synthetic panel-seq profiles by removing all variants from a profile that fall outside the region of three 

Technology Source GenotypedGenes Variant calling software
SNP 
Filtering*

RNA-seq
Klijn et al.

Expressed alleles only
GATK RNA

None
GDC FreeBayes

Hybrid-capture CCLE 1651 MuTect24 >0.01

Pindel25 Caveman26

Exome-seq
CGP 20965 >0.0

CellMiner >20k GATK DNA27 None

Table 5. Heterogeneity of CCL-profiles utilized for the benchmarks. Data differs with respect to sequencing 
technology, variant calling algorithms, SNP-filtering, and number of covered genes. Variants within GDC and 
Klijn et al. repositories were manually called by first utilizing the Trimmomatic28 and the STAR29 aligner and a 
subsequent diverging variant calling step: the GATK-RNA variant caller30 was utilized for data from Klijn et al. 
and the FreeBayes31 variant-caller for GDC data to increase the heterogeneity of the benchmarked data. *SNPs 
were pre-filtered by the creators of the data based the SNPs’ minor allele frequency.
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predefined panels, i.e., gene set. Firstly, we formatted all profiles into the VCF-format and secondly bedtools21 
intersected all VCF-files with BED-files containing the genomic coordinates of the panels. The TruSight’s BED-file 
(trusight_cancer_manifest_a.bed) was obtained from www.illumina.com. The websites of the Hotspot v2 (www.
thermofisher.com) and the ClearSeq panel (www.agilent.com) did not provide the panels’ genomic-coordinates 
in BED but comma-separated format and thus we manually converted the comma-separated files into the 
BED-format using BioMart22.

Data acquisition. We procured the data either in the VCF-format or as BAM-files (Table 6). BAM-files were 
deconvolved into FASTQ-files and conscientiously processed with different variant calling algorithms to obtain 
VCF-files (Table 2). The CCL-profiles from the CGP and CCLE repositories were extracted from the meta-files 
and transformed into VCF-files. R version 3.5.1 (2018-07-02) was utilized on a Linux Debian Mint operating 
system and benchmarks performed with the Bioconductor ‘Uniquorn’ package 2.0.023.

Data Availability
Exclusively publicly available data has been utilized for benchmark purposes, see methods section for further 
information.
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