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Miniscule differences between sex 
chromosomes in the giant genome 
of a salamander
Melissa C. Keinath  1,2, Nataliya Timoshevskaya  1, Vladimir A. Timoshevskiy1, 
S. Randal Voss3 & Jeramiah J. Smith  1

In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet 
its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that 
possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, 
species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events 
in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome 
sequencing and in situ hybridization were used to identify the homomorphic sex chromosome 
that carries an A. mexicanum sex-determining factor and sequences that are present only on the W 
chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) 
sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a 
gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) 
genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop 
highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired 
sex determining locus (or sexually antagonistic gene) in A. mexicanum.

In many species, sex is determined by the inheritance of highly differentiated (heteromorphic) sex chromosomes, 
which have evolved independently many times throughout the tree of life1–3. Often these chromosomes differ 
dramatically in morphology and gene content4–6. In mammals, males have a large, gene rich X-chromosome and 
a degraded, gene poor Y-chromosome, while females have two X chromosomes. In birds and many other eukary-
otes, females are the heterogametic sex with a large Z and smaller W chromosome, while males are homozygous, 
carrying two Z chromosomes. Differentiated sex chromosomes are thought to arise through a relatively stereotyp-
ical process that begins when a sex-determining gene arises on a pair of homologous autosomes5,6. The acquisi-
tion of sexually antagonistic alleles, alleles that benefit one sex and are detrimental to the other, favors the fixation 
of mutational events that suppress recombination in the vicinity of the sex-determining locus7,8. Recombination 
suppression can lead to the accumulation of additional sexually antagonistic mutations and repetitive elements, 
and over time this results in the loss of nonessential parts of the Y or W chromosome, resulting in the formation 
of heteromorphic sex chromosomes9.

Unlike the majority of mammals and birds with stable sex-determining systems and heteromorphic sex chro-
mosomes, amphibians have undergone numerous evolutionary transitions between XY and ZW-type mecha-
nisms and may possess morphologically indistinguishable (homomorphic) sex chromosomes, like those of the 
axolotl10–13. Homomorphic sex chromosomes are not altogether rare among animals, with examples in fish14, 
birds15, reptiles16 and amphibians17. Among most amphibians that have been investigated, homomorphy is preva-
lent17–19. It has been suggested that a majority of salamanders have homomorphic sex chromosomes18,20, however, 
evidence for genetic sex determination in most species is largely based on the observation of 1:1 sex ratios from 
clutches without thorough demonstration of Mendelian inheritance.

Early developmental/genetic experiments revealed a ZW type sex-determining mechanism for A. mexica-
num21–23. The first experiment to test for female heterogamety involved sex reversal through implantation of a 
testis preprimordium from a donor embryo to a host female embryo. The prospective ovary developed instead 
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into a functional testis. This sex-reversed male was then crossed with a normal female24. It was expected that if 
the female were homozygous for sex (XX), the offspring would all be female. If the female were heterozygous for 
sex (ZW), however, the offspring would have an approximate female to male ratio of 3:1. Two matings with the 
sex-reversed animals produced a combined 26.1% males, consistent with the hypothesis that the male was indeed 
a sex-reversed female with ZW chromosomes21,24. Subsequent studies showed normal sex ratios from matings 
with the F1 males and most of the F1 females, but several of the F1 females produced spawns of all females, sug-
gesting they carried the unusual WW genotype24.

Following these foundational studies, early genetic mapping studies used cold shock to inhibit meiosis II and 
assessed triploid phenotypes to estimate the frequencies of equatorial separation and map distances between 
recessive mutations and their linked centromeres25. Based on these analyses, the sex determining locus was pre-
dicted to occur near the end of an undefined chromosome25 and later estimated to be 59.1 cM distal to the cen-
tromere (essentially, freely recombining)23.

Karyotypic analyses later indicated that the smallest chromosomes were heteromorphic in Ambystoma spe-
cies, suggesting that the smallest pair of chromosomes carried the Mendelian sex determining factor in A. mexi-
canum26 and in the A. jeffersonianum species complex27. However, more recent linkage mapping studies indicated 
that sex was determined by a locus on one of the larger linkage groups26,28, and chromosome sequencing studies 
have demonstrated that the smallest chromosomes do not carry the sex determining region29,30. Notably, exten-
sive cytogenetic studies performed by Callan31, including the use of cold treatments to add constrictions to chro-
mosomes and examination of lampbrush chromosomes from developing oocytes, revealed no features that could 
be associated with differentiated sex chromosomes. These analyses not only indicated that the sex chromosomes 
were apparently identical to one another, but also revealed that mitotic chromosomes 9, 10 and 11 were essentially 
indistinguishable from one another31.

More recently, meiotic mapping of polymorphisms within controlled crosses localized the sex-determining 
region to the tip of Ambystoma LG9 (previously designated LG5) distal to the marker E24C329. These crosses 
also revealed no difference in recombination frequencies between the sexes. However, these studies were some-
what limited by the fact that they did not sample large numbers of markers in close proximity to the sex locus 
or W-specific sequences29. Taken together, analyses of the Ambystoma sex determination suggest that the sex 
chromosomes are largely undifferentiated and that, presumably, the sex chromosomes arose recently within the 
tiger salamander species complex.

To identify sex-linked (W-specific) regions in these relatively undifferentiated sex chromosomes, we generated 
sequence reads for 48 individuals of known sex that were derived from a backcross (A. mexicanum/A. tigrinum X 
A. mexicanum). These reads were then aligned to an existing reference genome from a female axolotl30,32 (www.
ambystoma.org). Analyses of read depth of coverage identified 152 putative W-linked sequences, including two 
genes, an ATRX paralog and an ortholog of MAP2K3. The W-linked ATRX paralog, ATRW, is estimated to have 
duplicated within the last 20 million years, providing an estimate of the possible origin of the sex-determining 
locus in the tiger salamander species complex. In addition, we anticipate that these sex-linked markers will be 
useful for identifying sex in juvenile axolotls within lab-reared populations, where sex is an important covariate 
for experimental studies, including studies of metamorphosis and regeneration28,33.

Results
Identification of the sex-bearing chromosomes by FISH. Previous studies have demonstrated that 
sex is linked to the marker E24C3, at a distance of ~5.9 cM distal to the terminal marker on LG929. Consistent 
with linkage analyses, E24C3 was detected near the tip of an average-sized chromosome (Fig. 1). A second BAC 
corresponding to a marker from the opposite end of LG9 (E12A6) localized to the opposite tip of the same chro-
mosome, indicating that this chromosome corresponds precisely to LG9 (Fig. 1). Notably, the BAC carrying 

Figure 1. FISH of sex-linked BACs. FISH localizes two markers (E24C3 and E12A6) associated with the sex 
locus, ambysex, on a DAPI stained metaphase spread of chromosomes from an axolotl embryo of unknown sex. 
E24C3 is labeled with cy3 (red) and E12A6 is labeled with fluorescein (green). White asterisks show labeling of 
E24C3, and white arrows point to the labeling of E12A6 on the opposite end of the same chromosomes.

http://www.ambystoma.org
http://www.ambystoma.org
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E12A6 also cross-hybridized with the centromere of all chromosomes, a feature that could potentially be useful in 
estimating distances of genes to their respective centromeres.

Laser capture, sequencing and assembly of the Z chromosome. In an attempt to increase the num-
ber of markers that could be associated with the sex chromosome, we performed laser-capture sequencing on a 
chromosome corresponding to LG9. This library was generated from a single dyad that was collected in a larger 
series of studies on laser capture microscopy of axolotl chromosomes34. The sex chromosome library contained 
a total of ~143 M reads between 40 and 100 bp after trimming and contained 995 reads that mapped to 23 dis-
tinct markers (transcripts) that had been previously placed on LG9 (Fig. 2). In total, this initial sequencing run 
accounted for 40% of the markers that are known to exist on the linkage group, which was considered strong 
evidence that this library sampled the sex chromosome. Given this support, an additional lane of sequencing was 
performed, yielding ~936 M additional reads (for a total of 1,078,893,614 reads). After trimming, ~542 M reads 
remained. Alignment to human and bacterial genomes revealed that 1.7% and 0.1% of trimmed reads aligned 
concordantly to the human genome and bacterial genomes, respectively. These were considered contaminants 
and were removed from subsequent analyses. Of the remaining reads, 68,844 aligned to 40 LG9 contigs repre-
senting 70% of the known markers on LG9 (Fig. 2). An error-corrected assembly of these data yielded a total 
of 1,232,131 scaffolds totaling 242.4 Mb with a scaffold N50 length of 295 bp, and contig N50 length of 126 bp. 
(Table 1: results from other chromosomes are shown for comparison purposes). We also used this library to iden-
tify a set of scaffolds from a recently published assembly of a male axolotl genome that could be assigned to the 
Z chromosome on the basis of sequence read depth of coverage. This analysis yielded 2531 scaffolds spanning a 
total of 1.02 Gb (Supplementary Table 1).

Alignments between the sex chromosome assembly and Ambystoma reference transcripts (www.ambystoma.
org) were used to identify genes that are encoded on the sex chromosome. These genes were aligned to the 
chicken genome assembly to confirm that homologs from the axolotl sex chromosome were heavily enriched on 
chicken chromosomes 7, 19 and 24, and similar enrichment was observed among scaffolds assigned to the Z from 
the male assembly, consistent with previous findings (Fig. 3A, Supplementary Table 1)35. Alignments to the newt 
(Notophthalmus viridescens) linkage map support previous analyses demonstrating that axolotl LG9 is homolo-
gous to newt LG736, revealing strong conservation of the chromosome’s gene content over the last 150 million 

Figure 2. Individual sex chromosome dyad alignment results on LG9. Read mapping was used to assess the 
specificity of the laser capture, amplified library of the sex chromosome dyad. (A) A partial metaphase spread 
of axolotl chromosomes stained with Giemsa on a membrane slide. The sex chromosome is circled in green. 
(B) The distribution of markers sampled from the sex chromosome (LG9) via targeted sequencing of individual 
chromosomes. LG9 is based on a previously published linkage map for the axolotl35. Individual gene markers 
are designated by labels to the right of their corresponding map position and their predicted position (in 
centiMorgans) is provided by numerical labels to the left. Dots represent markers with mapped reads from a 
single library. Red denotes the first sequencing attempt using the DNA-seq kit with 48 total barcoded samples 
on a single lane of an Illumina HiSeq flowcell. Blue denotes re-sequencing of the same chromosome library on a 
single lane.

http://www.ambystoma.org
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years (Fig. 3B). While a ZW-type mechanism for sex determination has been inferred for the newt37, the exact 
chromosome that determines sex is unknown and no candidate genes currently exist.

In silico identification of female-specific regions. To identify sex-specific regions of the genome, we 
aligned low coverage sequence data from 26 males and 22 females to both the LG9 assembly and the first public 
draft assembly of the axolotl genome30,32 (www.ambystoma.org). Males and females were drawn from a back-
cross that was generated by crossing a male A. mexicanum to a female A. tigrinum X A. mexicanum hybrid that 
had been previously generated by crossing a male A. mexicanum to a female A. tigrinum29. Thus, all backcross 
progeny possessed a W chromosome inherited from A. tigrinum. The draft assembly was generated using a mod-
ified version of SparseAssembler38 from 600 Gb of HiSeq paired end reads and 640 Gb of HiSeq mate pair reads. 
Sequencing data were produced using DNA from a female axolotl, which should contain genomic regions from 
both Z and W chromosomes. Notably, a recently published draft genome was generated from a male and is not 
expected to represent W-specific regions39. Males and females used for re-sequencing efforts were drawn from 
a previously published meiotic mapping panel, which was used in the initial mapping of the sex locus29. Each 
individual was sequenced to ~1X coverage with Illumina HiSeq short paired-end reads (125 bp) resulting in ~7.4 
billion total male reads and 6.4 billion total female reads. The ratio of female to male read depth of coverage was 
calculated across ~10.5M intervals covering ~19 Gb of the draft assembly. Genome-wide read coverage ratios 
generally fell within a tight distribution centered on equal coverage, after accounting for initial differences in aver-
age read depth of coverage (Fig. 4). Intervals were considered to be candidate sex-specific regions if enrichment 
scores [log2 (female coverage/adjusted male coverage)] exceeded two. In total, these analyses identified only 201 
candidate female-specific intervals that were contained within 109 genomic scaffolds, with 20 genomic scaffolds 
having 2 or more intervals (Supplementary Table 2). The combined size of these intervals is approximately 300Kb 
or ~0.0094% of the genome. 47 intervals were represented by zero male reads, and the average male coverage of 
male reads for other intervals ranged from 0.002 to 8.63.

PCR validation of candidate regions in A. mexicanum. PCR primers were designed for all candidate 
scaffolds and subjected to initial PCR validation using a panel of six females and six males from different crosses, 
corresponding to an expected false-positive rate of 2E-4 (Supplementary Table 3). In total, primers from 42 of 
the 109 scaffolds yielded specific amplicons in all females and no amplicons from males and were considered 
sex-specific. The combined size of these scaffolds is approximately 174Kb or ~0.0054% of the genome. Aside from 
the PCR validated female-specific scaffolds, primers from one scaffold were present in all females and one male, 
two were present in four females and no males, and four were present in a subset of the animals with no specific 
trend toward one sex or the other. Presumably these represent structural (insertion/deletion) variants that are seg-
regating within the lab population of A. mexicanum, perhaps representing tiger salamander (A. tigrinum) DNA 
remnants that were introgressed in 196240. Primers for another 46 scaffolds yielded amplification in both sexes 
with 14 showing brighter bands in females and two showing varying brightness across all individuals. Primers 
for seven other scaffolds yielded no amplification in either sex. To further investigate our PCR validation results, 
we retrospectively aligned predicted W-specific regions to the recently published A. mexicanum (male) genome. 
These revealed that several predicted W-specific contigs correspond to copies of repetitive elements with highly 
similar sequences elsewhere in the genome, which appears to explain a majority of cases wherein primers yield 
amplicons in both sexes or are polymorphic among males and females.

Identifying W-specific genes. To search for evidence of sex-specific genes, all 42 validated sex-specific 
scaffolds were aligned (blastx) to the NCBI nonredundant protein database41. In total, these searches yielded 
alignments to 17 protein-coding genes (Table 2), several of which involved weak alignments to uncharacterized 
proteins (N = 4) or transposable elements (N = 5). However, two scaffolds yielded strong alignments to human 
protein coding genes. Specifically, Scaffold SuperContig_990642 aligned to transcriptional regulator ATRX 
(ATRX: 65% amino acid identity) and scaffold SuperContig_1084421 aligned to mitogen-activated protein kinase 
kinase kinase 2-like (MAP3K2: 97% amino acid identity). Notably, a conserved syntenic ortholog of MAP3K2 
would be expected to occur on LG9 and thus it seems likely that MAP3K2 resided on the ancestral LG9 sex 

Assembly Contig Scaffold

Length 
(Mb)

Number of 
Scaffolds

Number of 
Singletons

N50 Length 
Improvement

Proportion 
Scaffolded

N50 Length 
Improvement

Number

>N50

LG9 (R) 189.7 1,054,224 760,174 118 0.352 256 285,628

LG9 (EC) 242.4 1,232,131 866,817 126 (6.8%) 0.429 295(15.2%) 335,062

LG15/17 (R) 302.5 604,617 243,354 231 0.598 705 136,682

LG15/17 (EC) 210.9 353,381 126,169 295 (28%) 0.643 830 (18%) 82,835

LG14 (R) 180.4 367,575 145,951 232 0.603 686 83,979

LG14 (EC) 143.0 258,214 93,931 290 (25%) 0.636 765 (12%) 62,022

Table 1. Summary statistics for LG9, AM13 and AM14 chromosome assemblies. Summary statistics for de 
novo assembly of sequence data from the sex chromosome, which corresponds to linkage group 9 (LG9) as 
well as AM13 and AM14 for comparison as previously published30. Chromosomes 13 and 14 correspond to A. 
mexicanum linkage groups 15/17 (LG15/17) and linkage group 14 (LG14), respectively. Statistics are presented 
for assemblies of raw sequence data (R) and assemblies post error correction (EC).
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www.nature.com/scientificreports/

5SCIENtIfIC RepoRts |         (2018) 8:17882  | DOI:10.1038/s41598-018-36209-2

chromosome prior to the origin of the A. mexicanum sex-determining locus. However, a syntenic ortholog of 
ATRX would be expected to occur within a conserved synteny on a different chromosome (LG2, LG8/12), cor-
responding to a large region of conservation with mammalian X chromosomes and chicken chromosome 442–44.

The identification of a sex-linked ATRX homolog is notable as ATRX is known to play contribute to sex differ-
entiation in mammals and other vertebrates45–48. Alignments between scaffold SuperContig_990642 and the auto-
somal ATRX homolog revealed that two distinct ATRX homologs exist in axolotl (Fig. 5). Alignments between 
ATRX and its sex-specific duplicate show polymorphisms in the ATRX gene that are not present in sex-linked 
ATRX, characteristic of a hemizygously-inherited duplication (Supplementary Fig. 1). Henceforth, we refer to 
the conserved syntenic homolog on LG2 as ATRX and the W-specific homolog as ATRW. Notably, presence vs. 
absence of ATRW is highly predictive of gonadal sex. Follow-up PCRs using sex-specific primers for ATRW have 
been used to sex more than 50 individuals, with no errors, as verified by dissection and examination of differen-
tiated gonads. A nucleotide alignment between the axolotl ATRX and ATRW genes shows that the genes share 
90% identity across 1089 aligned nucleotides, and as such it appears that the two genes diverged relatively recently 
by transposition of a duplicate gene copy to the W chromosome. To further test this idea and better define the 
timing of this duplication, several trees were generated using ATRX homologs from multiple vertebrate taxa 

Figure 3. Conserved synteny for A. mexicanum sex chromosome. (A) Conserved synteny between assembled 
A. mexicanum Z chromosome and the chicken genome. Tests for enrichment of Z chromosome homologs with 
99% identity from read mapping-based (blue) and assembly-based (red) methods across all assembled chicken 
chromosomes. Enrichment scores are calculated by dividing the observed number of homologs by the total 
number of genes annotated to the individual chicken chromosomes86. (B) Conserved synteny studies show 
syntenic regions shared between newt (Notophthalmus viridescens) linkage group 7 (top), chicken chromosomes 
7,19, and 24 (middle), and axolotl LG9 (bottom). Each line corresponds to an alignment between a pair of 
presumptive chicken and salamander (newt or axolotl) orthologs, and the asterisk denotes the sex-specific 
region. Alignments involving orthologs on chicken chromosome 7 are colored green, chromosome 19 are 
colored blue, and chromosome 24 are red. More alignments were found between newt and chicken, as the 
linkage map of the newt is denser than that of the axolotl36.
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(Fig. 6, Supplementary Fig. 2). Based on these trees, we infer that a duplication event gave rise to ATRW within 
Ambystoma, after divergence from its common ancestor with newt (the two lineages shared a common ancestor 
~151 MYA)49. Considering the degree of sequence divergence and the relative length of shared vs. independent 
branches we estimate that the ATRW homolog may have arisen sometime in the last 20 MY (Fig. 6B), a timing 
that roughly coincides with a major adaptive radiation in the tiger salamander lineage50,51. Species within this 
complex may therefore represent biological replicates for understanding early sex chromosome evolution after 
the acquisition of ATRW.

To shed further light on the evolution of ATRX and ATRW within the Ambystoma lineage, we examined pat-
terns of derived substitutions in ATRX and ATRW. Across the 251 bp alignment, 9 nucleotide substitutions can 
be attributed to ATRW since the divergence of axolotl, and these are associated with changes in 2 amino acids. By 
comparison, ATRX on LG2 shows only 1 nucleotide substitution since the duplication event (Fig. 6). This suggests 
that ATRW may be evolving at a faster rate than ATRX, in which case 20 MY may represent a substantial overes-
timate for the origin of the duplication that gave rise to ATRW.

Discussion
The results from this study show that the homomorphic sex chromosomes of the axolotl contain a small 
non-recombining region that is specific to the female W chromosome. The female-specific sequence is estimated 
to be approximately 300Kb, or roughly 1/100,000th of the enormous axolotl genome. It is not surprising that the 
differences in recombination were not initially evident due to the physical size of the genome and marker density 
in the Ambystoma meiotic map29. With respect to the current fragmented female genome assembly, it is still not 
possible to predict gene orders within this region or locate possible inversions; however, the data are sufficient to 

Figure 4. Distribution of read depth from combined female and males sequencing data. (A) Sequence reads 
from 48 individuals were mapped separately to the female whole genome assembly, then alignment files were 
merged across all individuals of a given sex (22 females and 26 males). Values represent the number of base 
pairs of the reference assembly that were sampled at a given depth of coverage. These distributions reveal that 
the modal coverage of reads from females was lower than the coverage of males, ~25X and ~29X, respectively, 
consistent with random sampling of sequences across individuals. There is no overtly visible evidence that 
female sequences map to a larger proportion of the approximate single copy sequence within the female 
genome. (B) The distribution of coverage ratios is tightly centered on equal coverage and only a small tail 
corresponds to intervals with higher sequence coverage in female relative to male.
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identify robust markers for sex and genes that exist in the non-recombining region. Of the few protein-coding 
genes found within the validated sex-specific scaffolds, two appear to represent non-repetitive coding sequences, 
including one that represents a relatively recent duplication of the transcriptional regulator ATRX.

The ATRX gene is located in the non-recombining region of the X chromosome in mammals. The gene 
encodes a chromatin remodeling protein that belongs to the SWI/SNF family. It is linked to the rare recessive 
disorder, alpha-thalassemia X-linked intellectual disability, which is characterized by severe intellectual disabil-
ity, developmental delays, craniofacial abnormalities, and genital anomalies in humans. In some cases, a muta-
tion in the ATRX gene can lead to female sex reversal due to early testicular failure52,53. Gene expression studies 

Figure 5. Alignment of translated nucleotides from ATRX in multiple vertebrate taxa. The alignment from 
MEGA784 of 84 amino acids of ATRX with conservation in 12 vertebrates, including ATRX and ATRW from 
axolotl show the relative number of changes in codons specific to all amphibians, salamanders (the newt, 
Notophthalmus viridescens), axolotl and axolotl ATRW. A total of two out of nine nucleotide substitution events 
specific to the ATRW have altered the predicted codon.

Sex-specific Scaffold
Scaffold 
length (bp) NCBI Best Hit

Query 
Cover E value % identity Accession#

SuperContig1084421 991
PREDICTED: mitogen-activated protein 
kinase kinase kinase 2-like [Phaethon 
lepturus]

18% 6.00E-33 98% XP_010292439.1

SuperContig_990642 1488 PREDICTED: transcriptional regulator 
ATRX isoform X2 [Alligator sinensis] 17% 6.00E-13 64% XP_006032758.2

SuperContig_1201750 725 PREDICTED: uncharacterized protein 
LOC101734340 [Xenopus tropicalis] 14% 0.13 50% XP_017945915.1

SuperContig_1270996 631 hypothetical protein [Rhodopirellula 
baltica] 12% 9.7 50% WP_011119337.1

SuperContig_1240926 668 PREDICTED: uncharacterized protein 
LOC106589496 [Salmo salar] 39% 2.00E-16 47% XP_014035031.1

SuperContig_481414 11464
PREDICTED: dynein heavy chain 11, 
axonemal [Xenopus tropicalis] (reverse 
transcriptase)

5% 1.00E-32 43% XP_017952780.1

SuperContig_1139773 843 aminotransferase class I and II 
[Streptomyces sp. CB00455] 17% 6.2 42% WP_073917349.1

SuperContig_1398497 510 hypothetical protein [Massilia sp. BSC265] 36% 4.1 40% WP_051933638.1

SuperContig_1136461 850 flagellar autotomy protein [Micromonas 
pusilla CCMP1545] (reverse transcriptase) 12% 0.55 39% XP_003062983.1

SuperContig_1105317 928
hypothetical protein A2Z37_15870 
[Chloroflexi bacterium RBG_19FT_
COMBO_62_14]

12% 6.3 37% OGO67717.1

SuperContig_960617 1857 PREDICTED: uncharacterized protein 
LOC106605384 [Salmo salar] 20% 1.8 36% XP_014056412.1

SuperContig_446459 12684 ORF2 protein [Salmo salar] (reverse 
transcriptase) 8% 1.00E-36 35% AKP40998.1

SuperContig556195 9021 PREDICTED: uncharacterized protein 
LOC108708171 [Xenopus laevis] 19% 2.00E-70 34% XP_018102087.1

SuperContig_981147 1581
PREDICTED: LOW QUALITY PROTEIN: 
dynein heavy chain domain-containing 
protein 1 [Orcinus orca]

13% 8.4 32% XP_004279330.1

SuperContig_1025868 1238 DNA primase [Pseudaminobacter 
manganicus] 23% 9.2 32% WP_080921700.1

SuperContig_1035909 1185 hypothetical protein T12_433 [Trichinella 
patagoniensis] 16% 5.5 31% KRY11477.1

SuperContig_1196200 734 DUF948 domain-containing protein 
[Lactobacillus buchneri] 41% 4.7 27% WP_014939867.1

Table 2. Blast results to nonredundant protein NCBI database. The table shows best match amino acid 
alignments for blast (blastx)78 hit results for all 42 sex-specific scaffolds. 17 scaffolds aligned to a protein-coding 
gene, and most shared <40% identity. The two highest identity hits to genes were to transcriptional regulator 
ATRX by SuperContig_990642 and mitogen-activated kinase kinase kinase 2 by SuperContig_108441.
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performed in a marsupial and eutherian showed that ATRX expression was highly conserved between the two 
mammals and was necessary for the development of both male and female gonads48. Because ATRX is one of the 
few protein-coding genes present in the region of W-specific sequence and has been characterized in the sex dif-
ferentiation of mammals, we propose ATRW as a candidate sex gene for axolotl, or alternately a strong candidate 
for an acquired, sexually antagonistic gene.

Reanalysis of expression data from recent published tissue-specific transcriptomes showed expression of the 
ATRX gene (from LG2) in all major tissues and developing embryos, however, they showed no evidence of expres-
sion of the ATRW gene54. The tissues represented in the study included whole limb segments, blastemas from 
regenerating limbs, bone and cartilage, muscle, heart, blood vessel, gill, embryos, testis, and notably, ovaries. It is 
not clear at what stage the ovarian tissue was taken; however, the author suggests multiple ovaries were sequenced 
from an adult, and multiple libraries exist for the tissue. It is possible that this sex-specific gene is simply not 
highly expressed at this specific stage (or in the adult stage, in general) and may only be expressed during early 
gonadogenesis. Examining expression profiles and isoforms of ATRW before and throughout gonadogenesis may 
reveal interesting sexually dimorphic gene expression profiles in male and female genes, including those that are 
sex-linked. Similarly, W-linked genes in chicken were unknown until RNAseq studies were performed prior to 
and during gonadogenesis55.

If ATRW is the primary sex-determining gene in axolotl, then the origin of this gene marks the origin of sex 
chromosomes in the tiger salamander lineage. A time-scaled gene tree based on sequence substitution rates of 
ATRX genes in multiple vertebrate placed the ATRX duplication event at ~20 MYA (Supplementary Fig. 1). This 

Figure 6. Neighbor-Joining trees for vertebrate ATRX with bootstrap and divergence time estimations. (A) 
Evolutionary relationships among ATRX homologs were inferred using the Neighbor-Joining method87. The 
bootstrap consensus tree inferred from 10000 replicates is taken to represent the evolutionary history of the taxa 
analyzed88. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 
(10000 replicates) are shown next to the branches88. Evolutionary distances were computed using the Maximum 
Composite Likelihood method89 and are in the units of the number of base substitutions per site. The analysis 
involved 13 nucleotide sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. All positions 
containing gaps and missing data were eliminated resulting in the inclusion of 251 positions in the final dataset. 
Evolutionary analyses were conducted in MEGA784. The newt represents sequence from Notophthalmus 
viridescens. (B) A time-scaled phylogenetic tree inferred using the Reltime method90 and estimates of branch 
lengths inferred using the Neighbor-Joining method as in A87. The tree was computed using 10 calibration 
constraints. Divergence times estimated by Timetree were added manually and are marked with gray arrows49. 
This tree indicates that the duplication event giving rise to ATRW in axolotl may have occurred ~20MYA.



www.nature.com/scientificreports/

9SCIENtIfIC RepoRts |         (2018) 8:17882  | DOI:10.1038/s41598-018-36209-2

estimate places the ATRX duplication event within the Ambystoma clade but suggests that not all ambystomatids 
necessarily share the sex chromosome. Based on the Ambystoma species tree49, we expect the same sex chro-
mosomes and sex locus to be present in the tiger salamander species complex but not necessarily in the more 
distantly related A. jeffersonianum complex or deeper ambystomatid lineages (Fig. 7).

Given the relatively recent origin of ATRW, species within the tiger salamander complex are predicted to 
contain the same sex chromosomes. The tiger salamander species complex consists of more than 30 named spe-
cies that encompass a range of diversification dates50,56. Further analyses of sex determination within this com-
plex should therefore facilitate future studies aimed at more precisely characterizing the timing of the ATRX/W 
duplication and the evolution of other W-specific sequences. Ongoing improvements to the Ambystoma genome 
assembly and development of genome assemblies for other salamander taxa should improve our ability to assess 
hypotheses related to the presence of homomorphic sex chromosomes (e.g. recent evolution, high-turnover, and 
fountain of youth)1,17,57–62. Additionally, recent efforts to develop genetic tools for the axolotl model should facil-
itate functional analyses that will be necessary to test whether ATRW is the primary sex-determining gene in 
axolotl or elucidate its role as a sexually antagonistic factor63,64. Methods for achieving targeted gene knockout 
and knock-ins have been developed in axolotl and could be adapted to better assess the functionality of ATRW 
in axolotls40,65,66.

Sex is an important biological variable in research, as it may contribute to variation in experimental studies. 
Because axolotl is an important model for many areas of research and has shown sex-specific effects, such as tail 
regeneration, it is important for investigators to differentiate sex effects from other experimental variables28. Until 
now it was necessary to visualize the sex organs, utilize axolotls that had produced gametes, or perform experi-
ments in hybrid crosses that segregate markers at the linked locus E24C3 in order to accurately determine sex in 
axolotls29. However, many experiments utilize juvenile animals that may not have completed gonadal differentia-
tion or maturation. With several robust markers for W-specific sequences in hand, it is now possible to precisely 
differentiate sex of an axolotl with a simple PCR67. These markers will also positively impact axolotl husbandry, as 
individuals may be housed and utilized in experiments accordingly.

Methods
Laser capture microdissection and amplification. Preparation of cells for metaphase spreads and laser 
capture were performed as previously described30. Briefly, fixed cells were spread on UV-treated 1.0 mm poly-
ethylene naphthalate (PEN) membrane slides. Slides were inverted (membrane side down) over a steam bath of 
distilled water for 7 seconds. Immediately after steaming, 100 µl of the fixed cells were dropped across the middle 

Figure 7. A species tree for the genus Ambystoma. The gray shaded region shows the approximate timing 
of the ATRW duplication event. The tiger salamander complex consists of 7 named species that occur in the 
same monophyletic clade as A. californiense, A. mexicanum, and A. tigrinum56,91. This tree was generated using 
Timetree49 with modification to the position of A. californiense based on previously published tiger salamander 
complex tree56,91.
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of the slide lengthwise. Each slide was subsequently placed in a steam chamber at ~35 °C for 1 minute, then set on 
the hot plate for 5 minutes. After slides dried, chromosomes were stained via immersion in freshly made Giemsa 
stain (Sigma-Aldrich GS500-500 ML: 0.4% Giemsa, 0.7 g/L KH2PO4, 1.0 g/L Na2HPO4) for 2 minutes, rinsed in 
95% ethanol, rinsed in distilled water, then allowed to dry in a desiccator until used.

The sex chromosome was captured using a Zeiss PALM Laser Microbeam Microscope at 40X magnification 
as previously described30. The sex chromosome was dissected individually using a Zeiss PALM Laser Microbeam 
Microscope at 40X magnification and catapulted into a Zeiss adhesive cap tube (Zeiss 415190-9191-000). 10 µl of 
a chromatin digestion buffer was pipetted into the cap30 and the tube was kept inverted overnight at 55 °C. After 
incubation, the sample was centrifuged briefly and incubated at 75 °C for 10 minutes and 95 °C for 4 minutes to 
inactivate the Proteinase K. Along with 23 other samples, the sex chromosome sample was immediately car-
ried through full amplification using the Rubicon PicoPlex DNAseq Whole Genome Amplification (WGA) kit 
(R30050). Amplification followed the standard manufacturer protocol, with one exception: a chromatin digestion 
step replaced the cell extraction step. After amplification, an Agilent 2100 Bioanalyzer and accompanying DNA 
12000 kit (Agilent DNA 12000 Kit 5067-1508) was used to estimate concentration and size distribution. The sex 
chromosome sample had a concentration >9 ng/µl and was sequenced on an Illumina HiSeq2500 (Hudson Alpha 
Institute for Biotechnology, Huntsville, Al). After initial sequencing, the same sample was further sequenced to 
generate paired-end 150 bp reads on a full lane of HiSeq2500.

Sequence analyses and assembly. Because amplified sequences contain a non-complex leader sequence 
corresponding to the pseudorandom primers that are used for whole chromosome amplification, reads were 
trimmed prior to further processing. Trimmomatic was used to remove leader sequences derived from phiX 
and to trim any window of 40 nucleotides with quality score lower than Q3068. Reads were then aligned to 945 
model transcripts from the Ambystoma linkage map35 using the Burrows Wheeler Aligner with the single-end 
mapping option and BWA-MEM algorithm69. They were also aligned to several bacterial genomes as well as the 
human reference genome using the paired-end mapping option to identify exact matches for Bowtie 270. Paired 
reads that mapped concordantly to the human and bacterial genomes were considered potential contaminants 
and removed. After trimming and removal of potential contaminants, the reads were corrected with Blue71 using 
female A. mexicanum whole genome shotgun data30 and assembled with SOAPdenovo272.

To assign scaffolds from the whole genome assembly of a male axolotl genome to the Z chromosome, 
error-corrected laser capture reads were aligned as paired-end reads to the assembly with BWA-MEM and filtered 
to preserve only pairs with concordant reads that map to the reference with no mismatches69. For each scaffold 
we calculated physical coverage (i.e. coverage by paired-end fragments: bedtools v. 2.27, genomeCoverageBed, 
option pc73) and assigned scaffolds to the Z chromosome if at least 5% of their bases were covered by reads from 
laser capture sequencing.

FISH of sex-associated BAC E24C3. Fluorescent in situ hybridization of BACs to metaphase chromosome 
spreads were performed as previously described74,75. A Qiagen Large Construct kit (Qiagen Science, 12462) was 
used to extract bacterial artificial chromosome (BAC) DNA for E24C3 and E12A6, previously associated with 
sex29. Probes for in situ hybridization were labeled by nick-translation using direct fluorophores Cyanine 3-dUTP 
(Enzo Life Sciences, ENZ-42501) or Fluorescein-12-dUTP (Thermo Scientific, R0101) as described previously74 
and hybridization of BAC probes was performed as previously described for axolotl chromosomes40.

Phenol-chloroform extraction in 1.2X SSC was used to isolate repetitive DNA fractions from female sala-
mander tissue76. DNA was denatured for 5 minutes at 120 °C, re-associated at 60 °C for 1 hour to obtain Cot DNA. 
Microtubes containing the DNA were placed on ice for 2 minutes, then transferred to a bead bath at 42 °C for 
1 hour with 5X S1 nuclease buffer and S1 nuclease for a concentration of 100 units per 1 mg DNA. DNA was 
precipitated with 0.1 volume of 3M sodium acetate and 1 volume isopropanol at room temperature, tubes were 
inverted several times and centrifuged at 14,000 rpm for 20 minutes at 4 °C. DNA was washed with 70% ethanol, 
centrifuged at 14,000 rpm for 10 minutes at 4 °C, air dried and solubilized in TE buffer.

Conservation and evolution of salamander chromosomes. To evaluate the sex chromosome assem-
bly, we performed alignments between the sex chromosome assembly and reference transcripts (V4: Sal-Site)32 
using megablast77 to identify genes that occur on the sex chromosome. These genes were then aligned (tblastx)78 
to annotated protein coding genes from the chicken genome assembly (Gallus_gallus-4.0). Annotated genes from 
scaffolds assigned on the basis of read mapping were aligned (blastp)78 to this set of annotated chicken genes. 
Those with an alignment length of at least 50 amino acids and at least 60% identity were considered potential 
homologs.

A similar approach was taken to identify the homologous newt linkage group to assess potential sex candidate 
genes. Ambystoma reference transcripts from LG9 (V4) were aligned (tblastx)78 to the chicken genome assem-
bly41. Using the same minimum thresholds as above, the potential homologs were then used to blast (tblastx)78 to 
the newt, Notophthalmus viridescens, reference transcripts36.

Identification of female-specific regions. We applied read depth of coverage analysis to identify 
single-copy regions in the assembly that have approximately half of the modal coverage in females and underrep-
resented/absent coverage in males. Reads were generated on an Illumina HiSeq2000 (Hudson Alpha Institute for 
Biotechnology, Huntsville, Al.) from DNA that was isolated via phenol-chloroform extraction76 from 48 individ-
uals that were drawn from a previously described backcross mapping panel42. The resulting reads were aligned to 
the axolotl draft genome assembly using BWA-MEM (using default parameters) followed by filtering of secondary 
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alignments (samtools view–F2308) and alignments clipped on both sides of the read. Merging of female and male 
bam files was performed using Samtools merge69,79.

We used DifCover (https://github.com/timnat/DifCover)80 to identify candidate female-specific regions. The 
method works by computing the ratio of female:male average read depth of coverage across continuous intervals 
containing approximately V, valid bases. Valid bases are defined by lower and upper limits on read depth of 
coverage for females (f) and males (m), respectively designated as minf, minm, maxf and maxm. If Cf and Cm 
define female and male coverage for a given valid base, then (1) Cf < maxf and Cm < maxm; and (2) Cf > minf or 
Cm > minm. The upper limits identify and allow skipping of fragments that contain repeats, while the lower limits 
serve to exclude underrepresented fragments with small numbers of reads in both males and females.

After testing, we chose V = 1000 and assigned lower limits equal to one third of modal coverage, (8 for females 
and 9 for males) and upper limits 3X of modal coverage, (75 for females and 87 for males). The enrichment scores 
[log2(standardized sperm coverage/blood coverage)] were computed for each interval. If the average coverage in 
males for an interval was zero, we replaced the coverage estimate with a non-zero positive value corresponding 
to alignment of half of one read. Some intervals were shorter than 1Kb and contained fewer than 1000 valid bases 
(short scaffolds or intervals that fall on the scaffold ends). These shorter intervals were filtered to exclude intervals 
with fewer than 500 bases or fewer than 200 valid bases.

Scaffolds that were validated through PCR in a panel of 6 females and 6 males were aligned to the V4 and V5 
Ambystoma transcriptome assemblies in order to identify the genes present on the W-specific portion of the sex 
chromosome. If a transcript aligned to the scaffold with a percent identity higher than 95%, that transcript was 
blasted (blastx)78 to the NCBI nonredundant protein database to search for homologous genes.

Primer design and PCR. Primers were designed within the sex candidate regions identified using Primer381. 
Each primer was 25–28 bp in length, with a target melting temperature of 60 °C, 20–80% GC content and 150–
400 bp product sizes depending on the size of the region and location of repeats (avoiding inclusion of repetitive 
sequence in primer and product). Fragments were amplified using standard PCR conditions (150 ng DNA, 50 ng 
of each primer, 200 mM each dATP, dCTP, dGTP, dTTP; thermal cycling at 94 °C for 4 minutes; 34 cycles of 94 °C 
for 45 seconds, 55 °C for 45 seconds, 72 °C for 30 seconds; and 72 °C for 7 minutes). Reactions were tested on a 
panel of six males and six females to validate sex specificity. Gel electrophoresis was performed and presence/
absence was recorded for each set of primers (Supplementary Fig. 3). The scaffolds from which primers were 
designed were considered female-specific if the primers yielded specific amplicons in all six females and in no 
males.

Results from these data were used to develop a PCR based assay for determining sex in axolotls at any stage of 
development. This method uses a primer pair that amplifies a 219 bp DNA fragment in females and an internal 
control that yields a 486 bp DNA fragment in both sexes. This biplex PCR results in two bands (219 bp and 486 bp) 
for females and only the control band (486 bp) in males67.

Phylogenetic Reconstruction. Homologene was used to collect putative homology groups from the ATRX 
genes in a variety of eukaryotes82. Sequence for axolotl ATRX was obtained from Ambystoma reference tran-
scripts, and the newt ATRX gene was obtained by aligning human ATRX to the newt reference transcriptome83. 
All sequences were aligned using MEGA784 via MUSCLE85. Sequences were trimmed to compare a conserved 
subregion of the sequence that was present in all species, a string of 251 codons (Fig. 5). Divergence time esti-
mates were drawn from the TimeTree webserver49.

Accession Codes. Sequence data (48 sequenced axolotl genomes) are deposited at the NCBI short read 
archives (http://www.ncbi.nlm.nih.gov/sra) under study number PRJNA478224.
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