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Photonic topological phases in 
dispersive metamaterials
You-Zhong Yu & Ruey-Lin Chern

We analyze the photonic topological phases in dispersive metamaterials which satisfy the degenerate 
condition at a reference frequency. The electromagnetic duality allows for the hybrid modes to be 
decoupled and described by the spin-orbit Hamiltonians with pseudospin 1, which result in nonzero 
spin Chern numbers that characterize the topological phases. In particular, the combined Hamiltonian 
of the hybrid modes complies with a fermionic-like pseudo time-reversal symmetry that ensures the 
Kramers degeneracy, leading to the topological protection of helical edge states. The transverse spin 
generated by the evanescent surface waves is perpendicular to the wave vector, which exhibits the 
spin-momentum locking as in the surface states for three-dimensional topological insulators. The 
topological properties of the helical edge states are further illustrated with the robust transport of a pair 
of counterpropagating surface waves with opposite polarization handedness at an irregular boundary of 
the metamaterial.

Inspired by the discovery of topological insulators in recent years1–7, there has been a surge of interest in the 
study of topological phases in photonic systems8–23. Topological insulators are insulating in the bulk but possess 
conducting states on their surfaces. The role of topology was first established in the study of phase transition in 
two-dimensional (2D) systems, known as the Kosterlitz-Thouless transition24. A well understood form of the 
topological phase was later represented by the quantum Hall (QH) state25, a 2D electron gas in a static magnetic 
field, which belongs to a topological class that breaks the time-reversal (TR) symmetry. In this system, a single 
edge mode, known as the chiral edge state, propagates unidirectionally at the boundary, which is insensitive to 
disorder26. The topological properties of the QH states are manifest on the quantized Hall conductance character-
ized by the TKNN invariant or Chern number27.

Another topological phase that preserves the TR symmetry is the quantum spin Hall (QSH) state28–30, in 
which no magnetic field is required. The spin-orbit interaction allows a different topological class when the TR 
symmetry is unbroken. In this system, a pair of edge modes with opposite spin, known as the helical edge states, 
counterpropagate at a given edge without backscattering31. The topological properties of the QSH states can be 
characterized by the Z2 invariant32 or spin Chern number33. The theoretical concepts developed in the QSH states 
were soon generalized to three-dimensional (3D) topological insulators1,2.

The photonic analogue of the QH states was identified in 2D gyroelectric or gyromagnetic photonic crys-
tals8–10, where the gyrotropy effect breaks the TR symmetry as a static magnetic field does in the QH system. The 
unidirectional edge modes, which are analogous to the chiral edge states, exist in the photonic band gap with a 
nonzero Chern number for all bands below the gap. More recently, the photonic QH states can also be found 
in the Tellegen metacrystals34. In another aspect, the photonic QSH states were demonstrated in 2D bianiso-
tropic photonic crystals15,21, where the magnetoelectric coupling emulates the effect of spin-orbit interaction. The 
counterpropagating edge modes, which are analogous to the helical edge states in the QSH system, exist in the 
frequency gap between the bulk bands with nonzero spin Chern numbers.

The helical edge states, which are doubly degenerate and TR partners of each other, form a Kramers doublet 
that usually exists in a TR invariant system with spin 1/2. The Kramers degeneracy, which is crucial to the emer-
gence of helical edge states, therefore cannot readily apply to the photonic system with spin 1, unless additional 
symmetry has been imposed in the system. For the bianisotropic medium with the ‘spin’-degenerate condition: 
ε = μ15,35–37, the transverse magnetic (TM) and transverse electric (TE) modes propagate with identical wave 
numbers. The linear combinations Ez ± Hz, referred to as the pseudospin states, become a Kramers doublet in the 
photonic system15. The spin-degenerate condition was also used in the Tellegen medium for constructing the 
Kramers degeneracy, where the pseudospin states are expressed as Ez ± iHz

21. Furthermore, the hybridization of 
TM and TE modes was used to create the photonic topological phases in metacrystal waveguides17,19,38–41. The 
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Kramers degeneracy may even exist in 2D dielectric photonic crystals20,42,43 without the hybridization of TM and 
TE modes, where the pseudospin states are represented by the combination of p and d orbital-like basis functions. 
In photonic systems, the Kramers degeneracy is guaranteed by the pseudo TR symmetry20,21, which can be con-
structed from the symmetry in crystal structure20,44 or constitutive relation21.

In the present study, we analyze the photonic topological phases in dispersive metamaterials which satisfy the 
degenerate condition (ε μ= − ) at a reference frequency ω0, around which a frequency gap between the bulk 
modes may exist. The electromagnetic duality allows for the hybrid modes (E ± η0H) to be decoupled at the ref-
erence frequency, which are determined by two subsystems with degenerate eigenvalues. By introducing the 
pseudospin states as the eigenfield basis, the hybrid modes are described by the spin-orbit Hamiltonians with 
pseudospin 1, which result in nonzero spin Chern numbers that characterize the topological phases. In particular, 
the combined Hamiltonian of the two subsystems is TR invariant under a fermionic-like pseudo TR operator Tp 
with = −T Ip

2 , which ensures the Kramers degeneracy of the hybrid modes, leading to the topological protection 
of helical edge states. The Kramers doublet consists of a pseudospin state from the plus hybrid mode (E + η0H) 
and another state from the minus hybrid mode (E − η0H), which are TR partners and orthogonal to each other.

For illumination, the surface modes at the interface between vacuum and the metamaterial are analytically 
formulated based on Maxwell’s boundary conditions, which are represented by a dispersion surface in the fre-
quency gap and reduced to an ellipse or a circle at the reference frequency. The evanescent surface wave generates 
a transverse spin perpendicular to the wave vector, which exhibits the spin-moment locking as in the surface states 
for 3D topological insulators. The topological properties of the surface modes are further illustrated with the 
electromagnetic radiation excited by an appropriately phased point dipole at the interface. The surface waves with 
opposite polarization handedness counterpropagate toward different directions, which are able to bend around 
sharp corners without backscattering.

Results
Bulk modes. Consider a dispersive medium characterized by the frequency-dependent permittivity tensor 
ε ε ω( )0  and permeability tensor μ μ ω( )0 . Treating the combined electric field E = (Ex, Ey, Ez) and magnetic field 
H = (Hx, Hy, Hz) as a six-component vector, Maxwell’s equations for the time-harmonic fields (with the conven-
tion e−iωt) are written in matrix form as

ωε
ωμ






×
× −




 ′

=( )c I
c I

k
k

E
H

0,
(1)

where I  is the 3 × 3 identity matrix, H′ = η0H, and η μ ε= /0 0 0 . Assume that the medium is uniaxially aniso-
tropic with the material parameters: ε ε ε ε= diag( , , )t t z  and μ μ μ μ= diag( , , )t t z . The existence of a nontrivial 
solution of E and H′ requires that the determinant of the 6 × 6 matrix in Eq. (1) be zero, which gives the charac-
teristic equation of the bulk modes as
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where = +k k kt x y
2 2 2 and k0 = ω/c. The above bi-quadratic equation shows that the bulk modes consist of two 

parts with dual symmetry between εn and μn (n = t, z).
For analyzing the topological phases in the present medium, we assume that the medium satisfies the ‘degenerate’ 

condition: ε μ= −  at a reference frequency ω0. In the neighborhood of ω0, εn and μn can be approximated, respec-
tively, as ε ε ω ω ε ε δω ω≈ + − ≡ +ε

ω ω ω=
( ) /n n

d
d n n0 0 0 0

n

0

 and μ μ ω ω μ μ δω ω≈ + − ≡ +
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0

. If 

εt0εz0 ≠ 0 (μt0μz0 ≠ 0), a frequency gap between the two bulk modes exists around ω0. The band gap size can be esti-
mated by the solutions of ω at kt = kz = 0 [cf. Eq. (2)], between which the bulk modes do not exist. For ε < 0n0  (μ > 0n0 ), 
the upper and lower band edges are approximated by ω ω ε ε ε ε≈ + − − / 1 min( / , / )t t z z0 0 0  and 
ω ω μ μ μ μ≈ −  / 1 min( / , / )t t z z0 0 0 , respectively. Here, εt, εz, μt, and μz are assumed to be positive definite45.

Spin-orbit Hamiltonians. The electromagnetic duality of Maxwell’s equations dictates that the matrix in 
Eq. (1) is symmetric with the same diagonal elements when the degenerate condition is satisfied. This enables us 
to rewrite the wave equations for the hybrid modes, defined by E ± H′, at the reference frequency as
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where ωε± = ± ×c Ik k( )0 . Note that the hybrid modes are completely decoupled and determined by two 
subsystems (3 × 3 matrix) with the same eigenvalues, their matrix determinants being equal: = −k k( ) ( )0 0  . 
In the isotropic case, where εt0 = εz0 ≡ ε and ε ε ε= ≡  t z , the wave equation for the plus hybrid mode F = E + H′ 
can be rearranged as (see Methods A)

 ψ ψ δωψ− =+ d , (4)

by introducing the pseudospin state ψ ψ=
∼−U 1 , where ψ =

∼ − + +( )F, ,
F iF

z
F iF T

2 2
x y x y  and 

 ε ε=U diag( / , 1,z t

 ε ε/ )z t . In Eq. (4), ω ε ε= d /0  and
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 α κ= ⋅+ S , (5)

where α ε= c/ , κ κ κ κ= + + =ˆ ˆ ˆx y z ikx y z , = + +ˆ ˆ ˆS x S y S zS x y z , and Sn (n = x, y, z) are the spin matrices for 
spin 1.

Note here that Eq. (4) is formulated as an eigensystem with δω as the eigenvalue. The Hamiltonian +  in Eq. (5) 
represents the spin-orbit interaction S⋅κ with pseudospin 145, which is mathematically equivalent to the Hamiltonian 
of a magnetic dipole moment in a magnetic field. The imaginary wave vector κ in + reflects the fact that the wave 
is evanescent in the frequency gap. For the minus hybrid mode F = E − H′ in Eq. (3), it is straightforward to show 
that the corresponding spin-orbit Hamiltonian is given by

α κ= − ⋅ .− S (6)

Note that the hybrid modes can be slightly different if the corresponding Hamiltonian is rewritten in a differ-
ent format37,46,47.

Topological invariants. The topological properties of the spin-orbit Hamiltonians ± can be characterized 
by the topological invariants based on their eigenfields. For this purpose, we calculate the Berry flux over a closed 
surface S: κ κ κ ε+ + = kx y z

2 2 2 2
0
2, corresponding to the bulk mode at the reference frequency ω0 in the imaginary 

wave vector space. The eigensystem for the plus hybrid mode in Eq. (5)

ψ λ ψ= .σ σ σ+ (7)

is solved to give the eigenvalues λσ and eigenvectors ψσ (σ = ±1, 0), based on which the Chern numbers are cal-
culated to give Cσ = 2σ (see Methods B). The nonzero topological invariants Cσ (σ = ±1) reveal the topological 
nature of the pseudospin states, where σ describes the helicity (or handedness) of the states. For this subsystem, 
the total Chern number = ∑σ σC C  and the spin Chern number σ= ∑σ σC Cspin

33 are given by

= =C C0, 4, (8)spin

which are consistent with the quantum spin Hall effect of light48. On the other hand, the eigensystem for the 
minus hybrid mode in Eq. (6) is given by

 ψ λ ψ=σ σ σ− − − , (9)

where the eigenvalues λσ are the same as those of +. The helicity of the eigenvectors, however, has been flipped 
from σ to −σ. The Chern numbers are therefore change signs as Cσ = −2σ. For this subsystem, the total and spin 
Chern numbers are given by

= = − .C C0, 4 (10)spin

The vanishing total Chern number C in the subsystems reflects the TR symmetry of Maxwell’s equations and 
the absence of QH states in free photons, while the spin Chern numbers Cspin = ±4 indicate that there exist two 
pairs of QSH edge states which are doubly-degenerate with respect to the helicity σ. The existence of surface 
modes in Maxwell’s equations, however, requires the presence of an interface (between two different media) that 
breaks the duality symmetry of electromagnetic fields as in an unbounded region, and therefore only one pair 
of edge modes survives at the interface48. This feature will be confirmed by the characteristic equation of surface 
modes at the interface between vacuum and the metamaterial.

According to Eqs (7) and (9), the eigensystem of the combined hybrid modes is written as
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which states that the eigenstates ψσ and ψ−σ of their respective subsystems are degenerate with the eigenvalue λσ. 
The combined Hamiltonian is therefore considered two copies of the spin-orbit Hamiltonian with opposite helic-
ity. This feature will play a crucial role in constructing the Kramers degeneracy in the present problem, leading to 
the topological protection of helical edge states.

Pseudo time-reversal symmetry. The Hamiltonian for Maxwell’s equations [cf. Eq. (1)] in a lossless 
medium with ε ε= ⁎ and μ μ= ⁎ is time-reversal (TR) invariant under Tb, that is,

  
ωε

ωμ= =





×
× −






−T T
c I

c I
k

k, ,
(12)

b m b m m
1

where Tb = σzK with =T Ib
2  is the bosonic TR operator for photons and K is the complex conjugation18. The 

Hamiltonian m , however, is not TR invariant under Tf, that is, ≠−T Tf m f m
1  , where Tf = iσyK with = −T If

2  
is the fermionic TR operator for electrons18. Therefore, the Kramers degeneracy does not hold in a general pho-
tonic system, unless other symmetry such as polarization degeneracy15,21 or spatial symmetry20 has been imposed 
in the system.
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In another aspect, the combined Hamiltonian of the hybrid modes for Maxwell’s equations with the degener-
ate condition: ε μ= −  (at the reference frequency ω0) is TR invariant under Tp, that is,

  



= =











− +

−

T T , 0
0

,
(13)

p c p c c
1

where Tp is the fermionic-like pseudo TR operator having the same form of Tf. The pseudo TR operator Tp is 
inspired by noticing that E + H′ ↔ E − H′ during the TR operation. The pseudo TR operator is thus defined as 
Tp = Tbσx = σzKσx = iσyK with =−T Ip

2 21. Here, σx = (0, 1; 1, 0), σy = (0, −i; i, 0), and σz = diag(1, −1) are the 
Pauli matrices. The pseudo TR symmetry of the combined Hamiltonian c ensures the Kramers degeneracy and 
guarantees the appearance of a Kramers doublet.

As revealed in Eq. (11), the photonic Kramers doublet consists of an eigenstate ψσ of + and another eigen-
state ψ−σ of −, with the same eigenvalue λσ (σ = ±1). The states ψσ and ψ−σ become TR partners under Tp, that 
is, ψ ψ=σ σ−

⁎Tp  and ψ ψ= −σ σ−
⁎Tp . In addition, ψσ and ψ−σ are orthogonal: ψ ψ =σ σ− 0 [cf. Eq. (30) in Methods 

B], which implies that it is impossible to introduce any backscattering between the two states, unless the TR sym-
metry has been broken. The two states therefore counterpropagate toward opposite directions without backscat-
tering, a typical feature of the helical edge states that appear in the QSH system. As indicated in the field basis ψ 
[cf. Eq. (4)], the photonic Kramers doublet is a pair of two pseudospin states for the hybrid modes, analogous to 
the spin-up and spin-down states in electronic systems. The nonzero Chern numbers Cσ associated with the 
eigenstate ψσ further assert that the helical edge states are topologically protected, their existence being guaran-
teed by the difference of topological invariants on two sides of the interface. As the topological invariants remain 
constant under arbitrary continuous deformations of the system, the topological properties of the isotropic 
medium will be preserved when a certian anisotropy is included in the medium. The exact calculation of topolog-
ical invariants for the anisotropic medium may resort to the numerical integration of Berry curvatures49.

Surface modes. Let the xz plane be the interface between a dielectric with the relative material parameters 
εd, μd and a uniaxially anisotropic medium characterized by εt, εz, μt, and μz. The characteristic equation of 
surface modes is formulated based on Maxwell’s boundary conditions: the continuity of tangential electric and 
magnetic field components at the interface, which is given by (see Methods C)
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 are the normal components in the aniso-

tropic medium. For the surface waves to be valid on the dielectric side (y > 0), ky
(1) and ky
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t
. In the presence of square roots in ky

n( ) (n = 1, 2, 3, 4), the surface modes are represented by a 
part of the bi-quadratic surface in the frequency-wave vector space. In the isotropic case, where εt = εz ≡ ε and 
μt = μz ≡ μ, Eq. (14) is simplified to
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depending on whether ε ω <( ) 00  or μ ω <( ) 00 , respectively. In this situation, the characteristic equation repre-
sents a quadratic surface of revolution about the frequency axis.

At the reference frequency ω0, where εt = −μt and εz = −μz, Eq. (14) is reduced to
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which is a part of the bi-quadratic curve. If εd = μd, Eq. (16) is further simplified to a standard quadratic curve as

μ μ μ μ μ μ μ μ μ− + − = +k k k( ) ( ) ( ) , (17)t d x t z d z d t t z
2 2 2 2 2 2

0
2

which represents an ellipse when μ μ>t d
2 2 and μ μ μ>t z d

2 or a two-sheeted hyperbola when μ μ μ μ< <t z d t
2 2 or 

μ μ μ μ< <t d t z
2 2 . Here, we assume that μt and μz are of the same sign. In the isotropic case, Eq. (15) at the refer-

ence frequency ω0 is simplified to
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depending on whether ε < 0 or μ < 0, respectively. In this situation, the characteristic equation represents a 
circle when ε ε> d

2 2 or μ ε> d
2 2, which is valid even when εd ≠ μd. In case all the materials considered are non-

magnetic, that is, μ = 1 (ε = −1) and μd = 1 at ω = ω0, Eq. (16) is simplified to ε ε+ = −k k k /(1 )x z d d
2 2

0
2 , which 

represents a circle when ε< <0 1d .
For a fixed kz (kx), Eq. (16) allows for two solutions of kx (kz) with reflection symmetry about the kz (kx) axis, 

which means that there exist a pair of surface modes at the interface counterpropagating toward the positive and 
negative kx (kz) directions.

Discussion
Figure 1 shows the dispersion of bulk modes in the frequency-wave vector space for the dispersive medium based 
on Eq. (2). The Drude-type dispersive model, which is usually employed in the analysis of metamaterials, is 
assumed for the permittivity and permeability components: ε ε ω ω= −∞ /n n ep

2 2 and μ μ ω ω= −∞ /n n mp
2 2 (n = t, 

z)50,51, where ωep and ωmp are the effective plasma frequency and magnetic plasma frequency, respectively52,53. For 
simplicity, we further assume that ωep = ωmp≡ωp

50,51. If εz = 0 or εt = 0 at the reference frequency ω0, the upper and 
the lower modes touch at ω = ω0 [Fig. 1(a)]. In particular, the upper mode has a positive index (along the optical 
axis): ε μ≡ >n 0z z z , while the lower mode has a negative index: <n 0z .

If both εt ≠ 0 and εz ≠ 0 at ω = ω0, a frequency gap is opened between the two bulk modes, with the gap size 
dependent on the material parameters [Fig. 1(b)]. As the anisotropy of the medium is reduced, the bulk modes 
tend to be dispersionless, that is, independent of the frequency. In the isotropic case, where εt∞ = εz∞ ≡ ε∞ and 
μt∞ = μz∞ ≡ μ∞, the bulk modes are basically represented by two flat surfaces at ω ω ε= ∞/p  and ω ω μ= ∞/p , 
leaving in between a frequency gap when ε∞ ≠ μ∞.

Figure 2(a) shows the dispersion of surface mode (in red color) at the interface between vacuum and the 
dispersive metamaterial based on Eq. (14), which exists in the frequency gap between two bulk modes (in gray 
color). The surface mode is represented by a funnel-shaped surface with a lower frequency at the center that 
connects to the lower bulk mode. As kx or kz increases, the surface mode raises its frequency and approaches 
asymptotically to

ω
ω

ε ε
ω ω

ε ε ε ε ε

ε ε ε
=

+
=

− + − −

−∞

∞ ∞ ∞ ∞

∞ ∞

or ( ( ) 4 )
2( )

,
(19)

sx
p

d t
sz p

t z d t z

d t z

2 2

2

respectively, which are obtained by taking the limit as kx → ∞ or kz → ∞ in the characteristic equation of surface 
mode [cf. Eq. (14)]. There may exist a gap between the surface mode and the upper bulk mode, depending on the 
constitutive parameters of the metamaterial. For ε ε>∞ ∞z t  (ε ε<∞ ∞z t ), the lowest frequency of the upper bulk 
mode is given by ω ω ε= ∞/b p z  (ω ω ε= ∞/b p t ). A gap is opened when ω ω>b sx (ω ω>b sz), where we also have 
ω ω<sz sx (ω ω<sx sz). At the reference frequency ω0, where the degenerate condition ε = −μ is satisfied, the sur-
face mode is described by an ellipse (denoted by black curve) with εd = μd and μ μ μ μ> >t t z d

2 2 [cf. Eq. (17)]. In 
the isotropic case where εt∞ = εz∞ = ε∞, the surface mode approaches asymptotically to a flat surface for a suffi-
ciently large kx or kz, as shown in Fig. 2(b). The asymptotic frequency becomes ω ω ε ε= + ∞/s p d  [cf. Eq. (19)], 
which has the same form of the surface plasma frequency at the interface between a dielectric and the Drude-type 
metal. In this situation, there is always a gap between the surface mode and the upper bulk mode. At the reference 
frequency ω0, the surface mode is represented by a circle [cf. Eq. (18)].

Since the surface waves are evanescent in the direction normal to the interface, their normal wave vector com-
ponents are purely imaginary, that is, ky = ±iκy and κy is real. The transversality condition (k ⋅ E = 0) dictates that 

Figure 1. Dispersion of bulk modes in the frequency-wave vector space for the dispersive metamaterial based 
on Eq. (2) with ωp/ω0 = 1.5 and (a) εt∞ = 0.25, μt∞ = 4.25, εz∞ = μz∞ = 2.25 (εt = −μt = −2, εz = μz = 0 at ω = ω0) 
(b) εt∞ = 1.9, εz∞ = 2.1, μt∞ = 2.6, μz∞ = 2.4 (εt = −μt = −0.35, εz = −μz = −0.15 at ω = ω0).
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the normal (to interface) electric field component Ey has a π/2 phase difference relative to the tangential compo-
nent Ex or Ez. As the wave propagates at the interface (y = 0), the electric fields rotate in the perpendicular (xy or 
yz) plane, leading to elliptically polarized waves. The elliptical polarization of the surface waves is demonstrated in 
Fig. 3(a), where the instantaneous electric fields (blue arrows) and magnetic fields (green arrows) at the interface 
result in helical trajectories (traced by the tips of field vectors) along the propagation direction (the helical trajec-
tory for the magnetic fields is less obvious as the normal magnetic field componet Hy is relatively smaller than the 
electric field component Ey). In particular, the rotating electric field generates a transverse spin S⊥ perpendicular 
to the wave vector k as54

=
×

⊥S k k
k

Re[ ] Im[ ]
(Re[ ])

,
(20)2

which is considered as the spin-momentum locking in the evanescent surface waves. The transverse spin of the 
surface mode exhibits a vortex spin texture [denoted by white arrows in Fig. 2(b)] that occurs in the surface states 
for 3D topological insulators.

For the evanescent surface wave with the transverse spin, the handedness can be evaluated by first calculating 
the electric field components in a new coordinate system (x′, y′, z′), obtained by rotating the original system (x, y, z)  

Figure 2. Dispersion of surface modes (in red color) at the interface between vacuum and the 
dispersive metamaterial based on Eq. (14) with ωp/ω0 = 1.5 and (a) εt∞ = 0.25, εz∞ = 1.25, μt∞ = 4.25, 
μz∞ = 3.25 (εt = −μt = −2 and εz = −μz = −1 at ω = ω0) and (b) εt∞ = εz∞ = 1.05 and μt∞ = μz∞ = 3.45 
(εt = εz = −μt = −μz = −1.2 at ω = ω0). Black curves are surface modes at ω = ω0. Gray surfaces in (a) are bulk 
modes. White arrows in (b) denote the transverse spin S⊥.

Figure 3. (a) Instantaneous electric field = ω−t eE r E r( , ) Re[ ( ) ]i t  and magnetic field = ω−t eH r H r( , ) Re[ ( ) ]i t  for 
the surface wave at the interface between vacuum ( >y 0) and the dispersive metamaterial ( <y 0) at the 
reference frequency ω0 with the same parameters in Fig. 2(a). Light yellow plane denotes the interface. (b) 
Polarization handedness of the same surface wave for different signs of kx and kz. Black dashed line indicates the 
constant kz = 1.2k0. Black arrows are wave vectors. Blue and red arrows denote the energy flows for >k 0x  and 

<k 0x , respectively.
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about the y axis such that the x′ axis is oriented to the time-averaged Poynting vector on the xz plane. Denoting 
θ the angle from the x axis to the x′ axis, the electric field components in the new coordinate system are given by 
Ex′ = Excosθ + Ezsinθ, Ey′ = Ey, and Ez′ = −Exsinθ + Ezcosθ. The polarization handedness is then determined by the 
phase difference δ between Ey′ and Ez′: δ = arg(Ez′) − arg(Ey′), where arg(z) ≡ arctan(Im[z]/Re[z]) is the argument 
of a complex number z. The wave is right-handed elliptically polarized (REP) or left-handed elliptically polarized 
(LEP) if δ = π/2 or −π/2, respectively, that is, the phase of Ez′ is delayed or advanced by 90° relative to that of Ey′ 
(under the time-harmonic convention e−iωt).

In Fig. 3(b), the polarization handedness of the surface waves at the reference frequency ω0 is shown to have 
odd symmetry with respect to either of the two in-plane wave vector components (kx and kz). For a constant kz 
(indicated by black dashed line), there exist a LEP wave propagating toward the positive kx direction and a REP 
wave toward the negative kx direction. The two surface waves with opposite handedness counterpropagate at a 
given edge (y = 0 in the xy plane), showing the feature of spin-momentum locking that occurs in the helical edge 
states. This feature holds when the surface mode is described by either an ellipse (for the anisotropic medium) or 
a circle (for the isotropic medium).

Finally, the topological properties of the surface modes are illustrated with the electromagnetic wave propaga-
tion at the interface between vacuum and the metamaterial55, as shown in Fig. 4. Here, a dipole source with 
kz/k0 = 1.2 is placed at the interface (marked by asterisk symbol) to excite the surface wave, where the field is 
evanescent both in vacuum (outside the dispersion circle: + >k k kx z

2 2
0
2) and the metamaterial (inside the fre-

quency gap). By appropriately adjusting the phase of the point dipole, the REP (LEP) surface wave at the reference 
frequency ω0 propagates unidirectionally toward the left (right), which is consistent with the direction of surface 
wave energy flow [cf. Figure 3(b)] and exhibits the typical feature of spin-polarized helical edge states. In particu-
lar, the surface waves are able to bend around sharp corners without backscattering, showing the robust transport 
of edge states against disorder. As the frequency deviates from ω0, the degenerate condition (ε = −μ) will be vio-
lated to a certain extent. The removal of degeneracy, however, is tolerated to some degree for the system to remain 
in the photonic topological phase15,23.

In conclusion, we have analyzed the photonic topological phases in dispersive metamaterials with the degen-
erate condition at a reference frequency. The topological phases are characterized by the nonzero spin Chern 
numbers for the hybrid modes described by the spin-orbit Hamiltonians with pseudospin 1. In particular, the 
hybrid modes comply with a fermionic-like pseudo TR symmetry that ensures the Kramers degeneracy, leading 
to the topological protection of helical edge states. The transverse spin generated by the evanescent surface wave is 
perpendicular to the wave vector, which exhibits the spin-momentum locking as in the surface states for 3D topo-
logical insulators. The topological features of helical edge states are further demonstrated by the robust transport 
of surface waves at an irregular boundary between vacuum and the dispersive metamaterial.

Methods
Spin-orbit Hamiltonians. The wave equation for the plus hybrid mode F = E + H′ in Eq. (3) can be rewrit-
ten as

ψ ψ=
∼ ∼∼

+ D , (21)

where



κ
κ κ

κ κ κ κ

κ κ
κ

ω
ε

ε
ε

=







−

+ −

+
−







=












∼
+ c

i

i i

i

D

2
0

2
0

2

0
2

,
0 0

0 0
0 0

,

(22)

z
x y

x y x y

x y
z

t

z

t

Figure 4. Electromagnetic wave simulation for the surface modes at the interface between vacuum and the 
dispersive metamaterial with the same paramsters in Fig. 3(b). Asteristic symbols denote the dipole sources for 
exciting the (a) REP and (b) LEP surface waves at the reference frequency ω0.
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and ψ =
∼ − + +( )F, ,

F iF
z

F iF T

2 2
x y x y  is the basis of the pseudospin states that include a π/2 phase difference in the 

transverse field components (with respect to the optical axis of the anisotropic medium)45. In the neighborhood 
of ω0, εn is approximated as ωε ω ε ε δω≈ + n n n0 0  (n = t, z) and Eq. (21) can be rearranged as

 ψ ψ δωψ− =+ D , (23)

where
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and ψ ψ=
∼−U 1  with ε ε ε ε=    U diag( / , 1, / )z t z t . In the isotropic case, where εt0 = εz0 ≡ ε and ε ε ε= ≡  t z , Eq. 

(23) is simplified to

ψ ψ δωψ− =+ d , (25)

where ω ε ε= d /0  and

 α κ= ⋅+ S , (26)

with α ε= c/ , κ κ κ κ= + +ˆ ˆ ˆx y zx y z , = + +ˆ ˆ ˆS x S y S zS x y z , and
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 −






S S

i
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i
S1

2

0 1 0
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0 1 0

, 1
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0
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,

1 0 0
0 0 0
0 0 1 (27)

x y z

being the spin matrices for spin 1.

Topological invariants. In terms of spherical coordinates, the Hamiltonian for the plus hybrid mode 
 α κ= ⋅+ S  [cf. Eq. (26)] can be rewritten as


θ θ

θ θ
θ θ

=
| |





 −







φ

φ φ

φ
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d e
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i

where κx = a sin θ cos φ, κy = a sin θ sin φ, and κz = a cos θ with ε= | |a k0 . Here, θ and φ are the polar angle and 
azimuthal angle, respectively, on the closed surface S: κ κ κ ε+ + = kx y z

2 2 2 2
0
2, corresponding to the bulk mode at 

the reference frequency ω0 in the imaginary wave vector space. The eigensystem of the plus hybrid mode

ψ λ ψ=σ σ σ+ , (29)

is solved to give the eigenvalues λ σ= | |σ d  (σ = ±1, 0) and the normalized eigenvectors as
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Note here that the eigenvalue λσ is related to δω in Eq. (4) as λσ = d + δω, while the eigenfuntion ψσ is the same 
as ψ. Based on Eqs (30) and (31), the Berry connections ψ ψ= − ∇σ σ σiA  are obtained as

θ φ σ= − =σ
ˆ

r
A 1 cot

2
( 1), (32)

θ φ σ= − = −σ
ˆ

r
A 1 tan

2
( 1), (33)
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θφ σ= − = .σ
ˆ

r
A 1 csc ( 0) (34)

The Berry curvatures = ∇ ×σ σF A  are thus given by

σ σ= = ± .σ
r̂
r

F ( 1, 0)
(35)2

Integrating over the closed sphere S, the Chern numbers ∫= ⋅σ π σC dF s
S

1
2

 are calculated to give

σ σ= = ± .σC 2 ( 1, 0) (36)

Surface wave equation. According to Maxwell’s equations, the eigenfields on either side of the interface 
(y = 0) are given by the nontrivial solutions of E and H [cf. Eq. (1)] or the null space of Hm [cf. Eq. (12)]. On the 
dielectric side ( >y 0), we have

η ε
= − = − −( )k

k k
k

k k k k k kH E1 ( , 0, ), 1 , , ,
(37)

z x
d

x y x z y z
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0 0
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0
2

(1) 2 2 (1)

η ε
ε µ= − = − −( )k

k k
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k k k k kH E1 ( , , 0), 1 , , ,
(38)

y x
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x z y z z d d
(2)

0 0

(2) (2)

0
2

(2) 2

where ε μ= = − −k k k k ky y d d x z
(1) (2)

0
2 2 2  are the normal (to interface) wave vector components, and the super-

scripts (1) and (2) refer to two independent polarizations in the dielectric. On the anisotropic medium side 
( <y 0), the eigenfields are given by

η ε
ε µ= − = − −( )k

k k
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(39)
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where ε μ= − − − ε
ε

k k k ky z t x z
(3)

0
2 2 2z

t
 and ε μ= − − −

μ

μ
k k k ky t z x z

(4)
0
2 2 2z

t
, and the superscripts (3) and (4) refer 

to two independent polarizations in the anisotropic medium. Note that the eigenfields in Eqs (37)–(40) share the 
common tangential wave vector components kx and kz across the interface, as a direct consequence of the phase 
matching of electromagnetic fields.

According to Maxwell’s boundary conditions, the tangential electric and magnetic field components are con-
tinuous at the interface:

+ = +C H C H C H C H , (41)x z x z x z x z1 ,
(1)

2 ,
(2)

3 ,
(3)

4 ,
(4)

+ = +C E C E C E C E , (42)x z x z x z x z1 ,
(1)

2 ,
(2)

3 ,
(3)

4 ,
(4)

where C1, C2, C3, and C4 are constants. The existence of a nontrivial solution of these constants requires that the 
determinant of the 4 × 4 matrix obtained from Eqs (41) and (42) be zero, which gives the characteristic equation 
of the surface mode as

ε μ ε μ ε μ ε μ ε ε μ μ

ε μ ε μ ε μ

− + − − − −

+ + − + = .

k k k k k k k k k

k k k k k k k k k

( ) ( ) ( )( )

[ ( ) ( )] 0 (43)

t t d d z x z t t t t y t y d y t y d

z t t y y y y t d y y d t y y

2 2 2
0
2

0
2 (1) (4) (2) (3)

2 (1) (2) (3) (4) (1) (3) (2) (4)

Simulation. The simulation domain is on the x-y plane and kz is the out-of-plane wave vector component, 
which is kept fixed in the simulation so that the eigenwaves possess the same kz

55. The surface mode is excited by 
a dipole source placed at the boundary of the metamaterial, which can be implemented by a dipole antenna in the 
experiments10,17,35,38. For the dipole to serve as the source of circular or elliptical polarization, the dipole has two 
in-plane components and the phase difference in between is set to be π/2 or −π/2 to mimic the right-handed or 
left-handed wave36.
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