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Conserved Transcriptional 
Signatures in Human and Murine 
Diabetic Peripheral Neuropathy
Brett A. McGregor1, Stephanie Eid2, Amy E. Rumora2, Benjamin Murdock2, Kai Guo1, 
Guillermo de Anda-Jáuregui1, James E. Porter1, Eva L. Feldman2 & Junguk Hur  1

Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes. In this 
study, we employed a systems biology approach to identify DPN-related transcriptional pathways 
conserved across human and various murine models. Eight microarray datasets on peripheral nerve 
samples from murine models of type 1 (streptozotocin-treated) and type 2 (db/db and ob/ob) diabetes 
of various ages and human subjects with non-progressive and progressive DPN were collected. 
Differentially expressed genes (DEGs) were identified between non-diabetic and diabetic samples in 
murine models, and non-progressive and progressive human samples using a unified analysis pipeline. 
A transcriptional network for each DEG set was constructed based on literature-derived gene-gene 
interaction information. Seven pairwise human-vs-murine comparisons using a network-comparison 
program resulted in shared sub-networks including 46 to 396 genes, which were further merged into 
a single network of 688 genes. Pathway and centrality analyses revealed highly connected genes 
and pathways including LXR/RXR activation, adipogenesis, glucocorticoid receptor signalling, and 
multiple cytokine and chemokine pathways. Our systems biology approach identified highly conserved 
pathways across human and murine models that are likely to play a role in DPN pathogenesis and 
provide new possible mechanism-based targets for DPN therapy.

According to the United States Centres for Disease Control and Prevention (CDC), more than 29 million 
Americans, over 9% of the United States population, are living with diabetes and another 86 million have predia-
betes1. The most common microvascular complication of diabetes is diabetic peripheral neuropathy (DPN) which 
occurs in approximately 60% of patients and is the leading cause of non-traumatic lower-limb amputations2,3. 
DPN is characterized by distal to proximal degeneration of peripheral nerves which results in symptoms such as 
numbness, pain, and weakness4. Other than glucose control, there are no disease-modifying treatments for DPN. 
Understanding DPN pathology and identifying the underlying mechanisms of peripheral nerve degeneration are 
therefore critical to the development of new mechanism-based therapies for DPN.

Over the past decade, with the advent of high-throughput gene expression profiling assays such as microarrays 
and RNA-Seq, we and others have examined genome-wide gene expression changes from the peripheral nerve 
tissues of various diabetic murine models5–9 and human subjects10,11 with diabetes. Bioinformatics analyses of 
these high-throughput datasets identified numerous genes in human and murine peripheral nerves that are sig-
nificantly dysregulated by diabetes. Suggested mechanisms of injury such as inflammation, oxidative stress, lipid 
and carbohydrate metabolism, regulation of axonogenesis, mitochondrion, and peroxisome proliferator-activated 
receptor (PPAR) signalling were also reported during diabetes onset and progression6,7,9,10.

Yet, one limitation of the previous studies, including ours, is that the analyses didn’t account for the differences 
in species, strains, procedure of diabetes induction, and diabetes duration. Another critical issue that hasn’t been 
addressed thus far is the identification of common injurious pathways and networks conserved across various 
mouse models of diabetes as well as between mouse and human. In this study, we reanalysed previously published 
DPN-related microarray datasets from human and multiple murine models using a unified analysis pipeline. 
Compared with the existing literature, this study provides a unique opportunity to uncover a possible common 
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mechanism of injury shared across DPN stages, types of diabetes, and species. Such mechanisms could unravel 
new important therapeutic targets to treat DPN.

Research Design and Methods
Microarray data. All datasets used were gathered from the Diabetic Neuropathy Microarray Knowledge-Base 
(DNMKB; http://hurlab.med.und.edu/DNMKB/). The data from the type 1 diabetes mellitus (T1DM) model were origi-
nally generated from male DBA/2J mice treated with streptozotocin (STZ) at 10 weeks that were terminated at 34 weeks9. 
The two type 2 diabetes mellitus (T2DM) models included BKS.Cg-Leprdb/db (db/db) mice and BTBR. Cg-Lepob/ob  
(ob/ob) mice. The male db/db mice were 8, 16, and 24 weeks5,7,12, while male ob/ob mice were 5 and 13 weeks of age6. A 
female ob/ob dataset was also available from 26 weeks old BTBR.Cg-Lepob/ob mice13. Each dataset was originally gener-
ated using sciatic nerve samples on the Affymetrix Mouse Genome 430 2.0 array platform. As previously reported, each 
model displayed the features typical of diabetes by the termination of their respective studies as well as the hallmarks of 
DPN5,6,13. The human sural nerve data used was generated using the Affymetrix Human Genome U133 Plus 2.0 array 
platform7. As previously reported these samples were evaluated for features of DPN and were separated into progressive 
and non-progressive groups based on the myelinated fibre density lost over a 52 week period7.

Study design. Figure 1 illustrates the overall workflow of the current study, designed to reanalyse these 
microarray data from sciatic nerve (SCN) samples taken from our T1DM and T2DM murine models when com-
pared to controls and the human microarray data of sural nerve biopsies obtained from patients with progressive 
and non-progressive DPN. The original datasets were separated into these groups (either diabetic vs healthy or 
progressive vs non-progressive) and were compared using ChipInspector (Genomatix Software GMBH, http://www.
genomatix.de) to identify the differentially expressed genes (DEGs) between groups. The DEG lists identified from 
each murine model were converted to the human orthologue equivalent when possible using the Genomatix anno-
tation orthologue database. These DEG lists of human gene IDs were then compared across datasets to identify the 
conserved DEGs between the different murine models and human. Each DEG set was also analysed using Ingenuity 
Pathway Analysis (IPA; http://www.ingenuity.com) from Qiagen (Hilden, Germany) and the identified pathways 
were compared across models and species to identify the commonly disrupted pathways. To identify gene networks 
common between models, networks were generated from these DEG datasets using SciMiner14. The networks gen-
erated were analysed for common network nodes and disrupted pathways using IPA.

db/+ (n=5)
db/db (n=6)

24wk
db/db

DBA2J (n=4)
DBA2J-STZ (n=5)

34wk
STZ

16wk
db/db

db/+ (n=6)
db/db (n=6)

8wk
db/db

db/+ (n=5)
db/db (n=6)

26wk
ob/ob

ob/+ (n=5)
ob/ob (n=5)

5wk
ob/ob

ob/+ (n=8)
ob/ob (n=8)

13wk
ob/ob

ob/+ (n=6)
ob/ob (n=6)

Microarray Gene Expression Data

Progressive
(n=18)

Non-progressive
(n=17)

SCN
Human

Identification of DEGs
(ChipInspector)

Common/unique
DEGs

Shared
transcriptional networks

Network-level comparison
across models

(TALE)

Generation of
transcriptional network

(SciMiner)

DEG-level comparison
between models and 

Human samples

Disrupted 
Signaling Pathways

(IPA)

Figure 1. Model and Network DEG Comparison Workflow. Previously published microarray datasets were 
reanalysed using ChipInspector to identify DEGs at various time points from murine models of type 1 diabetes 
(STZ), type 2 diabetes (db/db and ob/ob), and human patients. DEG datasets from all murine models were 
generated by comparing diabetic to healthy control mice. The human samples were grouped into progressive 
and non-progressive groups to determine the DEG dataset used. All DEG datasets were compared in order to 
find the DEGs shared across models and stages of DPN. These shared DEGs were analysed using IPA to identify 
possible disrupted signalling pathways. Seven pairwise comparisons were performed to determine the shared 
networks between each murine dataset with our human dataset. These DEGs were then analysed using IPA to 
identify possible disrupted signalling pathways.
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Transcriptomic profiling. Transcriptomic data generated from Affymetrix GeneChips were analysed using 
BioConductor (https://www.bioconductor.org/) and their Affymetrix QC packing in R (http://www.arrayanal-
ysis.org/). All data passing our quality threshold were then analysed using ChipInspector and up-to-date gene 
annotation. Expression signals from the microarray image files were analysed at the single probe level. Significant 
transcripts were defined using a minimum of five significant probes and a false discovery rate of <1% by the 
Significance Analysis of Microarrays algorithm using exhaustive comparisons between control and diabetic mice. 
Eight datasets of DEGs were generated based on significant transcripts between control and diabetic groups for 
each murine model (8, 16, and 24 week db/db; 5, 13, 26 week ob/ob; and 34 week STZ) as well as between progres-
sive and non-progressive groups for the human dataset5–7,9,10,12,13.

Diabetes- and Age-Comparisons of DEGs Sets. The eight DEG sets were compared to find shared 
DEGs between species, stages of neuropathy, and diabetes type at a gene and network level. Each dataset was 
assessed in previous publications for characteristics of DPN and defined as a specific stage of DPN5–7,9,12,13. All 
DEG sets were examined for overlap to identify the conserved pathways or genes responsible for the underlying 
cause of DPN in the different murine and human samples.

Transcriptional network comparison. Each DEG set was used to generate transcriptional networks 
based on gene-gene associations that were identified from biomedical literature using SciMiner14. SciMiner 
is our in-house literature mining system that analyses over 24 million abstracts in PubMed to automatically 
extract potential gene-gene interactions based on their co-occurrence at the sentence level. The network for each 
of the eight DEG sets were constructed individually following mouse gene to human gene orthologue conver-
sion according to the Geomatics annotation orthologue database. Cytoscape (http://www.cytoscape.org)15, an 
open-source platform for visualizing complex networks, was used to visualize SciMiner-generated transcriptional 
networks.

Each mouse DEG network was compared to the human DEG network in a pairwise manner, using a Tool for 
Approximate Subgraph Matching of Large Queries Efficiently (TALE)16. TALE compares network structure and 
extracts overlapping conserved relationships between two networks. The mismatch parameter used allows 10% 
mismatch when generating seed gene nodes and extended networks as in our previous studies17,18. Conserved 
nodes across networks were then examined and analysed for overlapping pathways using IPA.

Functional enrichment analysis. IPA was used to identify enriched pathways within each of the eight 
DEG sets as well as the seven TALE generated network comparison datasets (comparing each mouse DEG set 
to our human DEG set). These pathways for the eight DEG sets were compared to identify conserved disrupted 
pathways that may indicate an underlying cause to DPN. The disrupted pathways observed in our TALE datasets 
were also compared in order to identify a possible central pathway based on nodes and subnetworks gener-
ated from our transcriptional network comparison. The background list of genes used for this analysis was the 
Affymetrix Human Genome U133 Plus 2.0 Array.

Construction of Merged Human-Mouse-Conserved Transcriptional Network and Network 
Centrality Analysis. Eight TALE networks were combined using the merge function in Cytoscape. Edges 
supported by less than three citations according to SciMiner were removed from the network. The merged 
human-mouse-conserved transcriptional network was examined to identify the most central genes in the net-
work. Using package ‘sna’, tools for social network analysis, in R (https://CRAN.R-project.org/package=sna), four 
centrality metrics (degree, eigenvector, closeness, and betweenness) were computed to identify the most impor-
tant nodes (i.e., genes) in the merged transcriptional network. These four different centrality metrics measure 
different aspects of node characteristics19,20.

Briefly, the degree centrality is the number of nodes that are its first neighbours (i.e., directly connected to the 
given node). The more connections a node has, the more central it is, based on degree centrality. In eigenvector 
centrality, a node contributes to the centrality of another node proportionally to its own centrality. A node is 
more central, if it is connected to many central nodes. The other two metrics (closeness and betweenness) are 
dependent on the position of a node in the network. Closeness centrality is based on the distance of a node to the 
other nodes in the network. The closer a node is to the other nodes, the more important it is considered to be. 
Betweenness centrality is based on the number of shortest paths connecting two nodes that pass over the given 
node. A node is more central, if it acts like a bridge in the network, i.e., lies on many shortest paths. In the current 
study, we defined the top 10 or 50 most central genes, belonging to the ranks of the genes using each metric. These 
gene sets were further examined for their enriched biological functions using IPA.

The validity of the central genes was examined by comparing against the average centrality scores from ran-
domly generated transcriptional networks. We generated 1,000 gene sets for each of the eight DEG sets contain-
ing the same number of genes randomly selected from all the genes available on the microarray platform. These 
random gene sets were processed in the same exact way as the real datasets, which resulted in 1,000 merged 
shared networks. The four centrality scores were measured for each gene in the networks and were used as the 
background distribution for a Z-test of the centrality scores from the real data.

Results
Identification of changes in gene expression. Gene expression profiles were generated using eight 
published datasets from sciatic nerve samples from both T1DM and T2DM murine models with DPN as well as 
human sural nerves from patients with T1DM and T2DM5–7,9,10,12,13. Metabolic and neuropathy phenotyping on 
all animal models as well as human subjects are summarized in Supplementary Table 2 based on the published 

https://www.bioconductor.org/
http://www.arrayanalysis.org/
http://www.arrayanalysis.org/
http://www.cytoscape.org
https://CRAN.R-project.org/package=sna


www.nature.com/scientificreports/

4ScieNtific REPORTS |         (2018) 8:17678  | DOI:10.1038/s41598-018-36098-5

reports. Briefly, T2DM mouse models (ob/ob and db/db) were significantly heavier and displayed higher levels 
of fasting glucose levels and glycosylated hemoglobin, when compared with age-matched non-diabetic controls 
(ob/+ and db/+, respectively). Triglyceride levels were significantly increased in T2DM mice. STZ-induced 
T1DM mice had significantly reduced body weight and higher fasting blood glucose and glycosylated hemoglobin 
levels relative to non-diabetic controls. Motor and sensory nerve conduction velocities (NCVs) were significantly 
lower in diabetic mice at all stages of diabetes. Intra-epidermal nerve fibre density (IENFD) was significantly 
decreased in ob/ob mice at 9 and 13 weeks compared with age-matched control littermates. Similar changes were 
observed in the db/db mouse model at 16 and 24 weeks of age. Both IENFD loss and reduced NCVs confirm the 
development of DPN in murine models of disease21. In the human subjects, there was a change in myelin fibre 
density (MFD) over the course of the 52-week study between subjects with progressive versus non-progressive 
neuropathy10. However, other factors, including gender, age, insulin treatment, triglyceride levels, glycosylated 
haemoglobin and body mass index (BMI), were not significantly different between the two groups.

ChipInspector was used to reanalyse each dataset and identified between 438–5,757 DEGs within each data-
set (Table 1). Gene expression profiles were based on a healthy control vs DPN comparison for each murine 
model while the human sural nerve comparison was based on comparing patients with progressive versus 
non-progressive DPN10. Across all eight datasets, over 11,000 genes were identified with at least 2,100 being 
shared across at least 3 datasets. Most murine models displayed a similar expression pattern while our T1DM 
model (STZ-treated) showed a distinct pattern (Fig. 2). Some of the most common genes identified across these 
models include interleukin 1 receptor antagonist (IL1RN)22,23, complement component 3a receptor 1 (C3AR1), 
macrophage scavenger receptor 1 (MSR1)24,25, and matrix metallopeptidase 12 (MMP12)26, which have been 
implicated in the pathogenesis of DPN. Supplementary Fig. 1 illustrates the enrichment levels of the most fre-
quently enriched pathways identified in at least five DEG sets in these datasets by IPA. These pathways include 
many genes related to lipid metabolism, extracellular matrix homeostasis, and immune signalling, which have all 
been implicated in the pathogenesis of DPN6,7,9,11–13,17,27,28.

Dataset
Number of 
Control Samples

Number of 
Diabetic Samples

DEGs identified 
by ChipInspector

8wk db/db 6 5 2,955

16wk db/db 6 6 871

24wk db/db 6 6 5,068

5wk ob/ob 8 8 2,096

13wk ob/ob 6 6 723

Female 26wk ob/ob 5 5 482

34wk DBA2J-STZ 4 5 3,022

Human sural nerve 17 non- 
progressive 18 progressive 5,757

Table 1. Dataset Summary. The number of samples for both control and diabetic samples within each dataset 
is represented in the 2nd and 3rd column. The human dataset rather than being healthy versus diabetic samples 
were grouped into non-progressive and progressive groups based on myelin fibre density loss. The amount of 
DEGs identified by ChipInspector ranged from 482 to 5,757 for each dataset.

Figure 2. DEG patterns by DPN model. Over 11,000 genes were identified and at least 2,100 were shared across 
a minimum of 3 datasets. This heat map shows the pattern of distribution for DEGs across models to display 
how similar or different each model used in this analysis appeared to be on a transcription level.
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Transcriptional network analysis. Our network analysis refines the datasets by examining the connec-
tions between identified DEGs to allow prioritization of possibly centrally influential genes or pathways. Prior 
to pathway analysis with IPA, transcriptional networks are generated based on gene-gene associations, among 
DEGs, that are identified for each dataset using SciMiner14. These networks were then compared in a pairwise 
manner between murine and human datasets using TALE with a 10% mismatch parameter to limit the shared 
network16. Networks ranging from 46–396 genes were identified as shared between each murine set of DEGs 
and the progressive human set of DEGs (Supplementary Table 1; Supplementary Fig. 2). The top network DEGs 
identified as shared across datasets within the compared networks are presented in Supplementary Fig. 3. Among 
these shared DEGs there is a large number of immune factor genes such as CD44, Interleukin 1 receptor antago-
nist, and macrophage scavenger receptor 1.

Other notable genes identified in this shared network include dipeptidyl peptidase 4 (DPP4), a serine pepti-
dase that modulates the levels of incretin hormones, major regulators of glucose homeostasis29. The antidiabetic 
action of DPP4 inhibition has been associated with a partial amelioration of NCV deficit in T1DM rats as well as 
a reduction in nerve fiber loss30,31. The identification of the immune genes previously described as well as other 
target genes associated with DPN suggests that our network approach can successfully narrow the focus of tran-
scriptomic data.

Cytoscape was then used to visualize each shared TALE network. Networks were merged using the merge 
network feature in Cytoscape in order to identify the most connected DEGs (Fig. 3). Each individual shared 
network based on the TALE comparison between the human dataset and each murine dataset can be found in the 
supplemental material (Supplemental Fig. 2). The top five most highly connected genes based on degrees within 
the merged network were PIK3CA, MPAK8, CD44, MAPK1, and CREB. These most connected genes are not 
biased by the amount of dataset in which they appear, but instead depend on the connections that each node has 
within the network. The majority of highly connected genes do appear in four or more datasets and all genes are 
observed in our human data.

The genes in the shared transcriptional networks between human and each murine model were analysed for 
pathway enrichment using IPA. Over 380 pathways were found to be significantly enriched and the top pathways 
shared across each network are shown in Fig. 4, which displays a fold change based on the average fold change of 
the pathway genes identified by IPA. The directionality is indicated by colour (with red being an increase and blue 
being a decrease) based on the percentage of genes involved that have increased or decreased expression levels. 
These pathways were often directionally similar to our human dataset, unlike the originally described DEGs. The 
T1DM STZ model used in our study does display consistent up-regulation of the subset of enriched pathways 
identified as shared across models in Fig. 4. The top pathways shared across each network included LXR/RXR 
activation, agrin interactions at neuromuscular junctions, hepatic fibrosis, and role of osteoblasts, osteoclasts, 
and chondrocytes in rheumatoid arthritis. The common themes that underlie these enriched pathways are lipid 
metabolism, extracellular matrix, and disrupted inflammation.

Merged transcriptional network and centrality analysis. Seven human and murine shared networks 
were merged into a single network, consisting of 688 genes that interacted with up to 304 other genes in the 
network (Fig. 3A). Using the sna package in R, this merged network was analysed to identify the most central 
and influential genes within the network. The four measures of centrality used included closeness, betweenness, 
degree, and eigenvector values. Table 2 lists the 14 most central genes that are ranked among top 10 in each cen-
trality measure (Table 2). While these genes exhibit overlap with Fig. 3B, they also represent a more thorough 
and analytical measure of gene influence within the network while the previous figure assists in clarifying the 
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Gene 
Symbol Description Degree 8wk 

db/db
16wk 
db/db

24wk 
db/db

5wk 
ob/ob

13wk 
ob/ob

F26wk 
ob/ob

34wk 
DBA2J-

STZ
Human

PIK3CA phosphoinositide-3-kinase, catalytic, alpha polypeptide 304 1.43 1.24 1.28 1.10

MAPK8 mitogen-activated protein kinase 8 261 1.42 -1.35 1.29 -1.01
MAPK1 mitogen-activated protein kinase 1 234 -1.10 1.14
CD44 CD44 molecule (Indian blood group) 228 1.70 2.13 2.18 1.53 1.86 1.40 -1.16
LEP leptin 216 2.57 2.25 4.14 2.23 2.77 -5.86 -1.88

CCL2 chemokine (C-C motif) ligand 2 206 3.01 2.22 1.78 1.33 1.17
CREB1 cAMP responsive element binding protein 1 177 1.60 1.49 -1.21 1.12

IL1B interleukin 1, beta 172 1.85 1.52 1.21
JUN jun proto-oncogene 167 -1.37 1.16

ESR1 estrogen receptor 1 164 -1.67 -1.70 -1.77 -1.36 -1.84 1.27 -1.10
FOS FBJ murine osteosarcoma viral oncogene homolog 163 1.39 1.49 1.39

STAT1 signal transducer and activator of transcription 1, 
91kDa 157 -1.36 -1.45 -1.28 -1.12

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 149 1.81 1.58 -1.13

CCND1 cyclin D1 146 -1.49 -1.27 1.11

SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 144 5.13 1.88 2.01 -1.24

CD36 CD36 molecule (thrombospondin receptor) 143 1.71 2.06 1.90 1.61 -1.49
RUNX2 runt-related transcription factor 2 131 1.74 1.92 1.35 1.25 1.09
PLAT plasminogen activator, tissue 130 -1.78 -1.59 -1.33 -1.15

BCL2L1 BCL2-like 1 129 1.39 1.35 1.35 1.11
KITLG KIT ligand 125 1.43 -1.27 1.29 -1.10

A B

Figure 3. Highly connected DEGs across TALE networks. (A) TALE networks were combined using the merge 
network feature in Cytoscape. Node size is based on the degree of connections and organized as a radial tree. 
(B) This table shows the fold changes of the most highly connected genes in each dataset with red colouring 
being an increased fold change and blue being a decreased fold change. A total of 688 genes were included in the 
network with the degree of connections between genes ranging from 304 and 1. Each connection between genes 
were supported by a minimum of 3 citations as defined by SciMiner.
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complex merged network. These genes include interleukin 1 beta (IL1B), hepatocyte growth factor (HGF), c-c 
motif chemokine ligand 2 (CCL2), CD36, FOS, and JUN. While transcription factors such as FOS and JUN are 
likely to be central to a network as regulators of many genes, the inclusion of cytokine and chemokines such as 
IL1B, HGF, and CCL2 further supports the involvement of the immune system in DPN27,32–34.

The 14 most central genes were also used as input to IPA in order to identify enriched pathways represented by 
these influential genes. The top 20 canonical pathways are shown in Table 3 with −log10(p-value) as a measure of 
significance; the ratio represents the proportion of the 14 central genes to all the genes involved in the canonical 
pathway. Ratio values in this case are expected to be low since our input gene list was only the 14 genes identified 
as most central within the network. The most significant pathways include HMGB1 signalling and Glucocorticoid 
receptor signalling.

We further extended our pathway enrichment analysis to the 64 most central genes, belonging to the top 50 
in at least one centrality measure. A total of 272 canonical pathways were identified to be significantly enriched 
(Supplementary Table 3). Based on gene overlap and shared directionality among pairs of these pathways, we 

Pathway Count 8wk 
db/db

16wk 
db/db

24wk 
db/db

5wk 
ob/ob

13wk 
ob/ob

F26wk 
ob/ob

34wk 
DBA2J-

STZ
Human

Agrin Interactions at Neuromuscular Junction 8 -2.10 -1.44 -2.04 1.82 -2.02 -1.76 1.30 -1.14
Role of Osteoblasts, Osteoclasts and Chondrocytes 

in Rheumatoid Arthritis 8 -1.70 -1.96 -1.90 1.77 -1.94 -2.06 1.34 -1.14
Hepatic Fibrosis / Hepatic Stellate Cell Activation 8 -1.77 -1.69 -2.05 1.62 2.00 1.92 1.75 -1.17

Colorectal Cancer Metastasis Signaling 7 -1.60 1.60 -1.75 -1.34 -1.72 1.32 -1.14
Acute Phase Response Signaling 7 -1.93 -1.91 -1.82 1.67 -1.93 2.36 1.34

Adipogenesis 7 -1.84 -1.62 -1.84 -1.44 1.97 2.24 -1.18
Wnt/ß-catenin Signaling 7 1.66 -1.81 -1.69 -1.45 -1.61 -1.98 1.34

LXR/RXR Activation 7 -2.28 1.80 2.32 1.97 1.95 2.13 1.37
Glucocorticoid Receptor Signaling 7 -1.74 -1.66 -1.94 -1.63 2.38 2.54 1.34

Paxillin Signaling 7 -1.79 -1.44 -1.70 1.85 -1.76 1.32 -1.13
Role of Macrophages, Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 7 -1.69 -2.07 -1.81 1.66 -1.91 -2.21 1.36
Ovarian Cancer Signaling 7 -1.62 1.50 -1.49 -1.44 1.68 1.31 1.14

Hepatic Cholestasis 7 -1.79 1.91 -2.34 1.79 -2.14 1.98 1.32
Atherosclerosis Signaling 7 -2.40 2.11 2.18 2.14 2.17 2.03 1.34

MSP-RON Signaling 7 -2.18 1.75 2.62 2.17 1.87 1.32 -1.15
eNOS Signaling 7 -1.59 -1.60 1.48 -1.34 1.73 1.31 -1.13

Figure 4. Disrupted Pathways Based on TALE DEGs. The most frequently perturbed pathways within each 
shared network are represented in the table. The cell value indicates the average change in fold change for the 
genes involved in this pathway while the colour indicates the overall direction of the genes. Red indicates that 
more genes involved in the pathway have increased expression while blue indicates the genes involved have 
decreased expression values. The most common theme among these pathways are inflammation with multiple 
interleukin signalling pathway as well as some autoimmune pathways commonly found in rheumatoid arthritis.

Symbol Description Degree (p-value) Closeness (p-value) Betweenness (p-value) Eigenvector (p-value)

PIK3CA phosphoinositide-3-kinase, catalytic, 
alpha polypeptide 406 (p = 1.8E−08) 0.00081 (p = 6.4E−01) 43246.5 (p = 0.0E + 00) 0.16 (p = 2.9E−03)

MAPK8 mitogen-activated protein kinase 8 372 (p = 3.8E−07) 0.00078 (p = 6.6E−01) 30937.8 (p = 0.0E + 00) 0.15 (p = 6.3E−03)

CD44 CD44 molecule (Indian blood group) 349 (p = 1.3E−08) 0.00075 (p = 6.6E−01) 32129.4 (p = 0.0E + 00) 0.13 (p = 7.3E−03)

MAPK1 mitogen-activated protein kinase 1 280 (p = 3.5E−03) 0.00074 (p = 6.5E−01) 19719.2 (p = 1.7E−03) 0.13 (p = 3.9E−02)

CREB1 cAMP responsive element binding 
protein 1 283 (p = 1.2E−08) 0.00073 (p = 6.4E−01) 15524.7 (p = 0.0E + 00) 0.12 (p = 3.0E−03)

LEP leptin 301 (p = 8.7E−10) 0.00072 (p = 6.6E−01) 22639.7 (p = 0.0E + 00) 0.12 (p = 5.6E−03)

CCL2 chemokine (C-C motif) ligand 2 276 (p = 3.3E−03) 0.00071 (p = 6.9E−01) 13595.3 (p = 4.5E−03) 0.12 (p = 1.0E−01)

JUN jun proto-oncogene 232 (p = 5.9E−03) 0.00071 (p = 6.7E−01) 11905.8 (p = 1.2E−02) 0.12 (p = 4.3E−02)

ESR1 estrogen receptor 1 269 (p = 4.7E−09) 0.00071 (p = 6.6E−01) 17433.2 (p = 0.0E + 00) 0.11 (p = 5.8E−03)

FOS FBJ murine osteosarcoma viral 
oncogene homolog 229 (p = 3.1E−03) 0.00070 (p = 6.4E−01) 21885.2 (p = 2.5E−07) 0.10 (p = 7.4E−02)

CD36 CD36 molecule (thrombospondin 
receptor) 247 (p = 5.0E−07) 0.00070 (p = 6.5E−01) 11865.1 (p = 6.5E−13) 0.11 (p = 7.2E−03)

IL1B interleukin 1, beta 224 (p = 6.5E−03) 0.00070 (p = 6.6E−01) 12492.5 (p = 3.4E−03) 0.09 (p = 1.6E−02)

HGF hepatocyte growth factor (hepapoietin 
A; scatter factor) 213 (p = 9.4E−06) 0.00069 (p = 6.6E−01) 8254.8 (p = 2.6E−07) 0.12 (p = 4.6E−03)

Table 2. Centrality Analysis Gene Results. Centrality analysis was conducted using the Cytoscape plug-in 
CentiScaPe and four centrality metrics (degree, eigenvector, closeness, and betweenness) to identify the 
most important nodes (i.e., genes) in the merged transcriptional network. The top 10 ranked genes in each 
perspective centrality metric is included in the table and indicate the most influential genes within the network. 
The centrality scores of each node were compared against the background distribution of centrality scores that 
were obtained from randomly generated 1,000 random merged networks. P-values were calculated using z-test 
to examine the significant difference between the real and random networks.



www.nature.com/scientificreports/

7ScieNtific REPORTS |         (2018) 8:17678  | DOI:10.1038/s41598-018-36098-5

constructed a contextual similarity network in Fig. 5, where edges from the top 25% similarity scores are included. 
InfoMap35, a network clustering algorithm, was used to identify sub-networks or clusters that are highly inter-
connected. These clusters shared common functional themes, and the largest cluster of canonical pathways was 
associated with immune response and inflammation (in dark mint in Fig. 5).

Discussion
In the current study, we compared transcriptomic changes in peripheral nerves isolated from humans and mouse 
models of T1DM and T2DM at various stages of DPN to identify potential molecular pathways contributing 
to disease. We previously examined these changes during the development of DPN in both mouse models and 
human patients6,7,9,10 and determined critical genes and pathways that play an important role in DPN. However, 
no systematic comparison of these transcriptomics datasets has been made. In the current study, using our pub-
lished datasets, transcriptomic changes were compared in multiple mouse models of diabetes at different stages of 
the disease as well as in human subjects with DPN. Changes in one human and seven murine microarray datasets -  
at both the gene and pathway level – were examined using a single unified analysis pipeline to identify common 
pathways involved in the development of DPN. In total, we identified over 380 pathways that were enriched across 
all datasets, providing new insights into DPN pathogenesis.

Many of the pathways that were dysregulated in our previous reports were similarly dysregulated when com-
pared across the seven murine models and human samples, including pathways associated with immune system, 
cellular development and cellular survival5,7,10,17,28. In addition, we show that key pathways governing lipid metab-
olism (LXR/RXR, adipogenesis and PIK3CA) and extracellular matrix homeostasis (chondrocytes, paxillin, and 
fibrosis), that have been highlighted in our previous study, were also altered in the current setting7. Consistent 
with previous reports, transcriptional changes associated with estrogen signalling were observed, as sex-specific 
risk levels for diabetic complications have been well documented in human36 and mouse13,37 models.

In agreement with our previous studies5–7,11–13,28, we observed transcriptomic and functional pathway changes 
in multiple immune-related pathways in all of the datasets. In particular, our results indicate that key pathways 
involved in the control of immune and inflammatory functions were upregulated during DPN, including NF-κB 
and JAK/STAT pathways. In fact, these pathways are activated in the DRGs of diabetic rats and have been associ-
ated with nerve injury in diabetes17,38,39. Our findings support targeting these pathways in murine models of dia-
betes to understand their pathophysiological roles in DPN18,40. We found that both pro- and anti-inflammatory 
cytokine pathways were dysregulated across datasets: IL-2, IL-6, and IL-10 as well as chemokines were all 
altered in DPN. Studies have shown that cytokines and chemokines not only promote existing inflammatory 
and immune responses, but also induce oxidative and nitrosative stress, further exacerbating cellular injury in 
experimental models of DPN41. In fact, during inflammation, both pro- and anti-inflammatory pathways are 
often simultaneously engaged as a disease process such as DPN transitions from active to chronic inflammation. 
For instance, neuronal repair is initiated by neutrophils42 and driven by macrophages43 under specific environ-
mental conditions that are anti-inflammatory; however, as the disease process progresses, the introduction of 
pro-inflammatory signals overrides the anti-inflammatory response, resulting in tissue destruction. This concept 
is established in neurodegenerative disorders such as amyotrophic lateral sclerosis44, and our data strongly suggest 
a similar process is occurring in DPN.

The importance of the immune system is further highlighted by the fact that many of the pathways we 
observed dysregulated across all murine models and human samples, including those involved with transcription, 
cellular development, and lipid metabolism are also involved in the immune response. We show that HMGB1 sig-
nalling, which is centrally involved in the regulation of gene transcription, is one of the most highly dysregulated 
canonical pathways. However, HMGB1 is also secreted by macrophages and damaged cells and mediates sys-
temic inflammation45 by signalling through receptors such as the Receptor for Advanced Glycation End-products 
(RAGE) and Toll-Like receptors (TLRs), both of which have been implicated in obesity-driven inflammation and 
DPN46–49. This signalling cascade may drive NF-κB pathway that further exacerbates the inflammatory response 
and increases tissue damage.

Moreover, disrupted lipid metabolism is associated with inflammation. PPAR-γ, a major regulator of lipid 
and glucose metabolism, is altered in murine models as well as in human and has been previously implicated as 
a common factor in both DPN and diabetic nephropathy5,9. Yet, PPAR-γ can also control inflammation in mac-
rophages and dendritic cells50,51. Besides its established role in inflammation, the LXR/RXR system has emerged 
as a key regulator of cholesterol, fatty acid and glucose homeostasis, and neuroprotection52–54. Additionally, LXR/
RXR has been increasingly shown to play an important role in diabetic complications54–57. Interestingly, LXR/
RXR is observed as a shared pathway across murine models51,58. To a further extent, our results show an initial 
downregulation of the LXR/RXR pathway in the db/db mouse model after 8 weeks of diabetes and an upregu-
lation at late stages of the disease. In contrast, LXR/RXR expression was upregulated in the ob/ob mouse model 
throughout the duration of diabetes and after 34 weeks of diabetes in STZ-induced T1DM mice, while no data 
were reported at earlier time points for T1DM mice. Collectively, our findings point toward a potential involve-
ment of the LXR/RXR pathway in DPN. Taken together, our data further support a pivotal role of the immune 
system in DPN, though it is unclear from the current data to what extent this involvement is a cause or conse-
quence of neuronal damage. We are currently addressing this question in both experimental27 and clinical settings 
(https://clinicaltrials.gov/show/NCT02936843).

On a different note, while numerous pathways were dysregulated across datasets, the direction of transcrip-
tional change was rarely universal. For many pathways, we found that mouse models of DPN and human tissue 
transcription were differentially expressed in opposite directions; whereas pathways in mice were upregulated, 
they were frequently downregulated in human patients. Similar cross-species discrepancy in gene expression 
direction was also observed in diabetic nephropathy between human and murine models18. There are several 

https://clinicaltrials.gov/show/NCT02936843
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potential explanations for these discrepancies. The first is that the kinetics of murine and human DPN progres-
sion are different; we observed transcriptomic changes in mouse models of DPN up to 24 weeks (T2DM) and 
34 weeks (T1DM), but it is unlikely these mice completely represent the advanced stages of DPN encountered 
in human after decades of disease. Tissue sources may also account for these differences, as the human dataset 
was obtained from sural nerves while mouse data were collected from sciatic nerves. We are currently exploring 
discordant transcriptomic dysregulation in the sciatic and sural nerves of mouse models, as a similar effect may 
be occurring here.

Alternatively, the nature of the controls in each species may have influenced the results. Whereas changes 
observed in the murine models are a result of a diabetic versus non-diabetic comparison, human transcriptomic 
data are a result of comparisons between progressive and non-progressive DPN. We recently conducted a tran-
scriptional network analysis of DPN progression using the same db/db microarray data at 8, 16, and 24 weeks12 
used in the current study. This study identified various DPN progression-associated genes and pathways, which 
were overlapping with those identified in the present study, such as TLR signalling, dendritic cell maturation, 
LXR/RXR activation, and various cytokine pathways. Furthermore, O’Brien et al.’s original publication on the 
ob/ob mouse model data at 5 and 13 weeks6 included a similar comparative analysis result. In this study, inflam-
matory mechanisms were found to have a critical role in early development and progression of DPN, and genes 
related to inflammation, immune response, and chemotaxis were highly enriched at 5 weeks rather than 13 weeks. 
Both studies identified MMP12 as the most significantly up-regulated gene across different time points, which 
was also found to be shared between human and murine DPN in the current study, suggesting its potentially 
critical role in the progression of DPN in both the experimental and clinical settings. Finally, in order to compare 
changes between species, an orthologue conversion was also used to convert murine gene identifiers to their 
human equivalent genes; as such it is possible that some murine genes were not captured in the current analyses.

We also found that many pathways that were downregulated or a mix of up/down regulation in T2DM-driven 
DPN were strongly upregulated in the dataset from the T1DM STZ mouse model. To validate these data, we 
re-examined the outlier parameters in the dataset as well as the background levels of each microarray; in both 
cases the exclusion criteria remained unmet (data not shown). The STZ dataset was held to the same criteria as 
all other murine models which allows for a unified comparison across models and species, yet we still found that 
most of the detected pathways were highly upregulated in T1DM. These data suggest that while similar molecular 
pathways are involved in DPN progression, the utilization of these pathways may be very different in T1DM and 
T2DM. This is supported by our previous study examining transcriptional changes in diabetic neuropathy and 
nephropathy in both T1DM and T2DM mouse models; we found that while there was a high transcriptional con-
cordance in diabetic nephropathy, DPN-associated pathways were often highly discordant17. Together these data 

Ingenuity Canonical Pathways −log10(p-value) Genes Ratio

HMGB1 Signalling 14.2 FOS, PIK3CA, JUN, CCL2, MAPK1, MAPK8, IL1B, PLAT 0.06

Glucocorticoid Receptor Signalling 13.6 FOS, PIK3CA, JUN, CCL2, MAPK1, CREB1, MAPK8, IL1B, ESR1 0.03

GDNF Family Ligand-Receptor Interactions 11.3 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.08

Neurotrophin/TRK Signalling 11.3 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.08

Estrogen-Dependent Breast Cancer Signalling 11.2 FOS, PIK3CA, JUN, MAPK1, CREB1, ESR1 0.08

LPS-stimulated MAPK Signalling 11 FOS, PIK3CA, JUN, MAPK1, CREB1, MAPK8 0.07

HGF Signalling 10.2 FOS, PIK3CA, JUN, MAPK1, HGF, MAPK8 0.05

Renin-Angiotensin Signalling 10.1 FOS, PIK3CA, JUN, CCL2, MAPK1, MAPK8 0.05

IL-6 Signalling 9.92 FOS, PIK3CA, JUN, MAPK1, MAPK8, IL1B 0.05

Aryl Hydrocarbon Receptor Signalling 9.66 FOS, JUN, MAPK1, MAPK8, IL1B, ESR1 0.04

Role of Macrophages, Fibroblasts and 
Endothelial Cells in Rheumatoid Arthritis 9.38 FOS, PIK3CA, JUN, CCL2, MAPK1, CREB1, IL1B 0.02

IL-2 Signalling 9.37 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.08

UVB-Induced MAPK Signalling 9.3 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.08

IL-10 Signalling 9.23 FOS, JUN, MAPK1, MAPK8, IL1B 0.07

EGF Signalling 9.23 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.07

Acute Phase Response Signalling 9.17 FOS, PIK3CA, JUN, MAPK1, MAPK8, IL1B 0.04

Chemokine Signalling 9.14 FOS, JUN, CCL2, MAPK1, MAPK8 0.07

Toll-like Receptor Signalling 9.05 FOS, JUN, MAPK1, MAPK8, IL1B 0.07

CD40 Signalling 8.93 FOS, PIK3CA, JUN, MAPK1, MAPK8 0.06

Dendritic Cell Maturation 8.86 PIK3CA, LEP, MAPK1, CREB1, MAPK8, IL1B 0.03

Table 3. Top 20 IPA Canonical Pathways Based on the Most Central Genes. The 14 genes identified by 
CentiScaPe to be the most central genes within the merged network based on the four centrality measures were 
used as input for IPA to analyse pathway enrichment. This table represents the enriched pathways based on 
these genes with −log10(p-value) as a significance measure and the ratio as the proportion of significant DEGs 
measured over the total genes within the pathway. HMGB1 signalling, Glucocorticoid receptor signalling, as 
well as the various interleukin pathways indicate disrupted inflammation as a central influence within the cross-
species shared network. The ratio represents the proportion of the 14 central genes to all the genes involved in 
the canonical pathway.
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suggest that key molecular pathways are commonly involved in DPN but that they may be differentially regulated 
in T1DM and T2DM. This concept is further supported by our reports in man, where a systemic review of clinical 
trials strongly suggest different pathogenic mechanisms underlying DPN in T1DM versus T2DM59.

Conclusions
In summary, our transcriptional network-based approach, integrating multiple bioinformatics analyses, iden-
tified DPN-associated pathways that are highly conserved across multiple murine models and human. Many 
of the pathways identified highlight the importance of the immune system through cytokine and chemokine 
signalling as well as the observed dysregulated pathways associated with transcription, cellular development, 
and lipid metabolism are all involved in the immune response. The observed conserved pathways are likely the 
key responses in DPN and provide new therapeutic targets for the potential treatment of DPN, a disorder that 
remains without a drug intervention to date.

Data Availability
The microarray raw data used to support the findings of this study were gathered from the Diabetic Neuropathy 
Microarray Knowledge-Base (DNMKB; http://hurlab.med.und.edu/DNMKB/) and previous publications. These 
prior studies (and datasets) are cited at relevant places within the text as refs5–13.
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