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Dirac potential in a rotational 
dissipative quantum system
Yi-Rong Ma1,2, Wei Jia1,2, Shi-Rong Lin1 & Qing Zhao1

This study proposes the usage of an effective potential to investigate a dissipative quantum system with 
rotational velocity. After gauge transformation, a Doebner- Goldin equation (DGE) that describes the 
dissipative quantum system with a Dirac potential is obtained. The DGE is solved based on constraint of 
vertical relation between the rotational velocity field and density gradient when a harmonic oscillator 
model is considered. It is observed that the dissipative quantum system is directly equivalent to a 
monopole system and that the two gauge potentials that are given by Wu and Yang in the north and 
south hemispheres can be reproduced. Furthermore, a set of gauge-invariant parameters is obtained to 
discuss the dissipation characteristics of the system.

The Dirac potential has been introduced by Dirac as part of the discussion related to magnetic monopoles in 
19311. It possesses a string of singularity in the gauge potential field and provides a special concept to investigate 
the vector potential in quantum mechanics2,3. Based on this motivation, several theoretical studies were con-
ducted4,5. Recently, Dirac monopole has been extensively investigated in exotic spin ices6,7, superfluid 3He8,9 and 
a Bose-Einstein condensate (BEC) system10–13. Furthermore, it was observed that the velocity potential could 
become completely equivalent to the Dirac potential in a spinor BEC system when the spinor order parameter was 
proposed2,3. A BEC without a spinor order is usually described using the Gross-Pitaevskii equation(GPE)14,15, and 
it is difficult to find the analogous Dirac potential by defining the velocity potential in such a system. However, the 
introduction of a spinor order parameter allows the GPE to become the extended GPE, and the velocity potential 
is observed to subsequently become equivalent to the Dirac potential. This indicates that the Dirac potential can 
be generated with considerable ease in a different quantum system that can be described using the nonlinear 
Schrödinger equation (NLSE) containing several nonlinear terms.

The DGE is one of the most general NLSEs and can be derived using the algebraic frame of group theory16. The 
DGE contains a set of nonlinear terms and can be used to describe dissipative quantum systems17–21. Furthermore, 
the equivalent Dirac potential may be obtained by defining the velocity potential in DGE. However, it is difficult 
to provide a clear explanation of the nonlinear terms in DGE because it is difficult to directly obtain an analytical 
solution of DGE.

To obtain an analytical solution of DGE and a better physical interpretation of the nonlinear terms, a dissi-
pative quantum system with a rotational velocity was considered in the time-independent case. After the intro-
duction of an effective potential, such as quantum pressure14,22–24, the resulting subfamily of DGE is observed to 
become similar to the analogous classical fluid equation. Based on this analogy, the simple three-dimensional 
DGE can be solved and a set of gauge-invariant parameters can be obtained when a central potential (such as 
the harmonic oscillator) and a constraint related to the vertical relation between the rotational velocity field and 
density gradient are suggested. Further, the gauge-invariant parameters characterize the physical properties of 
dissipation and exhibit that the Galilean invariance is broken25,26 in this dissipative system that is described using 
the subfamily of DGE. Additionally, the velocity potential and nonlinear terms of this system provide two gauge 
potentials AN and AS

11 in Case 1 and Case 2, respectively, which result from the DGE solution and process of 
gauge transformation.

This study is organized as follows. In Section 2, the Schrödinger equation is introduced to describe the motion 
of a charged particle that interacts with a rotational field. In Section 3, the DGE with Dirac potential is obtained. 
In Section 4, the analytical solution of the DGE and the physical meaning of the corresponding results are pre-
sented, whereas the dissipation characteristics of the system are discussed in Section 5. Finally, the main conclu-
sions are presented in Section 6.
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The Model and Assumptions
The motion of a charged particle in an electromagnetic field is considered. The Schrödinger equation can be given 
as follows:
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where μ is the mass of the particle, = − ∇P̂ i  is the momentum operator, c is the speed of light, q is the charge, 
ψ(r, t) is the wave function, A is the vector potential, and V is the total potential that includes the dissipation of 
this system. For the time-dependent state, the wave function can be often expressed in an explicit form as 
ψ ρ= ζt t er r( , ) ( , ) i tr( , ), where ρ(r, t) is the density and the phase is ζ(r, t). Using the commutation relation 
between P̂ and Â, we obtain

= − ∇ ⋅ˆP̂ iA A[ , ] (2)

Further, Eq. (1) can be rewritten as the two following equations:
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where φ ρ= tr( , )  is the amplitude of wave function,  ζ= ∇ −
μ ( )v Aq

c
1  is the velocity potential. Note that the 

corresponding vorticity is
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Further, Eq. (4) can be rewritten as:
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In the time-independent situation, by assuming that the direction of the density gradient is perpendicular to 
the direction of velocity and by considering

μ
μ μ φ φ
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where s satisfies ▽s = v × (▽ × v), h is a function that only depends on position and E is an eigenvalue of energy, 
the simplified form of Eq. (3) and Eq. (6) can be obtained as follows:

∇ ⋅ = ⋅ ∇ = −∇ .hv v v0, ( ) (8)

It can be observed that the time-independent Schrödinger equation leads to the analogous classical fluid equa-
tions. The term Veff = −μh + μs is defined as an effective potential term that is only related to velocity and can be 
considered to be the gauge potential. Such an introduction is equivalent to the gauge transformation ▽ → ▽ + v 
in Eq. (1), which is the original Schrödinger equation. Correspondingly, the wave function ψ(r) is also trans-
formed into ψ ψ′ ′ = ∫− ′ ′μ

er( ) r drv( )i r
  and renders Eq. (7) to be tenable if the phase vanishes.

To solve Eq. (8) in a simple manner, the solution of a similar set of equations that describe the steady-state flow 
of a classical fluid model is followed27–29. The velocity field of such a model depends only on the radius r and the 
angle θ in spherical coordinates:

θ

θ θ
=

−

− −
v

r
A A

A A A

1 cos

cos 2 cos 2
,

(9)
r

2 1

1
2

2 3

θ θ

θ
= −

− −
θv

A A A
r

cos 2 cos 2
sin

, (10)
1

2
2 3

=ϕv 0, (11)

where A1, A2, A3 are constants. The velocity is rotational (∇ × ≠v 0) when A1, A2, A3 become special in two 
cases:
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Case 1: A1 = 0, A2 = − A3 = D2
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Case 2: A1 = 0, A2 = A3 = −D2
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The corresponding effective potential Veff = −μh + μs can be solved as follows:
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where D = ℏ/μ.
Substituting Eq. (14) and Eq. (15) into Eq. (7), the energy eigenvalue equation can be rewritten as
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where ∓ and ± in the third term are the signs for Case 1 and Case 2, respectively.

The Dirac Potential and Dissipative Quantum System
The Hamiltonian of Eq. (7) can be rewritten as follows:
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where the first term of the effective potential V in Eq. (14) and Eq. (15) is merged into the external potential and 
where ′ = ± µ θ

θ
V V D
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2

2 2 . By considering an equivalent relation between the monopole strength g = ℏc/q and 
D = ℏ/μ in Eq. (16), it can be observed that the Hamiltonian in Eq. (17) becomes similar to that of a particle’s 
motion in a monopole external field30:
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where the subscript M represents the monopole system, further, the external potential VM = 0 is often considered 
in the monopole system. Here a relation VM = V′ is required to calculate the density of the quantum system in Eq. 
(16). By expanding the first term of HM and by temporarily ignoring other characteristic constants,

− ∇ − = −∇ + ∇ ⋅ + ⋅ ∇ + .i i iA A A A( ) (19)M M M M
2 2 2

The Dirac potential AM in the study is divided into two regions with different values to eliminate the string 
singularity11:
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where δ was selected to satisfy 0 < δ ≤ π/2. The two gauge potentials can be transformed from one to the other 
using the gauge transformation relation

= + ∇ .−i
q

U UA A
(21)N S

1

Note that the Dirac potential AM(θ) is parallel to the φ̂e  direction while the wave function ψM is φ-independent11, 
so they satisfy ▽⋅AM = 0 and AM⋅▽ψM = 0. After the second and third terms of Eq. (19) are eliminated, it can be 
observed that the sum of the effective potential and the external potential terms becomes equal to the square of the 
Dirac potential. Furthermore, AN and AS can be reproduced in two different cases using Eqs (12) and (13).

For the external potential V′, a modified nonlinear term is added along with the original scalar potential term 
V0. This nonlinear term is suggested as a summation of specific nonlinear terms in the following manner:
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A nonlinear term, such as Ω{φ}, is always introduced in the Schrödinger equation and models the quan-
tum dissipation and diffusion effects. Further, Eq. (16) becomes equivalent to the general DGE16,31,32 in the 
time-independent state.
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As one of the most general NLSE, the DGE is always used to describe the dissipative quantum system and the 
dissipative term Ω{φ} can be written in terms of real and imaginary parts25

φ φ φΩ = +R iI{ } { } { }, (24)

R{φ} and I{φ} are the real-valued nonlinear functions of the following form:
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2 2 in which ρ φ φ= ⁎  and 

 φ φ φ φ μ= ∇ − ∇ˆ ⁎ ⁎ ij ( )/2  denote the density and the current, respectively. F and F′ are the real-valued diffusion 
coefficients. Because of Eq. (22), we assume =F 0 in this study33.

The potential of the quantum system was divided into three parts in this section. The first part is the original 
external potential V0, which requires a reasonable form to determine the density. The value of the second part 
can be observed in the second term of Eq. (23), and becomes equal to the square of the Dirac potential, which 
indicates that the model can be used to analogize the Dirac monopole system. The third part of the potential Ω{φ} 
describes the properties of the dissipative system. Therefore, the solution of Eq. (23) may provide a method to 
study both the Dirac monopole system and the diffusion system described in DGE.

Analytical Result of DGE
For simplicity, let us consider φ = R(r)Θ(θ)eimφ and ℏ = 1. Because the fluid velocity is v = (vr, vθ, 0) without the 
component of ϕ̂, we obtain m = 0. By separating the variables, Eq. (16) can be reduced to:
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where λ is a coefficient of variable separation.
First cosθ is rewritten as cosθ = x, and Eq. (27) becomes Heun’s differential equation34, which is similar to 

the equations related to the movement of a charged particle around a monopole in two regions. Because the 
two potentials in Eq. (14) and Eq. (15) were observed to be identical after gauge transformation, the equation in 
region Ra must be considered:
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Because Yl, q, 0 is single valued, the gauge transformation relation between two regions requires l − q = integer 
and l(l + 1) ≥ q2. In this discussion, q = m = D, α = 0, β = −2D, and n = l + q. Further, solution Yl, q, 0 of Eq. (28) 
can be denoted as33–35

π
= Θ =







+ 





+ − −Y l x P x2 2 1
4

(1 ) ( ),
(29)l q l q

D D
n

D
, ,0 ,

1/2
0, 2

where

=
−

+ − + .−P x
n

x d
dx

x x( ) ( 1)
2 !

(1 ) [(1 ) (1 ) ] (30)n
D

n

n
D

n

n
n n0, 2 2

Note that the Dirac charge quantization condition is q = l = N/2, N∈ in this charge-monopole system with 
VM = 0. However, the influence of the external potential VM = V′ = V0 + Ω{φ} cannot be neglected, therefore, a 
reasonable scalar potential V0 must be suggested to modify the quantum number.

In general, if a potential satisfies r2V0(r) → 0 and the forms of the relevant wave function conform to Rl(r)∝rl 
when r → 0, the corresponding solution will properly satisfy the constraint condition of ▽ρ⋅v = 0. By considering 
the model of a three-dimensional isotropic harmonic oscillator, V0 can be expressed as follows:
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where μ is the mass of a single particle and ω is the angular frequency of a classical harmonic oscillator in the 
absence of an external force. The corresponding energy eigenvalues and solution of the Hamiltonian 
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where μω=a / , F(α, γ, δ) is the confluent hypergeometric function, nr is the radial quantum number, and l′ 
the azimuthal quantum number that satisfies the modified relation of l′(l′ + 1) = λ − g2, where g2 = 3D2 − D. For 
the chosen model with a central potential, the relation between l and q can be easily obtained as

′ = ′ = .l q l2 , 0, 1, 2, (34)

The energy is also quantized in this situation. Under the above constraints, the solutions of R(r) and Θ(θ) can 
be obtained as follows:
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Therefore, the probability density of a particle can be presented using Eq. (35) and Eq. (36).
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is a coefficient that changes with nr and q.
The density distribution of Case 1 is presented. Figure 1 depicts the dependence of the probability density ρ in 

the rectangular coordinate system of (x, y, z). This figure indicates that the probability of charged particle distri-
bution is symmetric around the z-axis. Further, there is a special diffused distribution along the z-axis. Figure 2 
depicts the dependence of probability density ρ for different q, which can be considered to be the physical quan-
tity of the monopole strength. In Fig. 3 the relation between probability density and the radius r in different nr 
are presented. In this case, the probability density increases with the radius of the x − y plane, and the probability 
density is the largest at the bottom of the spherical shell. This distribution properly satisfies the constraint of 
▽ρ⋅v = 0, and the DGE Eq. (23) can be solved.

Discussion
In this section, the accurate expressions of the nonlinear terms Ω{φ} in the DGE are considered. Based on the 
previously obtained density, Rj[φ] can be calculated as follows (in Case 1):
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terms Ω{φ} in Eq. (22) can be given by
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. F′c1 and F′c4 can take arbitrary real values. The 
Hamiltonian of Eq. (7) is further rewritten to give a general form of the nonlinear Schrödinger equation that also 
includes the linear case25.
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Figure 1. Dependence of the probability density ρ in the (a) x-y plane and (b) x-z plane of the rectangular 
coordinate system (x, y, z), where ℏ = 1, q = 1, nr = 0 and r0 = 1.

Figure 2. Dependence of the probability density ρ for different q in the (a) x-y plane and (b) x-z plane, Where 
nr = 0 and r0 = 1.

Figure 3. Variations of the probability amplitude φ0 for different radial quantum numbers nr. The other 
parameters are q = 2 and r0 = 1.
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where H0 is the linear part of the Hamiltonian with Dirac potential. In the last two terms, ν1 = − 
μ
1

2
, ν2 = − F1

2
, 

η1 = F′c1, η2 = − 
μ
1

4
 + F′c2, η3 = 
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1

2
 + F′c3, η4 = F′c4, and η5 = 

μ
1

8
  + F′c5. Note that F = 0 and R1 = 0 so that the second 

term containing imaginary numbers is eliminated. Five independent gauge-invariant quantities that label the 
classes of equations in the family can be introduced to understand the physical meaning of this set of coefficients. 
These gauge invariants are provided as nonlinear combinations of the original coefficients25,36.
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The corresponding value of the gauge invariants are τ = − ′F c1
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μ μ5
1
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3
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5
22 2 . Because the quantities F′c1 and F′c4 take arbitrary values, they can be set to zero to satisfy 

the condition that results in time-reversal invariance, which indicates that the wave function φ(r, t) of DGE satisfies φ(r, 
t) = φ(r, −t) if τ1 = τ4 = 0. Note that the transformation t → −t is equivalent to setting ν ν= − =j( 1, 2)j

T
j  and 

η η= − = …j( 1, 5)j
T

j , where the superscript T denotes time reversal25. However, the parameter τ3 ≠ −1 breaks the 
Galilean invariance, i.e. the DGE solutions do not satisfy the gauge transformation of φ′(r, t) = exp[−iμ(v⋅r + r2t/2)]φ 
(r + vt, t)32. Comparing with previous studies37, it can be observed that this situation can be mainly attributed to the 
vorticity of the velocity field in Eq. (5). Furthermore, τ2 and τ5 characterize the deviation from linearizability.

Conclusion
A dissipation quantum system with a Dirac potential was investigated in this study. First, the motions of a particle 
in rotational superfluid were indicated, and an effective potential was introduced so that the Schrödinger equa-
tion would exhibit the same form as that exhibited by the classical fluid equation. After the gauge transformation, 
a subfamily of DGE containing the Dirac potential was obtained. In particular, the vector potentials AN in the 
northern hemisphere and AS in the southern hemisphere were derived from the velocity fields of Case 1 and 
Case 2, respectively. After analyzing the exact solutions of the DGE in the selected model, the relevant density 
distributions were observed to be similar to those of the monopole potential. The dissipation characteristics of the 
system were discussed for the DGE, thereby describing the dissipative quantum system. It was observed that this 
dissipative quantum system broke the Galilean invariance although it was time invariant.

The solution in this study can be applied to simulate the distribution of the Dirac potential field in a quantum 
damped oscillator system. Furthermore, by changing the type of the central potential, it may be possible to extend 
the solution to other dissipative systems with different Ω{φ}. In general, if a central potential satisfies r2V0(r) → 0 
and the forms of its relevant wave function conform to Rl(r) ∝ rl when r → 0, this potential can be constructed as 
the additional radial potential of the model and the corresponding results will also satisfy the constraint condi-
tions of ∇ × ≠v 0 and ▽ρ⋅v = 0. Therefore, in addition to the harmonic oscillator potential, this solution can be 
extended to other potentials such as the spherical square potential (hard core model).
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