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Safe and efficient novel 
approach for non-invasive gene 
electrotransfer to skin
Lise Pasquet1, Sophie Chabot1, Elisabeth Bellard1, Bostjan Markelc1, Marie-Pierre Rols1,  
Jean-Paul Reynes2, Gérard Tiraby2, Franck Couillaud  3, Justin Teissie  1 & Muriel Golzio1

Gene transfer into cells or tissue by application of electric pulses (i.e. gene electrotransfer (GET)) is a 
non-viral gene delivery method that is becoming increasingly attractive for clinical applications. In 
order to make GET progress to wide clinical usage its efficacy needs to be improved and the safety of 
the method has to be confirmed. Therefore, the aim of our study was to increase GET efficacy in skin, 
by optimizing electric pulse parameters and the design of electrodes. We evaluated the safety of our 
novel approach by assaying the thermal stress effect of GET conditions and the biodistribution of a 
cytokine expressing plasmid. Transfection efficacy of different pulse parameters was determined using 
two reporter genes encoding for the green fluorescent protein (GFP) and the tdTomato fluorescent 
protein, respectively. GET was performed using non-invasive contact electrodes immediately after 
intradermal injection of plasmid DNA into mouse skin. Fluorescence imaging of transfected skin showed 
that a sophistication in the pulse parameters could be selected to get greater transfection efficacy 
in comparison to the standard ones. Delivery of electric pulses only mildly induced expression of the 
heat shock protein Hsp70 in a luminescent reporting transgenic mouse model, demonstrating that 
there were no drastic stress effects. The plasmid was not detected in other organs and was found only 
at the site of treatment for a limited period of time. In conclusion, we set up a novel approach for GET 
combining new electric field parameters with high voltage short pulses and medium voltage long pulses 
using contact electrodes, to obtain a high expression of both fluorescent reporter and therapeutic genes 
while showing full safety in living animals.

The skin is not only a physical barrier that shields the body from external agents. This organ is also an attractive 
target for gene therapy and vaccination, due to its accessibility, large surface area and the presence of numerous 
immune cells such as Langerhans cells and other dendritic cells that can elicit appropriate immune responses to 
defend the body1,2. Therefore, Bacille Calmette-Guérin and rabies vaccines are acting by the direct injection of 
using either dead or attenuated virus (or bacteria) or recombinant protein into the dermis for immunization3. 
These conventional immunizations are most of the time disappointing due to their low effect against intracellular 
pathogens and cancers. This is the result of the lack of cellular responses. New technologies, such as DNA vaccines 
elicit both broad humoral and cellular high level immune responses4. The barrier properties of the skin remains 
a technical challenge by limiting the penetration of DNA in the skin cells. Results from a direct injection skin 
DNA immunization are limited. Cutaneous gene therapy need to be efficient, specific and the DNA expression 
need to be controllable in time. Over the years, several chemical and physical methods have been implemented to 
enhance skin DNA delivery (see for review5). In the field of gene delivery, most researches used the highly effec-
tive viral gene transfer. However, this method presents several side effects such as generation of novel infectious 
agents, immunogenicity of the vector and mutational insertion of viral DNA. In order to avoid these negative 
effects and still be able to introduce large molecules of DNA there is still a need to develop safe non-viral gene 
transfer approaches6.
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Direct in vivo application of short high voltage pulses has been shown to permeabilize skin cells. The first in 
vivo electroporation-mediated gene transfer was obtained by Titomirov and colleagues. They transfered an anti-
biotic resistance gene into the skin of newborn mice. Expression was detected in skin fibroblast extracted from 
the dermis7. Studies showed that gene electrotransfer in the skin affects various cell types such as keratinocytes, 
adipocytes and fibroblasts as well as Langerhans cells and other mononuclear cells with dendritic processes. 
The transfected cells appeared to be located in different layers of the skin from the epidermis to the hypodermis 
through the dermis and as deep as the subcutaneous muscle layer8–13. Transfected cells have also been observed in 
draining lymph nodes14. Therefore, skin appeared to be a good target for immunization with an easy access15–17. 
One example of efficient use of skin gene electrotransfer comes from study delivering a plasmid expressing VEGF 
in an ischemic rat skin flap model to enhance wound healing18. The intradermal injection of DNA followed by the 
skin permeabilization with electric field pulses produce a local treatment dependent on the spatial and temporal 
distribution of the DNA and the electric field. This treatment has the main advantages of being easy to use, fast, 
reproducible and safe.

The skin is the first line of defense of the organism against invading antigens due to its high number of profes-
sional antigen-presenting cells. Therefore, various antigens were expressed in the skin to elicit a response of this 
high level of antigen-presenting cells. As in muscle, expression of antigens following skin pDNA GET generates 
both CD8 and CD4 responses17.

Gene electrotransfer (GET) is obtained by a local and controlled injection of a small volume of a plasmid 
solution followed by electrical voltage pulses delivery between electrodes in contact with the target tissue19. GET 
results from an electrophoretic driven accumulation of the plasmid (pDNA) towards the surface of the target 
cells, that are electropermeabilized20,21. Transfection yield (expression of the protein encoded by the pDNA) is 
therefore under the control of the transfer across the target cell membrane. The electric parameters that control 
the pDNA electrophoretic drift in the bulk and the level of membrane permeabilization should be selected to 
preserve the cell viability. Firstly, the local field applied on a target cell in a tissue is known to be a key parameter 
to obtain membrane permeabilization but can be destructive22. Secondly, the pulse duration plays a complex 
positive role23. Thirdly, the number of repetitive pulses in a train increases the local accumulation of pDNA24. 
Finally, as the electric field is a vector, the direction of the applied field that is under the control of the position of 
the electrodes is of major importance25.

The field distribution in the target tissue depends on its electrical properties but mostly on the design of the 
electrodes26. Skin GET was first obtained by pinching the skin between parallel plate electrodes. This was limited 
to parts of the skin that were highly flexible to be introduced between the plates. In that case, large skin area could 
be treated. The resulting field distribution brought the electropermeabilization of the tissue under the skin as pre-
dicted by electrical modeling27,28. Minimally invasive electrodes were designed with arrays of microelectrodes at 
high density. They could be perforating the skin to get rid of the insulating barrier played by the stratum corneum 
(SC). Even though small injuries were induced with a risk of local inflammation, they were proved to be effective 
for gene transfer and to mediate a host immune response. A low voltage was delivered between each neighbor-
ing needle that resulted in a local heterogeneous field. Spots of expression were present only close to the needle 
electrodes29–37. Contact multi electrodes arrays were described by other groups, providing an electric field present 
across the SC. A conductive gel was added between the tip of each electrode and the skin. Higher voltage to elec-
trode distance ratio were therefore needed to obtain the electrical conductivity across the SC and as result a way 
to affect the dermis and the epidermis. This technology was observed to be effective for pDNA expression in the 
skin. Again, as the field in the skin was not homogeneous, spots of pDNA expression were detected in the treated 
skin. Damages to the skin resulting from the SC alterations were limited by the proper choice of the electrical 
parameters9,38–42. Our group introduced a few years ago another concept of non-invasive electrodes allowing the 
electrotreatment of a large skin area43. These contact electrodes were observed to be highly safe and efficient for 
electroimmunization44.

Protein expression obtained after GET is also dependent on the construct. The size of the plasmid is proven a 
key element. Mini-circle plasmids were shown to induce a higher rate of protein expression45. This was described 
as a consequence of the damages associated with the transmembrane translocation of the construct46. The choice 
of the promoter played a role in the level of expression and its tissue specificity47.

The full nature of the immune and tissue responses to nucleic acids and electrotransfer to the skin has not 
been addressed. It was observed in muscles that the nature of the inflammatory infiltrate and the kinetics of gene 
expression were different along electrotransfer by conventional and CpG-free plasmids48.

Despite the key advantage of pDNA GET in the skin for vaccination there is always room for improvement 
especially in regards to GET parameters to limit the targeted tissue to the skin and not to the underlying tissue 
while keeping an efficient expression. The inflammatory response of the treated tissue must be limited in time 
and the delivery method needs to be safe. This can be improved by a proper choice of the pDNA construct. The 
delivery method needs to be safe and locally controlled in order to avoid spreading of the transgene.

In the present study, we analyzed the expression of reporter and therapeutic genes by using a set of 
non-invasive contact electrodes under different pulsing conditions (duration, voltage, direction). The long-term 
persistence of a therapeutic plasmid was approached and the thermal and stress effects were evaluated.

Results
Optimization of the electric parameters. In order to increase the transfection yield of plasmid in the 
skin and therefore the expression of this plasmid, we first evaluated the impact of a large set of pulsing conditions 
all applied using contact wire electrodes. High Voltage (HV) consists in 100 µs square waved pulses of 400 V, Low 
Voltage (LV) were 50 ms square waved pulses of 40 V and Medium Voltage (MV) were 20 ms square waved pulses 
of 100 V (Fig. 1). The intermediate time delay was 50 ms. These parameters were selected to ensure that no tissue 
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damage should result from the treatment and keeping in mind that High long electric field pulsing conditions 
were shown to induce a local burning and tissue damage in the inter-electrode space44.

We observed that tdTomato expression, when detectable, was always located between the electrodes. LV and 
HV parameters used alone induced an almost undetectable expression of the protein whereas the application of 
MV parameters induced a consistent expression of the tdTomato protein. This condition induced a maximum of 
expression by 7 to 10 days after treatment and then a decrease in expression until being undetectable by day 18. 
The association of HV and LV parameters induced an improved tdTomato expression that was further increased 
using the combination of HV and MV parameters. In both cases, the maximum of expression was observed 8 
days after treatment (Fig. 2). However, while the HV-LV parameter induced a transitory expression that became 
undetectable by day 18, the HV-MV parameters induced a sustained expression over 18 days easily detectable by 
imaging. Therefore, we selected the HV-MV parameters for further optimization studies. Moreover, imaging of 
the animal in the days following the delivery showed that the expression of the tdTomato measured by the eval-
uation of the fluorescence intensity was homogeneous in the gap between the electrodes and was not a mosaic 
of spots (S2). This was confirmative of the mathematical prediction under Comsol simulation already published 
where it was obtained a homogeneous field distribution in the space between the parallel electrodes (plate as well 
as contact wire)22.

Effect of the electrode design on gene expression. After intradermal injection, the papule formed 
in the skin was soft enough to be placed between plate electrodes. A train of 4 HV-MV pulses was used as it was 
shown to be highly efficient when using the contact electrodes. Plate electrodes were known to deliver a homo-
geneous field on the sample present between the electrodes. Treated skin surface was 0.4 cm2 for two types of 
electrodes. Therefore, the same settings (voltage to electrode gap, duration delay) were kept.

As shown on Fig. 3, the results obtained with plate electrodes were similar to those obtained with the contact 
electrodes. The level of tdTomato fluorescence as well as the time required to detect the expression and the pattern 
of expression were similar with one or the other set of electrodes. However, tdTomato expression appeared more 
stable in time when using contact electrodes compared to plate electrodes.

Contact electrodes were selected for the development of the study (more user friendly, as they are just placed 
on the top of the skin around the papule).

Effect of the number of train of pulses. We described in Fig. 2 the efficiency of the HV-MV parameters. 
In this original setting 2 successive pulses with different magnitudes and durations are delivered repetitively dur-
ing a train. Previously the number of double pulses (n) in a train was set to 4 and all were applied in a unipolar 
direction. We evaluated if the number of pulses was affecting the expression (in magnitude and duration). As 
determined previously, mice were injected with 25 µg of plasmid tdTomato and treated with different numbers of 
pulses. The tissue integrity was also closely observed.

Figure 1. Gene electrotransfer in vivo. (A) Electrode set-up applied on the mouse skin. (B) Simple electric 
parameters and corresponding voltage profiles. (C) Combination of electric parameters and corresponding 
voltage profiles. (D) On line monitoring of the current associated to the HV-MV pulse train (2 successive trains 
are displayed). The vertical arrow is 0.5 Amp
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Two trains of pulses were sufficient to detect a significant expression of the tdTomato protein. The application 
of 4 trains of pulses induced a 3 to 4-fold higher expression than 2 trains of pulses. The application of 6 trains 
of pulses induced an intermediate expression between the ones obtained with 2 trains and 4 trains suggesting 
a limiting effect of the number of pulses that can be applied. This was confirmed by the absence of tdTomato 
detection with 8 trains of pulses (Fig. 4A). The fluorescence was always detected as a homogeneous spot but with 
a larger intensity with 4 trains (Fig. 4C). The time course of expression was similar whatever the number of trains. 
The highest expression was obtained on day 8 after the treatment. Direct observation of the skin showed that it 
was partly damaged with 6 trains of pulses and largely injured with 8 trains (Fig. 4B). These damages may have 
induced cell death that can explain the observed decrease of tdTomato expression with the higher number of train 
of pulses. Therefore, 4 trains of HV-MV pulses were selected as the best choice.

Effect of polarity inversion. The transfer of pDNA along GET is supported by electric forces. They are 
vectors and the direction of the field can be considered as a leading factor in gene electrotransfer. It was indeed 
observed in vitro that the pattern of DNA interaction with cell surfaces was dependent on the field orientation25. 
We showed that 4 trains of HV-MV pulses delivered in unipolar direction were highly effective for expression and 
did not produce skin damage. In the following set of experiments, the direction of the field was inverted after each 
train by changing the polarity of the electrodes. The energy was the same whatever the polarity settings bringing 
the same Joule heating.

The bipolarity of the pulses did not bring any improvement in expression either in the level or in the duration 
of the tdTomato expression (Fig. 5). The mean fluorescence was maximal at day 8 and then decreased. A slight 
(statistically non-significant) decrease was present. No skin damage was observed whatever the polarity settings. 
A similar conclusion was recently obtained with a peritumoral gene electrotransfer with plate electrodes used to 

Figure 2. Evaluation of electrical parameters settings for cutaneous transgenic expression. Plasmid DNA 
(25 µg) encoding the fluorescent protein tdTomato were intradermally injected in the back of anesthetized 
C57Bl/6 mice and the electrotransfer was performed. Mice received either 8 pulses of LV (50 ms, 40 V), 
HV (100 µs, 400 V) or MV (20 ms, 100 V) or 4 trains of pulses of combination of either HV-LV (100 µs, 
400 V + 50 ms, 40 V) or HV-MV (100 µs, 400 V + 20 ms, 100 V)). Two sites of injection were treated with the 
same electrical parameters. Images were acquired every day after GET with fluorescence macroscopy and the 
mean fluorescence intensity of tdTomato was determined with ImageJ software. (A) Representative images of 
tdTomato fluorescence (in pseudo color) at day 1. (B) tdTomato expression was followed over time by non-
invasive fluorescence microscopy. Values are means ± s.e.m., n = 11–14 except for non-pulsed mice (NP) where 
n = 3. **P < 0.01, ***P < 0.001 (Two-way ANOVA analysis).
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apply 600 V/cm pulses at the frequency of 1 or 2 Hz49. Therefore, 4 unipolar trains of HV-MV pulses were selected 
for the following experiments.

Gender effect. Our assays were performed on both female and male animals. A large difference in the level 
of expression was observed for the two genders (Fig. 6). The expression of dtTomato was observed during 20 days 
in both cases but the fluorescence emission was 15 times lower for the males. We noticed that the physiology of 
the skin was different. For males, the skin was thicker and more difficult to inject. A part of the plasmid solution 
may not be properly injected; it could explain the lower level of expression in this figure. Another problem is in 
the detection of the fluorescence signal as the increase in light scattering due to the thickness and composition 
of the skin of male mice could lead to a decrease in the incident light at the target and a loss in the emitted light 
collection.

Evaluation of Hsp 70 (Hspa1b) expression after GET. Potential thermal damages might be induced by 
the electrical treatment50,51. A positive contribution was shown to be brought by a controlled heating of the skin 
where the electrotransfer was delivered52,53. The local heating of the skin was investigated as a potential parameter 
in the control of the gene expression. 4 trains of HV-MV pulses were selected as the best choice. No skin damage 
was induced (Fig. 4). The pulse associated Joule heating was assessed in vivo by bioluminescence imaging using a 
transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive 
promoter. Under the HV-MV conditions, no increase in the luciferase expression was detected 6 h after delivery of 
electric pulses, whatever the pulsing conditions or the injected vehicle (PBS, tdTomato or GFP plasmid) (Fig. 7).

Evaluation of local expression and secretion of IL-12 after skin pIL-12 GET. The possibility to 
express ectopically a tumor antigen or a stimulatory protein of the immune system could help in the eradication 
of primary tumors and/or metastasis is of great interest. We decided to evaluate the efficiency of our newly devel-
oped electrical parameters on the expression of a plasmid encoding the cytokine IL-12. IL-12 plays a central role 
on the activation of the immune system orienting the anti-tumor immune response toward a cytotoxic Th1-like 
immune response. In order to determine the efficiency of in vivo pIL-12 gene-electrotransfer (pIL-12 GET), 
25 µg of pIL-12 or a same volume of PBS were intra-dermally injected in the left flank of C57Bl/6 mice. Rapidly 
within a few seconds, the skin was treated under HV-MV electrical parameters applied using contact electrodes 
(4 unipolar trains). The right side was not injected and not treated to be used as a control. Treated (left flank) and 
untreated (right flank of the same mice) skin biopsies of pIL-12-GET and PBS-GET treated mice were harvested 
between 1 and 14 days after treatment and incubated in complete medium for 24 h at 37 °C. IL-12 production 
was determined by ELISA in the skin cultured supernatant (Fig. 8). Small amount of IL-12 were detected in the 
supernatant of PBS treated skin (10 pg/ml/mg of protein). However, pIL-12 GET induces a significant increase in 
IL-12 secretion (173.7 ± 92.97 pg/mg of total proteins at day 1), reaching a peak at day 7 (670 ± 147.91 pg/mg of 
total proteins) which was maintained up to day 14 post-treatment. These results correlated with the expression 
of the tdTomato protein used to set up the GET electrical parameters. IL-12 production in the contralateral skin 
was significantly lower (70.0 ± 23.29 pg/ml at day 14) suggesting a local production of IL-12 at the treated site. 

Figure 3. Optimization of the HV-MV parameters for cutaneous transgenic expression. Plasmid DNA (25 µg) 
encoding the fluorescent protein tdTomato were intradermally injected in the back of anesthetized C57Bl/6 
mice and the electrotransfer was performed using the HV-MV (100 µs, 400 V + 20 ms, 100 V) parameters. 
Two sites of injection were treated with the same electrical parameters. The tdTomato expression was followed 
over time by non-invasive fluorescence microscopy. Electrotransfer was performed either with plate or contact 
electrodes (4 trains of HV-MV pulses Values are means ± s.e.m., n = 3. ns = non-significant result (Two-way 
ANOVA analysis).
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Therefore, pIL-12-GET induced an efficient transfection of skin cells resulting in a local expression of the plasmid 
and thus a local secretion of IL-12 by transfected cells.

Evaluation of plasmid biodistribution. The transfer of pDNA-GET into the clinic require a thorough 
evaluation of the biodistribution of exogenous DNA in the body. Mice (male and female) treated with pIL-
12-GET were sacrificed at various time points and the expression of the plasmid was searched in lungs, liver, 
spleen, kidneys, lymph nodes, skin and gonads by Q-PCR (Table 1). No plasmid was amplified in gonads, kidneys, 
liver, lungs, lymph nodes and spleen for male and female mice at d15 and d49 in the control group and in the GET 
group. No plasmid was detected in skin of male and female mice in control group at d15 and d49. Results in skin 
of male and female mice from GET treated group showed a quantified presence of plasmid at d15 and d49 but the 
amount of plasmid per microgram of tissue was 20 times less at d49 than at d15. These results suggest the safety 
of the treatment.

Discussion
Our GET protocol induces a local transient expression of the plasmid in the skin area that was submitted to 
the combined electric pulses (Fig. 2). It was previously shown, that the combination of a high field short pulse 
(1000 V/cm, 100 µs) (to induce the electropermeabilization of a large cell surface) and of a low field long pulse 
(200 V/cm, 400 ms) (to increase the electrophoretic accumulation of plasmids on the cell surface) allowed to 
obtain a high level of gene expression after GET11. In that study, the authors used parallel, stainless-steel plate 
electrodes, pinching the skin between the two electrodes to delivers the electric pulses. However, the definition 
of the proper settings of the electric parameters to obtain an efficient GET are dependent on the geometry of 

Figure 4. Optimization of the HV-MV parameters for cutaneous transgenic expression. 25 µg of plasmid 
DNA coding the fluorescent protein tdTomato were intradermally injected in the back of anesthetized C57Bl/6 
mice and the electrotransfer was performed using the HV-MV (100 µs, 400 V + 20 ms, 100 V) parameters. 
(A) Mice received 2, 4, 6 or 8 trains of pulses. Two sites of injection were treated with the same electrical 
parameters. tdTomato expression was followed over time by non-invasive fluorescence microscopy. Values 
are means ± s.e.m., n = 4. *P < 0.05, **P < 0.01, ***P < 0.001, ns = non-significant result (Two-way ANOVA 
analysis). (B) Representative pictures of electrotransferred skin at day 1. (C) Representative images of tdTomato 
fluorescence at day 1. Values are means ± s.e.m., n = 3. ns = non-significant result (Two-way ANOVA analysis).
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Figure 5. Time dependence of the voltage present between the electrodes under the unipolar and bipolar 
settings. (A) Electric parameters and corresponding voltage profiles. A 1 s delay was present between each HV 
pulse. This was obtained by the settings of the B10 electropulsator keeping the 1 Hz frequency for the delivery 
of trains. (B) tdTomato expression was followed over time by non-invasive fluorescence microscopy. Values are 
means ± s.e.m., n = 4. ns = non-significant result (Two-way ANOVA analysis).

Figure 6. Expression levels for dtTomato for male and female mice. 25 µg of plasmid DNA coding the 
fluorescent protein tdTomato were intradermally injected in the back of anesthetized C57Bl/6 mice (female 
○, male Δ) and the electrotransfer was performed using the HV-MV (100 µs, 400 V + 20 ms, 100 V) 
parameters. tdTomato expression was followed over time by non-invasive fluorescence microscopy. Values are 
means ± s.e.m., n = 4. **P < 0.01 (Two-way ANOVA analysis).
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the electrodes and the target tissue organization. We observed indeed that the proper setting with our contact 
electrodes was with a higher voltage to electrode gap ratio in the HV-MV step than described in previous works 
where arrays of small electrodes were used34,38,41.

As expected from the field distribution associated with the contact electrodes, the level of gene expression 
was homogeneous in the skin area present between the two electrodes where the plasmid solution was injected 
(Supplementary Fig. 2 and Fig. 3). The expression was first detected in the upper layers of the skin and then sus-
tained for a long time most probably due to a transfection of the muscle layer below the hypodermis. Simulations 
predicted that the field should be high enough for transfection down to the subcutaneous muscles43. The lower 
level of expression obtained with the more classical plate parallel electrodes where the skin is placed between the 
two electrodes can be associated with a less suited distribution of the field in the tissue. With plate electrodes a 

Figure 7. Bioluminescence imaging of EP-induced expression of LucF in transgenic Hsp70 (Hspa1b) LucF 
mice. Luciferin (30 mg/mouse) was injected intraperitoneally 5 min before imaging (A) Images were acquired 
6 h after delivery of electric pulses. (B) Quantification of LucF expression in transgenic mice after EP presented 
as the fold increase of the signal at the position of electrodes compared to the detected signal in non-treated 
skin. Groups on the left graph. −PBS: only EP, +PBS: 25 µl of PBS injected intradermally + EP, tdTomato: 25 µl 
(1 µg/µl) of plasmid tdTomato injected intradermally + EP, EGFP: 25 µl (1 µg/µl) of plasmid EGFP injected 
intradermally + EP. EP conditions (HV, MV and HV-MV) are those defined in Fig. 1. EGT 25 µl (1 µg/µl) of 
plasmid EGFP injected intradermally + 8 pulses of 5 ms at 240 V.Positive controls were water bath at designated 
temperature for 8 min.

Figure 8. pIL-12 GET induces expression and secretion of IL-12. Mice were intradermally injected with 
25 µg of pIL-12 in 20 µl PBS, or with 20 µl of PBS alone in one flank and were submitted to HV-MV electrical 
treatment. The contralateral flank from pIL-12 injected mice was non-injected and non-pulsed to be used 
as an internal control. Mice were sacrificed from 1 to 14 days after treatment and skins from each flank were 
harvested and cultured overnight in complete medium 5% CO2, 37 °C. IL-12 content was determined by 
ELISA in the cultured supernatant of pIL-12 treated skin (IL-12 + GET), of PBS treated skin (PBS + GET) and 
in contralateral untreated skin from pIL-12 GET treated mice (IL-12). (n = 5, 3 independent experiments). 
Statistical analysis: 2way Anova, *p < 0.05, **p < 0.005.
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large part of the field is affecting the tissue under the skin while a part of the skin is not in contact with the elec-
trodes and is therefore, poorly affected by the field28. This is in line with other studies showing that contact elec-
trodes (multi-array) are more suitable for transfer to the skin29–37. The geometry of the contact electrodes we used 
is user friendly while allowing treating homogeneously a large part of the skin in one single shot of a pulse train 
(Fig. 3). Another advantage of the contact electrodes is that expression is present in all the space between the two 
electrodes giving a high total level of expression while a patterned expression is observed with multi-array devices 
due their technology and the associated heterogeneous field distribution in the skin31,32,42.

A cumulative effect of the number of pulses delivered was observed on the transfection efficiency with the 
lowest number of pulses (Fig. 4) before reaching a point where the advantages of the cell electro-transfection are 
overcome by the side effects, i.e., skin burning. These observations confirmed in vitro results showing that the 
increase of pDNA transfer due to the increased pDNA accumulation at the cell surface is balanced by the toxic 
effects of the pulses on cells. This toxicity prevents the expression of the transferred copies. A similar effect was 
described in a previous report using this electrode technology44.

GET is strongly controlled by the polarity of the pulses along a train. Polarity inversion was shown to induce 
positive additive effects in vitro25 and in vivo on muscles54. In the skin, such a positive effect was not observed 
(Fig. 5). The delay in the pulse inversion (1 s) was long enough to avoid a negative effect obtained with very short 
delay in vitro55. The slightly negative effect may be linked to a more destructive effect of the electric field with 
polarity inversion on the electro-transfected cells.

Expression is detected in a Gender dependent way. A higher fluorescence emission is detected on transfected 
females. A trivial technical reason is the control of in vivo fluorescence imaging by the optical properties of the 
skin. This is known to be strongly gender dependent56,57. This appears to be associated to the differences in the 
physiology of the skin. The dorsal skin in males is known to be thicker than in females but the epidermis and 
hypodermis thicknesses were larger in females. The hypodermis is indeed 10 times larger in females. The adipose 
layer is more abundant in female mice as compared to males. This supports a conclusion where the expression 
due to GET after ID injection of the plasma is mostly present in the hypodermis and in the fatty tissues. The adi-
pocytes were recently shown to be a target for GET in the skin58.

Electro-transfection might induce some side effects by locally increasing the temperature of the tissue. We 
assess the effect by using HSP70-luc reporter mice. In this model, a macroscopic temperature rise was necessary 
to induce HSP70 gene expression but the HSP70 promotor can also be activated in response to other stress ori-
gins59 inducing intracellular protein denaturation. Stressors include oxidative stress60 present in electroperme-
abilization61, or energy depletion62, or a direct effect of cell electropermeabilization63. Activation of the HSP70 
response was not observed by the bioluminescence studies (Fig. 8). Therefore, this lack of responses in the bio-
luminescence imaging is one more piece of evidence that our GET strategy is not stressing the tissue. A similar 
conclusion was reported for GET in muscles64.

The study with a more physiological relevant plasmid coding for IL12 confirmed the efficacy of the transfec-
tion and provided a key information on the safety of the transfer of a gene to the skin (Fig. 8). The design of a IL12 
coding plasmid is known to be a decisive parameter for cancer immunotherapy65. A CpG free form was selected 
as those bacterial dinucleotides are immunostimulator motives decreasing the duration of gene expression. IL-12 
expression is an effective immunotherapy approach against melanoma66,67. With this optimized protocol and 
the CpG free design of the plasmid construct, the plasmid can be detected only at the site of injection and pulse 
delivery (Table 1) without affecting other organs. Furthermore, we observed that the plasmid remained present 
in the skin only during a limited period as on day 49 after the transfer, the DNA that was present was at the limit 
of detection of the very sensitive PCR Assay. Interestingly, IL-12 is detected as soon as day 1 post-transfection 
only at the site of transfection and the production increases greatly by day 7 post-treatment. This time delay could 
correlate with a local production by activated immune cells present to the site of transfection.

Conclusion
The present approach brings a very user-friendly approach for GET targeted to the skin. A large surface of the 
skin can be easily homogeneously treated in a short time giving a high level of expression. Successive treatments 
of different skin areas on the same animal can be easily performed by moving the electrodes to different places 
where pDNA ID injection was performed. This is fast as the pulse delivery lasts only 3 s. Gene expression would 
be enhanced by increasing the size of the treatment area39. No skin damage was observed. Expression was long 

Organs Lungs Liver spleen kidneys
Lymph 
nodes

skin gonads

pg/μg Tissue DNA

Days after IL12 
Injection

group control
D15 no no no no no no no

D49 no no no no no no no

group GET
D15 no no no no no 0.8 no

D49 no no no no no 0.045 no

Table 1. Evaluation of plasmid dissemination. 4 male and 4 female mice were sacrificed for the treated group, 
2 male and 2 female mice for the vehicle group. Lungs, liver, spleen, kidneys, lymph nodes, skin and gonads 
were collected and the presence of the plasmid was analyzed by Q-PCR at day 15 and day 49 after pIL-12 
electrotransfer.
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lived. The plasmid was detected only at the site of treatment; all other organs remained not affected proving the 
safety of the protocol for gene delivery.

Materials and Methods
Mice. Female C57Bl/6 mice, 6–9 weeks old were obtained from Janvier Labs (Le Genest St. Isle, Saint 
Berthevin, France). NLF-1 mice contained a transgene that allows firefly luciferase expression under control of 
the thermo-inducible heat-shock protein (Hsp70) promoter 1B (Hspa1b)48. Animal studies were conducted in 
accordance with the principles and procedures outlined by the European convention for the protection of verte-
brate animals used for experimentation. Experiments dealing with the optimization of electric parameters and 
the IL-12 expression were approved by the IPBS ethics committee (n°20111028/151) and by the ethical commitee 
“CE001” of the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation (MESRI) (n°01467.02), 
respectively.

Plasmids. pCMV-EGFP-C1 a 4.7-Kb plasmid DNA encoding GFP, and pCMV-tdTomato Vector a 5.4 kb plas-
mid DNA coding for tdTomato fluorescent protein (both from Clontech, Mountain View, CA), were amplified in 
Escherichia coli DH5α and purified with the Maxiprep DNA Purification System (Qiagen, Germany) according 
to the manufacturer’s protocol.

pCpGfree-mIL12 (p35p40) was a 4655-bp plasmid encoding mouse IL-12 cytokine was provided by Invivogen 
(Toulouse, France).

Plasmids were kept in PBS at a concentration of 1 µg/µL and stored at −20 °C.

Intra-dermal DNA injection and electric pulses delivery. Hair on the back was removed with a hair 
removal lotion (Veet, France) 2 days before each electro-transfection. Animals were kept under isoflurane/air 
anesthesia during the whole procedure. The mice were injected in two sites with 25 µg of plasmid in 25 µl PBS 
by intra-dermal (ID) route using a 300 µl syringe with a 29 G needle (Terumo, France). Following ID injection 
of plasmid DNA, an electrical field pulse was applied on each injection site with 10 mm long × 1 mm diameter 
contact wire electrodes (Fig. 1A). The distance between the electrodes (center to center) was 4 mm. Conducting 
paste (Comepa, St Denis, France) was used to ensure good electrical contact between the electrodes and the skin 
surface. Non-invasive wire contact electrodes were designed to focus the field in the tissue layer close under the 
skin between the wires42. Treated skin surface was 0.5 cm2. Different square wave (unipolar or bipolar) pulses pre-
sented in Fig. 1B,C were delivered thanks to the β-tech pulse generator ELECTRO cell B10 (Betatech, St Orens, 
France). Pulses in the train were applied at the frequency of 1 Hz. The proper delivery of the pulses from the 
pulse generator was monitored on-line on the touch screen. A current-follower (Chauvin Arnoux, Paris, France) 
connected to a digitizer (Picoscope, St Neots, UK) was used to register the delivered current profiles (Fig. 1D).

Transfer by plate electrodes was performed as previously described12 and was obtained with B10 pulse gen-
erator using stainless steel, flat, parallel (4 mm gap) electrodes (IGEA, Carpi, Italy). The skin, where the plasmid 
injection was performed was squeezed between the two plate electrodes using Echogel to obtain a good electrical 
contact.

In vivo fluorescence optical imaging of reporter gene. Visualization of fluorescent protein expression 
was followed in vivo over several weeks after gene electrotransfer. Animals were kept under isoflurane anesthe-
sia during the observation. Macrofluo microscope (Leica, Wetzlar, Germany) was equipped with a cooled CCD 
camera (Roper Coolsnap HQ, Photometrics, Tucson, AZ) using the 0.57 magnification. The exposure time was 
set at 1 s with no binning. Color imaging was obtained by use of CRI Micro*Color 2 Liquid Crystal Technology. 
The fluorescence excitation was obtained with an EL6000 light source (Leica, Wetzlar, Germany) and either the 
L5 (λex = 480/40 nm, λem = 527/30 nm) or the ET mCH/TR (λex = 560/40 nm, λem = 630/75 nm) filter sets 
(Chroma technology, Rockingham, USA) for GFP and tdTomato observation, respectively. This procedure allows 
analysis of vector expression on the same animal during several weeks. tdTomato plasmid codes for a protein 
with an emission in the red (wavelength longer than 630 nm). Compared with GFP, this expression is more easily 
detected as its spectral range is in skin optical window, where light scattering and absorption are limited and 
do not alter the detection of the emission. Thus, it was used for most experiments. For images acquisition and 
quantification, the MetaVue5.2 software (Universal, Downingtown, PA, USA) was used. Images were processed 
for contrast and brightness. High-resolution images of 1392 × 1040 pixels were captured directly on a Dell PC.

Bioluminescence imaging and measurements. Bioluminescence allowed for non-invasive spatiotem-
poral follow-up of transgene expression. The NLF-1 mice were used to follow the heat shock response by in vivo 
imaging of luciferase reporter protein expression. Thermo-induced luciferase expression in transgenic mice was 
followed by bioluminescence. Thermal stress positive control was delivered by heating the leg of the mouse in a 
bath of water between 39 °C and 45 °C for 8 min and luciferase activity was measured in anesthetized live ani-
mals as a measure of reporter gene transcription (S1)51. The bioluminescent imaging system consists of a cooled 
charge-coupled-device camera (Andor iKon M, Belfast, UK) mounted in a light-tight specimen chamber (Photek, 
UK) fitted with a light-emitting diode, a Schneider objective VIS-NIR (Cinegon 1.4/12-0515, Germany) and a 
heating blanket (Harvard Apparatus, USA).Intraperitoneal injection of luciferin (3 mg/mouse) in 100 µl of PBS 
was followed by a lag of 5 min to get a homogeneous diffusion of the substrate before starting the imaging. The in 
vivo bioluminescence imaging was performed 5 min after injection. Images were acquired with Solis acquisition 
software (Andor technology). We did a time series of up to 4–5 images with an acquisition time of 5 minutes per 
time point. The first image (5–10 min) was the one with the higher intensity. Imaging was performed 6 h post 
heating or pulses as previously established50. An image of the light emitted by the mice was captured by using an 
integration time of 5 minutes. Through the use of Image J software (NIH, Bethesda, US), the luminescent image 
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was presented as a false-color image superimposed on the grayscale reference image. The image-processing com-
ponent of the software calculated the total pixel values (in Relative Light Units [RLU]) from the luminescent 
images of the heat treated wound area.

Determination of cytokine content in supernatant. To measure the secretion of IL-12 in tissues, 25 µg 
of IL-12 plasmid were injected as described above in the dermis of the left part of the back of shaved mice and 
gene electrotransfer (GET) was applied using the HV-MV parameters. Control mice were injected with PBS and 
submitted to the same GET protocol. Treatment areas were clearly identified and harvested as well as contralateral 
untreated skin from pIL-12 treated mice at day 1, d2, d3, d4, d7 and d14 after treatment. Samples were incubated 
in 2 mL culture medium (Dulbecco’s Modified Eagle Medium with 4.5 g/l D-Glucose and L-Glutamine (DMEM; 
Gibco/ Life technology) supplemented with 10% fetal bovine serum (Sigma-Aldrich, St Louis, MO) and the anti-
biotics penicillin (100 U/ml) and streptomycin (100 U/ml) (Gibson/ Life technology)) at 37 °C, 5% CO2 for 24 h. 
Supernatant were collected and preserved at −80 °C. Protein mass of skin samples was determined as previously 
described49. Briefly, skin samples were weighted, and 50 µl of lysis buffer (0.1% Igepal (Sigma, St Quentin Falavier, 
France), 1 mM PMSF (Sigma, St Quentin Falavier, France), 1x Protease Cocktail inhibitor (Sigma) for 10 mg of 
tissue were added. Skin samples were homogenized using an electrical homogenizer (Ultraturrax IKA, Staufen, 
Germany). After an incubation of 20 min on ice, suspensions were centrifuged 15 min at 20 000 g at 4 °C. Protein 
concentration was determined by a Bradford Assay (Bio-Rad, Hercules, CA). IL-12 content in the culture super-
natant was determined by ELISA according to the manufacturer protocol (Biolegend ELISA MAX Deluxe Set, 
Biolegend, San Diego, CA).

Biodistribution. At d15 and d49 after GET with pIL12, 4 male and 4 female mice were sacrificed for the 
treated group, 2 male and 2 female mice for the vehicle group. Lungs, liver, spleen, kidneys, lymph nodes, skin 
and gonads were collected. Each organ was frozen at −80 °C. The samples were sent to C.RIS Pharma (St. Malo, 
France), for the analysis of the biodistribution by Q-PCR using specific primers for the plasmid: mIL12-FW2 
(5′->3′): (20 mer) (Tm = 60.34): 5′ ATCAACAGGGTGATGGGCTA 3′and mIL12-RV2 (5′->3′): (20 mer) 
(Tm = 59.98): 5′ CATCTTCTTCAGGCGTGTCA 3′. Organs received at −80 °C were homogenized, DNA was 
extracted and quantified. Q-PCR reactions were performed on 125 ng of DNA in order to amplify the plasmid 
(test item), if present, and quantify it according to the equation of standard curve.

A standard curve with 8 concentrations (from 0.8 ng to 50 ag) of CpG free mIL12 plasmid in water was assayed 
for each run (1 run per organ). The two lower concentrations (50 and 80 ag) were not used for the equation cal-
culation but were used to determine the limit of detection (LLOD).

Statistical analyses. Quantitative data (presented as means ± s.e.m.) were analyzed with Prism 4 software 
(GraphPad, San Diego, CA). Before carrying out statistical tests, we determined whether the data were normally 
distributed and evaluated their variance. We then carried out appropriate test as indicated. For in vivo time-course 
experiments, we used two-way ANOVA analysis. We report the actual P-value for each test. P < 0.05 was consid-
ered statistically significant.
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