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Integrative bioinformatics 
identifies postnatal lead (Pb) 
exposure disrupts developmental 
cortical plasticity
Milo R. Smith1,2,3,4,7,8,9,10, Priscilla Yevoo1,3,4,7,10, Masato Sadahiro1,3,4,7,8,10, Christine Austin  5,  
Chitra Amarasiriwardena5, Mahmoud Awawda5, Manish Arora5,6, Joel T. Dudley2,9 & 
Hirofumi Morishita  1,3,4,7,8,10

Given that thousands of chemicals released into the environment have the potential capacity 
to harm neurodevelopment, there is an urgent need to systematically evaluate their toxicity. 
Neurodevelopment is marked by critical periods of plasticity wherein neural circuits are refined 
by the environment to optimize behavior and function. If chemicals perturb these critical periods, 
neurodevelopment can be permanently altered. Focusing on 214 human neurotoxicants, we applied an 
integrative bioinformatics approach using publically available data to identify dozens of neurotoxicant 
signatures that disrupt a transcriptional signature of a critical period for brain plasticity. This identified 
lead (Pb) as a critical period neurotoxicant and we confirmed in vivo that Pb partially suppresses critical 
period plasticity at a time point analogous to exposure associated with autism. This work demonstrates 
the utility of a novel informatics approach to systematically identify neurotoxicants that disrupt 
childhood neurodevelopment and can be extended to assess other environmental chemicals.

Of 138 million unique chemical substances (Chemical Abstracts Service; CAS; accessed March 2018: http://sup-
port.cas.org/content/chemical-substances) over 84,000 may be commercially produced (excluding pesticides, 
drugs, cosmetics, and some other substances) and 2,800 are considered high production volume (≥1 million 
pounds per year) and are likely at elevated levels in the human environment1. Given that the vast majority of these 
chemicals have an unknown, but potential capacity to harm neurodevelopment, there is an urgent need for sys-
tematic approaches to identify damaging chemicals. Epidemiological and animal studies have identified specific 
environmental chemicals that impact prenatal neural events, such as proliferation, migration, differentiation, 
apoptosis, and gliogenesis. However, knowledge of neurotoxicants disrupting postnatal and childhood periods is 
less well established, though increasingly observed as an important window of vulnerability2.

Childhood neurodevelopment is marked by critical periods of brain plasticity wherein neural circuitry is opti-
mized by the environment to establish normal cognition and behavior3. If critical periods are disrupted, devel-
opment of normal function can be permanently altered and may increase risk for neurodevelopmental disorders 
such as autism spectrum disorders (ASD)4,5. Despite the potential for a deleterious impact on health, the role of 
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environmental chemicals on critical period plasticity has received minimal attention, with only a few disruptors 
of developmental plasticity identified6,7.

Though systematic assessment of the impact by environmental chemicals on health is not yet standard, 
high-throughput approaches are actively being developed including the S1500 effort led by the U.S. multiagency 
collaborative, “Toxicology in the 21st Century” (Tox21 program), that aims to screen the transcriptional impact 
of tens of thousands of drugs in cell lines8 as well as independent efforts to screen hundreds of drugs using pri-
mary neuronal cultures9. Prior to these efforts, high-throughput approaches typically relied on biochemical and 
cell-based experimental assays using a limited number of gene or protein expression readouts or enzymatic activ-
ities. While these assays are important and useful, such assays do not reflect complex in vivo neurodevelopmental 
events. On the other hand, in vivo animal assays used in isolation are low-throughput and only appropriate for 
validation of screening results. Due to these limitations, to our knowledge, no studies have conducted a systematic 
assessment of environmental chemicals that disrupt complex in vivo neurodevelopmental processes such as crit-
ical period plasticity. Here, by leveraging the ability of transcriptional signature matching to identify functional 
and mechanistic relationships10 we developed and applied an integrative bioinformatics approach as a systematic 
screen to identify chemicals that disrupt in vivo critical period plasticity. To do so, we computationally matched 
diverse chemical exposure signatures to an in vivo critical period signature and then performed experimental 
validation in vivo. We derived the critical period signature from the primary visual cortex (V1) of the mouse 
model for ocular dominance plasticity11, which has emerged as an indispensable model to dissect the molecular 
mechanisms subserving developmental plasticity5. A well-characterized model11,12, ocular dominance plasticity 
is conserved across mammals including humans, where it peaks during early childhood13. This critical period is 
marked by the capacity of the visual cortex to undergo neural reorganization in response to changes in environ-
mental stimuli, as modeled in the laboratory by depriving one eye of light, which leads to enduring eye-specific 
loss of visual responsiveness in the visual cortex12. Importantly, many of the underlying mechanisms are shared 
with other brain regions and functions14, suggesting that findings derived from the ocular dominance model may 
be generalizable. By matching transcriptional signatures based on this model to hundreds of disease signatures, 
we previously showed that an integrative bioinformatics approach is able to identify damaging disease pathways 
that disrupt plasticity in vivo15. In the present study, we computationally matched the ocular dominance critical 
period signature to a subset of hundreds of neurotoxicant signatures among the vast environmental chemical 
space. Specifically, we focused our analyses on 214 chemicals with established neurotoxic impact on human16, 
since little is known about the impact of these neurotoxicants on critical periods of plasticity. Identifying 136 
instances of these chemicals among 4892 chemicals within the Comparative Toxicogenomics Database (CTD), 
we used an in silico computational matching approach to systematically assess the ability of these neurotoxicants 
to dysregulate genes expressed during the peak of the critical period. We identified lead (Pb) as a top hit expected 
to disrupt critical period plasticity, which we confirmed experimentally in the in vivo model of ocular dominance 
plasticity. This work shows that a systematic, data-driven bioinformatics approach can effectively identify neuro-
toxicants that pose a risk for childhood brain development.

Results
Lead (Pb) identified as a neurotoxicant that disrupts the critical period signature. To iden-
tify chemicals that potentially disrupt critical period neuroplasticity, we employed an informatics approach to 
match signatures of environmental chemicals to a signature of a model critical period. As a proof-of-principle, we 
focused on the subset of 214 chemicals for which previous evidence suggests them as human neurotoxicants16. 
From 1.25 million Comparative Toxicogenomics Database (CTD)17 records across 4892 chemicals with mRNA 
relationships, we identified sufficient data for 136 neurotoxicant signatures (TOX). The critical period signature 
was derived by calculating differential gene expression of the primary visual cortex (V1) in juvenile mice at the 
peak of the critical period (P26) for ocular dominance plasticity relative to adult mice (Fig. 1a; 176 genes at 
Padj < 0.05; data obtained from: GSE8975715). At the peak of the ocular dominance critical period, deprivation of a 
single eye induces cortical experience-dependent plasticity, a well-characterized critical period model11. To match 
the TOX and critical period signatures, we first shrank the search space from the starting 136 neurotoxicants 
by generating TOX composite signatures from transcripts both increased or decreased by a given neurotoxicant 
(3-2419 genes per signature) (Fig. 1b) and used hypergeometric tests to determine the probability of overlapping 
genes in a given TOX composite signature with all genes in the critical period signature. This analysis identified 28 
neurotoxicant signatures that shared genes with the critical period signature regardless of the direction of expres-
sion in either the critical period or neurotoxicant gene set (non-directional comparisons considered significant if 
Padj < 0.05; see Fig. 1c and Table S1).

To test the hypothesis that these 28 neurotoxicants specifically reverse critical period related gene expres-
sion, we generated TOX genes up (28 gene sets) and TOX genes down (25 gene sets) libraries that reflect mRNA 
transcripts increased or decreased by a given neurotoxicant (note: the TOX genes down library contains 25 gene 
sets due to 3 of the gene sets not reaching the minimum size threshold once split). Similarly, we split the critical 
period signature into genes increased or decreased in the critical period (CP) signature (CP genes up and CP genes 
down) (Fig. 2a). We then performed directional assessments of the overlap of TOX genes down and CP genes up 
or TOX genes up and CP genes down using hypergeometric tests to identify 10 and 6 neurotoxicants that reverse 
critical period gene expression in silico (directional comparisons considered significant if Padj < 0.05; Fig. 2b,c and 
Tables S2 and S3) - chemicals that may disrupt functional plasticity.

In both the non-directional and directional analyses, the metallic element lead (Pb) ranked high in its 
expected ability to dysregulate critical period signature genes (Hypergeometric test, non-directional: OR = 2.4, 
Padj = 1.5 × 10−05; directional: OR = 4.8, Padj = 7.5 × 10−07; Table S1 and S2 and Fig. 2b). The directional analysis 
using CTD data found that Pb decreased genes upregulated during the critical period and by qPCR we found 
after chronic 50 parts-per-million (PPM) Pb exposure in drinking water from P8 that 10 of 16 (63%) had a 
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mean decrease in V1 at the peak of the critical period at P28 and 2 of 16 (12.5%), Col18a1 and Mbp, were sig-
nificantly lowered (linear models of ΔCTs: −ΔΔCT ≈ log2 fold change (FC) = −0.6, P = 0.0059, Padj = 0.073 
and log2 FC = −0.51, P = 0.0091, Padj = 0.073; Pb N = 8, Control N = 6) (Fig. S1). To further illuminate potential 
mechanisms, we performed gene set enrichment on genes shared between critical period and neurotoxicant sig-
natures with each of 50 Hallmark18 and 5192 Gene Ontology Biological Process gene sets to reveal a common 
inflammatory signal among Pb and other neurotoxicants (Tables S2 and S3). To test this link in independent 
data, we compared the overlap of genes most differentially expressed in brain transcriptomes of rodents exposed 
to Pb[GSE5666619] or lipopolysaccharide (LPS) [GSE325320] to find a significant association between Pb and 
inflammation (Fisher’s Exact test, OR = 1.4, P = 0.00012). Gene set enrichment on the 185 shared genes underly-
ing this association found 6 of 7 Hallmark library gene sets related to inflammation were enriched at a Padj < 0.05 
(Fisher’s Exact test, OR = 49.6, P = 8.5 × 10−05; Table S4). To confirm underlying cytokine signaling, we assessed 
the similarity of the 185 shared Pb-LPS genes with 96 cytokine and growth factors21 to find Interleukin-1 (Il1) 
as the most strongly associated (Hypergeometric tests, Padj < 1.3 × 10−7; Table S4). Given these enrichments, we 
assessed by qPCR the impact of chronic juvenile Pb on Il1β in V1 to find it was increased (FC = 1.89, P = 0.045; 
Pb N = 8, control N = 6). These analyses indicate Pb may suppress the critical period signature and suggest 
inflammation as a potential underlying mechanism.

Given that TOX signatures derived from CTD are an aggregation of many studies across diverse tissues, we sought to 
validate our in silico association of Pb and critical period in a brain-specific transcriptional dataset independent of CTD. 

Figure 1. Generation and initial screening of neurotoxicant and critical period transcriptional signatures. 
(a) We generated a critical period signature by differential expression of primary visual cortex (V1) from 
mouse during the endogenous critical period at postnatal day (P) 26 compared to adult at > P56 using public 
data (GSE89757) to yield a 176 gene signature. (b) From 1.25 million Comparative Toxicogenomics Database 
(CTD) records across 4892 chemicals with mRNA relationships, we generated 136 neurotoxicant gene sets that 
included genes both increased or decreased by a given neurotoxicant (TOX composite gene set; 3-2419 genes 
per set). (c) We used Hypergeometric tests to assess the likelihood of overlapping genes in the critical period 
signature with a given TOX composite gene set to reduce the search space to 28 neurotoxicants (threshold of 
Padj < 0.05) for downstream analysis. See Table S1 for a complete list of the 136 neurotoxicants and related 
enrichment statistics.
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Adapting a molecular matching algorithm previously validated in brain15, we found that Pb at a dose that resulted in 
blood lead levels (BLLs) most relevant to human childhood exposure (~3 μg/dL)22 in rats fed Pb across postnatal devel-
opment19 decreased CP genes up (Molecular match score = −3.07, P = 0.0039), recapitulating the CTD findings. This 
effect was specific to brain, as zero of 55 non-brain Pb transcriptional signatures derived from DrugMatrix significantly 
decreased CP genes up after multiple test correction, though there was a skew trending toward Pb signatures decreasing 
CP genes up (i.e. molecular match scores < 0), indicating some fundamental Pb-induced transcriptional mechanisms 
may be shared between brain and other tissues (D = 0.15, P = 0.083, Kolmogorov Smirnov test against a normal dis-
tribution) (Table S5). Given the high and brain-specific ranking of Pb by our informatics analyses across independent 
datasets coupled with the current drinking water crises where elevated Pb poses serious neurodevelopmental conse-
quences to developing children23, we focused our study on the role of Pb in disrupting critical period plasticity.

Enrichment analysis

TOX genes up
(28 gene sets) CP genes down

1.   Chloroprene   456  26  1.5E-12  6.0
2.   Mercuric Chloride   140  8  5.7E-04  6.0
3.   sodium arsenate   554  16  5.7E-04  3.0
4.   Ethanol    432  11  1.5E-02  2.7
5.   sodium arsenite   697  15  1.5E-02  2.3
6.   Hexachlorobenzene   42  3  3.4E-02  7.5

TOX genes up hits
Chemical     TOX genes # Overlap  P-adjusted OR

b.

a.

Enrichment analysis

1.   lead acetate   408  17  7.5E-07  4.8
2.   sodium arsenate   215  13  7.5E-07  6.9
3.   sodium arsenite   591  17  8.7E-05  3.3
4.   Chloroprene   299  11  2.6E-04  4.2
5.   Methylmercury Compounds  76  6  2.6E-04  9.1
6.   Chlorpyrifos    285  10  7.2E-04  4.0
7.   arsenite    175  6  1.5E-02  3.9
8.   Chloroform    12  2  1.5E-02  19.1
9.   2,2',4,4'-tetrabromodiphenyl ether 309  7  4.5E-02  2.6
10. pentabromodiphenyl ether  240  6  4.5E-02  2.9

TOX genes down hits

TOX genes down
(25 gene sets) CP genes up

Chemical     TOX genes # Overlap  P-adjusted OR

TOX composite and critical period signatures into up and down gene sets

TOX genes up
(28 gene sets)

TOX genes down
(25 gene sets)

CP genes up CP genes down

Figure 2. Informatics reveals lead (Pb) as a top neurotoxicant to dysregulate critical period gene expression. (a) 
To facilitate hypothesis testing that the 28 neurotoxicants identified in Fig. 1 disrupt rather than enhance critical 
period-related gene expression and plasticity, we split the 28 TOX composite gene sets into transcripts increased 
or decreased by a given neurotoxicant (TOX genes up and TOX genes down) and split the critical period 
signature into genes increased or decreased in the critical period (CP genes up and CP genes down). Note: the 
TOX genes down library contains 25 gene sets due to 3 of the gene sets not reaching the minimum size threshold 
once split. (b) Using a directional enrichment analysis by quantifying the overlap of TOX genes down with 
CP genes up or TOX genes up with CP genes down yielded 10 and 6 neurotoxicants expected to reverse critical 
period gene expression (Hypergeometric tests, threshold Padj < 0.05). In both the non-directional (Fig. 1) and 
directional approaches, lead (Pb) ranked high in its expected ability to dysregulate critical period signature genes 
(Hypergeometric tests, non-directional: OR = 2.4, Padj = 1.5 × 10−05; directional: OR = 4.8, Padj = 7.5 × 10−07; see 
also Tables S1 and S2). In the case of ties, results were ordered alphabetically by neurotoxicant name.
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Pb suppresses critical period experience-dependent plasticity in vivo. To test the hypothesis that 
Pb exposure disrupts critical period plasticity in vivo, we administered 50 PPM Pb in drinking water starting at P8 
through to the end of the experiment at a mean age of P28 to model a childhood exposure (Fig. 3a). We sutured 
one eye to induce experience-dependent plasticity via monocular deprivation (MD) during the peak of the crit-
ical period for ocular dominance plasticity at P24-P26. To assess plasticity, three days later (at mean age P28), 
we removed the sutures from the deprived eye and conducted in vivo single-unit recordings of activity-driven 
changes in the eye preference of single neurons (i.e. ocular dominance) in binocular V1 in response to light11 
(Fig. 3a). On the day of recording for animals that received MD, blood Pb levels were elevated (2.1 μg/dL vs 
0.12 μg/dL in control animals, t test: t = 5.26, P = 0.0062), which reflected the cumulative exposure from the 
dam’s milk24 pre-weaning and from post-weaning consumption of Pb-adulterated water. To assess the spatial 
distribution of Pb in the brain, we employed laser ablation spectrometry to observe accumulation in visual system 
regions including V1 and superior colliculus (non-recorded, no MD animals, Pb N = 1, control N = 1) (Fig. 3b). 
In a cohort that did not receive MD, we observed no difference on any measure of plasticity between animals 
that received Pb or control animals that received pure water, as quantified by an animal-level analysis of the con-
tralateral bias index (CBI) and neuron-level analyses of ocular dominance score (ODS) and ocular dominance 
index (ODI) (Pb CBI = 0.68 ± 0.033 SEM, 5 mice, 148 cells; Control CBI = 0.67 ± 0.032 SEM, 3 mice, 101 cells; 
animal-level t test of CBIs: P = 0.93; neuron-level χ2 test of ODS counts: χ2 = 3.54, P = 0.47, neuron-level KS test 
of ODI distributions: D = 0.06, P = 0.64) (Figs 3c and S2a,c). On average, we recorded from 28.8 neurons per 
animal and the preceding analyses ignored within-animal variation by either averaging multiple within-animal 
measurements in the case of the animal-level CBI analysis, or by considering the total neurons measured as the 
N in the case of the ODS analysis. Animal-level analyses that take into account within-animal variation using 
hierarchical linear models (also known as linear mixed models or random effects models) can increase power to 
detect real differences25. Therefore, we assessed using a hierarchical linear model the animal-level differences in 
ocular dominance index (ODI) between Pb or control animals that did not receive MD to confirm that no dif-
ference in plasticity existed (β = −0.0069, Padj = 0.9) (Fig. 3d). In control animals that received MD, we observed 
the expected experience-dependent plasticity as quantified by a shift in ocular dominance from the deprived 
to the nondeprived eye (CBI = 0.45 ± 0.021 SEM, six mice, 165 cells) (Fig. S2b). In contrast, Pb treatment sig-
nificantly suppressed plasticity as observed by the lack of a shift in ocular dominance quantified by an elevated 
CBI, a decreased ODI, and an elimination of the right shift in the distribution of ODS from the contralateral 
to ipsilateral eye (CBI = 0.54 ± 0.039 SEM, five mice, 133 cells; animal-level one-sided t test of CBIs: t = 1.97, 
P = 0.046; animal-level hierarchical linear model of ODIs: β = −0.11, Padj = 0.0402; neuron-level χ2 test of ODS 
counts: χ2 = 17.13, P = 0.004; neuron-level KS test of ODI distributions: D = 0.25, P = 9.34 × 10−05) (Figs 3c,d 
and S2b,d). We asked if residual ocular dominance plasticity remained in animals administered chronic Pb to 
find that some plasticity remains (Pb-MD versus Pb-no MD [CBI = 0.68 ± 0.033, 5 mice, 148 cells], animal-level 
t test of CBIs: t = 2.73, P = 0.027; animal-level hierarchical linear model: β = 0.16, Padj = 0.012; neuron-level χ2 
test of ODS counts: χ2 = 42.8, P = 4.1 × 10−08, neuron-level KS test of ODI distribution: D = X, P = 2.11 × 10−06)  
(Fig. 3c,d). Since Pb increases spontaneous neurotransmitter release26 and a high spontaneous-to-evoked firing 
rate ratio is remniscent of an immature cortex27, we assessed the rate ratio to find that Pb may increase the rate 
ratio (Pb-no MD versus control-no MD; neuron-level Kolmogorov Smirnov test: D = 0.16, P = 0.039; see Table S6 
for summary of firing rate data), though qPCR of GABAergic molecules relevant to cortical maturation were 
intact (Fig. S3). Together, these experiments validate our integrative bioinformatics screen of neurotoxicants, 
finding that Pb disrupts critical period plasticity in vivo at the peak of the critical period for ocular dominance.

Discussion
In spite of a lack of systematic screening of the thousands of chemicals in the human environment, evidence has 
accumulated that at least 214 are neurotoxic to human16. Using an integrative informatics approach, we iden-
tified dozens of these neurotoxicants as expected to disrupt the critical period for visual cortex ocular dom-
inance plasticity, a well-established model of childhood critical periods of neurodevelopment. We confirmed 
that a top hit, the metallic element Pb, disrupts in vivo, experience-dependent critical period plasticity. This 
establishes a high-throughput approach to systematically identify neurotoxicants that disrupt critical periods and 
can be extended to assess other environmental chemicals. Previously, we applied a similar transcriptome-based 
informatics approach to determine that inflammation is a disease process that disrupts critical period plasticity15. 
Here, we generalize this framework to the identification of neurotoxicants that disrupt plasticity, establishing an 
informatics approach to match transcriptional signatures as a useful way to identify both disease pathways and 
neurotoxicants that disrupt critical period plasticity.

Pb was one of dozens of chemicals identified to disrupt a transcriptional signature of critical period neurode-
velopment. Perinatal and childhood Pb exposure is consistently associated with decrements in IQ, attention, fine 
motor control, and mood regulation and in vitro and rodent studies have revealed much about the molecular and 
cellular consequences of such Pb exposure28. However, it was previously unknown whether Pb impacts critical 
period brain plasticity as a mechanism to disrupt childhood neurodevelopment. We show here that Pb at a dose 
relevant to human exposure during juvenile neurodevelopment disrupts functional, experience-dependent crit-
ical period plasticity, by which it may disrupt the neurodevelopmental trajectory to confer risk for neurodevel-
opmental disorders. Indeed, disruption of critical period plasticity due to juvenile Pb exposure may explain the 
observation that cases among twins discordant for ASD have increased exposure to Pb during the beginning of 
the critical period for ocular dominance plasticity [peak elevated Pb at 15–20 weeks of age2; peak critical period 
is ~0.6 to 2 years13] and this is associated with reduced IQ later in life2. Our study paves the way for further work 
to explore the hypothesis that Pb disrupts childhood critical periods to confer risk for ASD and other neurode-
velopmental disorders.
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We postulate a number of potential mechanisms by which Pb disrupts critical period plasticity. First, con-
sistent with previous work26 we find that the spontaneous firing rate is increased with Pb administration (see 
Table S6) and correspondingly the spontaneous-to-evoked firing rate is increased (see Results), suggestive of 
disruption of inhibition and corresponding delay in the opening of the critical period27. However, GABAergic 

Figure 3. Lead (Pb) suppresses critical period experience-dependent plasticity. (a) Mice were administered 
50 parts per million (PPM) Pb in drinking water or water alone (control) from P8 through in vivo extracellular 
recordings to assess ocular dominance plasticity at P27-P29 (avg P28) (b) Laser ablation-based elemental 
mapping revealed dramatic Pb accumulation in visual regions including cortical layers of V1 and superior 
colliculus [Pb N = 1, control N = 1, both no monocular deprivation (MD)]. (c) After 3 days of MD beginning at 
P24-P26 (avg P25) neurons from control mice (light grey color, 6 mice, 165 cells) exhibited plasticity as quantified 
at the neuron-level by a shift in their responsivity from the previously deprived eye (contralateral to recording 
hemisphere) to the nondeprived eye, observable as a right shift in the ocular dominance score (ODS) as compared 
to control animals who did not receive MD (dark grey color, 3 mice, 101 cells; χ2 test of ODS distribution: 
χ2 = 61.3, P = 6.6 × 10−12). In contrast, V1 neurons from animals who underwent MD and were administered 
Pb (light teal color, 5 mice, 135 cells) did not exhibit a full ODS shift (Pb MD versus control MD: χ2 test of ODS 
distribution: χ2 = 17.1, P = 4 × 10−4), though some residual plasticity remained (Pb MD versus Pb no MD 
[dark teal color, 5 mice, 148 cells]: χ2 = 42.8, P = 4.1 × 10−8). (d) We carried out an animal-level analysis using a 
hierarchical linear modeling approach that takes into account within-animal variation (on average, 28.8 neurons 
were recorded from each mouse) wherein group (Pb or control) and experience (MD or no MD) were assigned 
as fixed effects and animal was assigned as a random effect to account for repeated neural measurements within 
each animal. The neuron level ocular dominance index (ODI) was assiged as the continuous outcome variable. 
After correcting for multiple comparisons using the Holm method, we confirmed plasticity was present in control 
mice who received MD (light grey color) as quantified by an elevated ODI compared to control animals who did 
not receive MD (dark grey color) (β = 0.28, Padj = 0.0002). Mice administered Pb showed significantly reduced 
plasticity as quantified by a reduction in ODI (Pb MD (light teal color) versus control MD (light grey color): 
β = −0.11, Padj = 0.04), but retained some plasticity relative to no MD animals (Pb MD (light teal color) versus Pb 
no MD (dark teal color): β = 0.16, Padj = 0.012). Horizontal bars indicate the least squares mean. ****P < 0.0001, 
***P ≥ 0.0001 and < 0.001, **P ≥ 0.001 and < 0.01, *P ≥ 0.01 and < 0.05.
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markers relevant to maturation of inhibition of spontaneous firing are intact (see Fig. S3). Moreover, we find 
some plasticity remains in Pb exposed animals (Pb-MD versus Pb-no MD, see Fig. 3c,d). Together, these data 
suggest that while Pb may lead to an increased spontaneous-to-evoked ratio, opening of the critical period may 
be intact and rather suggest a partial suppression of critical period plasticity by Pb at the peak of the critical period 
with increased spontaneous firing as a potential contributing mechanism. Future work should explore known 
critical period related mechanisms and molecules (i.e. accelerators and brakes) including increased spontane-
ous firing to tease out the precise nature of the disruption of critical period plasticity by Pb. Second, Pb acts not 
only on neurons, but upon glia as well. In fact, astrocytes preferentially accumulate Pb28. Given that astrocytic 
secretions of Hevin (also known as Sparcl1) are required for ocular dominance plasticity29, Pb exposure may 
interfere with the physiological role of astrocytes in supporting cortical plasticity. Third, in addition to impact-
ing glia, Pb affects innate immune function including upregulation of inflammatory cytokines including Il1β30. 
Our recent study demonstrated that inflammation by LPS elevates Il1β in the brain and disrupts critical period 
plasticity15 and we provide here evidence that suggest Pb may also act through inflammatory pathways to dis-
rupt plasticity. Neurotoxicant gene sets in general were enriched for inflammatory pathways (see Tables S2 and 
S3) and Pb in particular showed an association with response to exogenous substances and the inflammatory 
pathway TNF-α via NFkB (see Table S2). Genes differentially expressed in brain by Pb and LPS overlapped and 
gene set enrichment on these shared genes confirmed inflammatory pathway enrichments, while comparison 
to cytokine signatures showed Interleukin-1 as the top association (see Table S4), which we confirmed by qPCR 
after in vivo exposure to Pb. Together these analyses are consistent with a role of inflammation downstream of 
Pb to contribute to disruption of critical period plasticity. Our efforts did not explore whether inflammation is 
produced peripherally or centrally to impact plasticity. Previously, we administered intraperitoneal a dose of LPS 
reported not to cross the blood brain barrier and this suppressed plasticity at the peak of the critical period for 
ocular dominance15, indicating that peripherally-generated inflammation is sufficient to suppress ocular domi-
nance plasticity. While peripheral inflammation may be the result of an innate immune response to the exogenous 
substance Pb, given the association between microbiome and inflammatory disease31, an alternative hypothesis 
is that disruption of the microbiome by Pb32 could lead to increased inflammation mediated by gut dysbiosis. 
Administering a Pb-chelating chemical or anti-inflammatory compound that cannot cross the blood brain barrier 
co-current with Pb administration may help to tease out central versus peripheral impact of Pb. Collectively, Pb 
may simultaneously impact multiple cell-types including neurons, astrocytes, and peripheral cells to activate both 
inflammatory and other pathways to accumulate in the disruption of critical period plasticity.

This work shows that a systematic, data-driven, transcriptome-based approach can effectively identify neu-
rotoxicants of critical period plasticity. A limitation of this study is that there was only sufficient data within the 
CTD for 136 of 214 known neurotoxicants to reliably assess their impact on critical period plasticity. Moreover, 
the use of publically available data relies on the investigation of chemicals that have already been deemed interest-
ing in the past. This bias could be corrected by systematic assessment of all widely-used chemicals on the human 
transcriptome using cell line assays as has been done with therapeutic small molecules33. Similarly, in this study 
we limited ourselves to a single critical period signature that reflected endogenous gene expression relevant to the 
visual cortex at the peak of the critical period for ocular dominance. Future work can build on this by using addi-
tional genetic and environmental (i.e. running-induced plasticity, dark-rearing) models of critical period-related 
plasticity5 to screen for neurotoxicants that impact specific aspects of critical period plasticity as well as point 
toward underlying mechanisms.

Future studies can build upon this by extending beyond the 136 neurotoxicants surveyed here to the 4892 
chemicals in the CTD for which sufficient transcriptional data is available. To increase the fidelity of in silico 
transcriptional screening, ongoing efforts to systematically profile expression across approximately 1500 genes 
relevant to toxicology (i.e. the S1500 platform) induced by tens of thousands of chemicals by the U.S. multi-
agency collaborative, “Toxicology in the 21st Century” (Tox21 program), are a hopeful boon to high-throughput 
screening of environmental chemicals8. To address the critical need of screening environmental chemicals for 
their impact on neurodevelopment, S1500 efforts must be extended to mouse primary and human induced pluri-
potent stem cell (iPSC)-derived cell lines to complement ongoing efforts using RNA-sequencing9. Similarly, it is 
important to extend existing efforts to build models of toxicity using human lymphoblastoid cell lines34 to human 
iPSC-derived neurons towards prediction of neurodevelopmental effects. Another important future direction is 
to consider mixtures of chemicals35 and the interaction between chemical and environmental exposures, starting 
with pairs of exposures such as Pb and stress36 and moving to consider the totality of environmental exposures - 
the exposome37.

In summary, we demonstrate here an integrative bioinformatics approach to systematically identify neurotoxi-
cants that disrupt in vivo critical period neuroplasticity. This approach may be immediately extended to efficiently 
screen other environmental chemicals as well as generalized to other brain phenotypes to identify chemicals that 
impact diverse aspects of brain development. Given the recent child health crises in Flint, MI, USA, and elsewhere 
in the world, with elevated levels of Pb and other chemicals in public drinking water supplies23, implementing 
high-throughput approaches to identify dangers to childhood neurodevelopment is an important step in safe-
guarding child health.

Materials and Methods
Research objectives. The objective of this study was to determine if an integrative bioinformatics approach 
could be applied to systematically identify environmental chemicals that disrupt critical periods of neuroplasti-
city as tested subsequently in the in vivo ocular dominance model of critical period plasticity. The study began 
with a systematic, hypothesis-generation step (the computational step that includes Figs 1 and 2) where we pri-
oritized hypotheses about what neurotoxicants may disrupt plasticity. Prior to the outcome of these analyses, we 
hypothesized that top neurotoxicant hits would reverse gene expression important in the critical period. From 
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these analyses, we hypothesized a top ranked neurotoxicant lead (referred to in this paper by its chemical element 
symbol Pb) would suppress functional plasticity. When we found this to be the case, we further hypothesized that 
the spontaneous-to-evoked firing rate ratio would increase. Both the informatics approach and validation model 
were specified beforehand and a single top chemical, Pb, was chosen to test the approach, the results of which are 
reported here.

Animals. Male C57Bl6 mice (Charles River Laboratories) were group housed under a standard 12 h light/
dark cycle (lights on at 7:00 A.M., lights off at 7:00 P.M.) with constant temperature (23 °C) and ad libitum access 
to food and water. The Institutional Animal Care and Use Committee at the Icahn School of Medicine at Mount 
Sinai approved all procedures involving animals, and were carried out in accordance with the National Institute 
of Health guide for the Care and Use of Animals.

Experimental design. We performed a controlled laboratory experiment where mice were given either Pb 
in drinking water or pure water alone chronically during the juvenile period and up through the endpoint, either 
qPCR of brain cortex, brain sectioning, or electrophysiology of brain cortex.

Randomization. Pups were randomly chosen to be in the Pb or pure water groups and cross-fostered, when 
possible.

Blinding. The experimenter performing the ocular dominance plasticity assay was blinded as to the con-
ditions (the animal was delivered to the technician by another author who was not otherwise involved in the 
experimental assay nor the subsequent statistical analysis, but was involved in the assessment of the quality of the 
raw data and inclusion/exclusion).

Rules for stopping data collection and data inclusion/exclusion criteria. We stopped data collec-
tion when we reached the sample size estimated by apriori power calculation. Inclusion and exclusion criteria for 
the ocular dominance assay were previously established15 and applied here (see below section In vivo electrophys-
iology for a restatement of these criteria). Outliers were not assessed nor excluded.

Selection of endpoints. Two endpoints were selected. Primary endpoint: the animal-level contralateral 
bias index and animal-level hierarchical linear model of ocular dominance index. Secondary endpoint: the 
neuron-level ocular dominance score and neuron-level ocular dominance index.

Replicates. A minimum of 3 biological replicates were included in all experiments, whether completed in 
house or re-analyzed from public data. Ocular dominance assay and qPCR experiments were performed once. 
For qPCR, three technical replicates were always included in the assay and averaged.

Critical period signature. Juvenile critical period signature was generated from publically available juvenile 
mice data, GSE8975715). Briefly, we used Limma38 to quantile normalized raw microrray probe-level data and 
RankProd39 to compute rank-based differential expression of mouse genes between juvenile mice at postnatal day 
(P) 26 and adult (>P56) C57Bl6 mice (n = 3 each group) primary visual cortex (V1), which we mapped to orthol-
ogous human genes using the Mouse Genome Informatics homology reference to yield 176 genes. Differentially 
expressed genes were split into those increased and decreased during the critical period (CP genes up and CP 
genes down). To enable gene set enrichment analyses via hypergeometric tests the critical period transcriptome 
was computed. Probe-level data from above microarray dataset was background corrected, quantile normal-
ized, and log2 transformed with Limma and then collapsed to human gene orthologs using the Mouse Genome 
Informatics homology reference (maximum mean intensity value was retained in cases of multiple probes map-
ping to the same gene) to yield a 9657 gene transcriptome.

Neurotoxicant signatures. Neurotoxicant signatures were derived from Comparative Toxicogenomics 
Database (CTD) data. From 1.25 million CTD relationships between chemicals and 33 biological substrates 
(i.e. protein, DNA, mRNA, etc), chemicals with mRNA relationships were retained to yield 4892 chemicals. Of 
these chemicals, 195 were shared with a list of 214 unique human neurotoxicants identified by Landrigan and 
Grandjean16. For these 195 neurotoxicants, composite gene set signatures (genes increased AND decreased by 
a given neurotoxicant) were generated to yield a library of 136 gene sets (TOX composite) after filtering for gene 
set size (min = 3, max = 2500 genes). For subsequent analyses based on neurotoxicants with significant overlaps 
between a given composite gene set and the critical period signature, we generated TOX genes up (28 gene sets) 
and TOX genes down (25 gene sets) libraries, which reflect genes increased or decreased by a given neurotoxicant. 
Gene set size varied between TOX genes up and TOX genes down gene sets due to again filtering by size (min = 3, 
max = 2500 genes) after splitting the TOX composite gene sets.

Enrichment analyses. To determine statistical enrichments of neurotoxicant gene set signatures and critical 
period signatures, the critical period signature was matched to neurotoxicant signatures using hypergeometric 
tests. This test aims to identify the probability of genes in a neurotoxicant signature overlapping with genes in 
the critical period signature, given the background of all genes potentially relevant to both critical period and 
neurotoxicants. This background was computed by taking the intersection of the critical period transcriptome 
and genes associated with any of the 4892 chemicals with mRNA relationships in the CTD mapped to human ort-
hologous Entrez gene ids (9641 genes). Hypergeometric tests were computed between given TOX composite gene 
sets and all genes differentially expressed in the critical period to reduce the search space to 28 neurotoxicants 
that shared genes with the critical period regardless of the direction of expression in either the critical period or 
neurotoxicant signature. Next, to determine if a given neurotoxicant reversed critical period gene expression, the 
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overlap of gene sets of the TOX genes down and CP genes up or the TOX genes up and CP genes down were com-
puted using hypergeometric tests. To better understand the potential biological role of neurotoxicant genes that 
were shared with the critical period signature, we calculated gene set enrichments using hypergeometric tests to 
assess the probability of the overlap of shared neurotoxicant-critical period genes with each of 50 Hallmark gene 
sets18 and 5192 Gene Ontology Biological Process gene sets [using the Enrichr build40]. In all cases, a threshold of 
Padj < 0.05 was set to consider enrichments significant.

Pb and lipopolysaccharide transcriptome signatures. Pb and lipopolysaccharide (LPS) transcriptome- 
wide signatures were curated from Gene Expression Omnibus (GEO) and included a dataset of juvenile rat hippocam-
pus chronically exposed to Pb in chow (GSE56666), 55 instances of Pb exposure to rats from non-brain tissues exposed 
to various doses of Pb by oral gavage, for various periods of time (GSE59927), and whole brain homogenate 4 hours 
after low dose (LPS) injected intraperitoneal (GSE3253). GSE56666 included data for males and females across 3 
species; given our test animals were male we used only male data in generation of the signature and considered all 
samples together (did not separate by strain). Data was normalized and differential transcriptomes computed as pre-
viously published41. Briefly, raw data were downloaded from GEO (for DrugMatrix, this was facilitated by metadata 
derived by Ma’ayan Lab: http://amp.pharm.mssm.edu/CREEDS/#downloads42), normalized by a rank-based approach 
(RankNorm) by ordering the expression values from highest to lowest and applying a rank where the highest expressed 
gene was N = total number of genes and lowest ranked gene was 1. Ranks were normalized to the range 0–1 inclusive 
by dividing all ranks by N. In cases where multiple probes mapped to the same gene the gene with highest average 
rank across samples was retained. Differential expression across the entire transcriptome was computed as the dif-
ference in rank between case and control (SubDiff), yielding a differential expression value ranging from −1 to +1. 
Code to generate these signatures was based on a microarray analysis pipeline built in-house43. To determine if genes 
shared by Pb and LPS exposure significantly overlapped, we first identified genes differentially expressed as those with 
a SubDiff Z-score of > 1.5 or <−1.5 (Pb 1125 genes, LPS 1485 genes). We then calculated the probability of the 185 
shared genes relative to a background of all 11,582 genes commonly expressed on the Pb or LPS microarrays using a 
Fisher’s Exact test (all genes were mapped to orthologous human Entrez gene ids). Using this same background, we 
employed hypergeometric tests to identify 50 Hallmark gene sets and 96 Library of Integrated Network-based Cellular 
Signatures (LINCS) ligand gene sets21 (gene expression response of cell lines to cytokine and growth factors, range of 
signatures 273–327 genes - generated by combining genes identified as increased and decreased by a given ligand in 
the Enrichr build 201740) that were associated to the shared 185 Pb-LPS genes and considered any Hallmark or LINCS 
ligand gene sets significant if the Padj < 0.05.

Molecular matching. A molecular match score was adapted from15 to quantify the ability of a given Pb 
signature to decrease CP genes up. Briefly, summing the SubDiff expression values for genes in a given transcrip-
tome signature that are present in the CP genes up signature yielded the molecular match score (M): a summary 
measure of concordance between critical period signature and Pb transcriptome gene expression. Low molecular 
match scores (<0) indicate that a given Pb signature decreases genes upregulated in the critical period and high 
scores (>0) indicate the Pb signature increases these genes. Therefore, we would hypothesize a low molecular 
match score indicates that critical period gene expression and plasticity may be suppressed in vivo. To compare 
match scores (M) across transcriptome signatures (e.g. between instances in DrugMatrix), we normalized each M 
using −

∑ = −

−
( )

M Mperm

i
n permi perm

n
1 M M

2

1

 where Mperm is the mean of n = 10,000 permutations of scores generated by shuffling the 

gene labels and recalculating M. P values for M were estimated from Mperm using the Generalized Pareto 
Distribution44 on n permutations. M is computed similar to the approach by Zhang and Gant45.

Substances. 1.144 g of Pb (lead (II) acetate trihydrate; Sigma-Aldrich, Cat# 467863) was dissolved in 25 mL 
of Milli-Q ultrapure deionized water (dH20) to yield a stock solution of 45.77 mg/ml. 600ul of the stock solution 
was diluted to 300 ml with dH20 to yield a 50 parts-per-million (PPM) working solution.

Lead (Pb) experimental design. Animals were received on P7, acclimatized for one day, and then divided 
into groups receiving 50 PPM Pb in dH20 or dH20 alone as drinking water until P27–29 (average P28) when 
qPCR, sectioning, or electrophysiological recordings took place.

In vivo electrophysiology. Under light anesthesia, the eye contralateral to the recording site of 
experiment-naive P24-27 mice was sutured (monocular deprivation; MD) under light isoflurane and three days 
later, single-unit electrophysiological recordings were taken in binocular zone of V1 in response to visual stimuli 
presented to each eye separately11,15 (N = 5 Pb, N = 6 control). Animals were weaned at MD. A separate cohort of 
animals were recorded without MD to assess baseline activity (N = 5 Pb, N = 3 control). Animals were anesthe-
tized with nembutal/chlorprothixene anesthesia and atropine and dexamethasone were injected subcutaneous to 
reduce salivary secretion and brain swelling, respectively, during recording. Visual responses evoked by a high 
contrast single bar generated by ViSaGe system (Cambridge Research System) were recorded using a 16 channel 
probe. The exclusion criteria to discard recordings were failed MD (identified by opening of sutured eye) or poor 
recording quality (<10 cells/mouse, <3 penetrations/mouse, or inability to identify both monocular zone and sec-
ondary visual cortex). To analyze the electrophysiology data, normalized ocular dominance index (ODI) of single 
neurons was computed by a custom MATLAB code via peristimulus time histogram analysis of peak to baseline 
spiking activity in response to each eye: 〈[Peak(ipsi)-baseline (ipsi)]–[Peak (contra)-baseline(contra)]〉/〈[Peak 
(ipsi) – base line(ipsi)] + [Peak(contra)-baseline(contra)]〉, which produces a range of [−1, +1] where −1 is a com-
pletely contra-dominated cell and +1 is a completely ipsi-dominated cell. ODI is linearly transformed by assign-
ing [−1.0, −0.5) = 1, [−0.5, −0.3) = 2, [−0.3, −0.1) = 3, [−0.1, +0.1] = 4, (+0.1, +0.3] = 5, (+0.3, +0.5] = 6, 

http://amp.pharm.mssm.edu/CREEDS/#downloads
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(+0.5, +1.0] = 7 to produce the ocular dominance score (ODS). Finally, the contralateral bias index (CBI), a 
monocular weighted, animal-level summary statistic, is computed from the ODS: [(n1-n7) + 2/3(n2-n6) +  
1/3(n3-n5) + N]/2 N, where N = total number of cells and nx = number of cells corresponding to an ODS of x. 
Thus, a CBI of 0.7 is contra-dominant and a CBI of 0.4 is ipsi-dominant. For comparison of ocular dominance, 
we plotted CBI of single animals in their respective groups and statistically compared between groups via t tests. 
Additionally, we computed the average proportion of ODS counts for a given bin (integers 1 through 7) across 
animals, plotted these average proportions as histograms and included the standard error of the mean (SEM) 
as a shaded region around the mean, and statistically compared the raw ODS counts between groups via the 
non-parametric Chi-squared test. Finally, we plotted each ODI for each neuron for each animal in each group to 
show the variation within and between groups and used hierarchical linear modeling (also known as linear mixed 
modeling or random effects modeling) to statistically compare the groups while accounting for both within and 
between animal variation25 using the R packages lme4 (v. 1.1.12), LmerTest (v. 2.0.32), and lsmeans (v. 2.25). 
Experience (MD or no MD) and group (Pb or control) were modeled as fixed effects and animal was modeled as 
a random effect (animals were considered an independent and random sample from the population and neural 
measurements within an animal as nested, repeat measures). We assigned the neuron-level ODI as the outcome 
variable as it is the only continuous variable that encodes ocular dominance of a given neuron. The Holm method 
was used to correct comparisons of multiple contrasts and those with Padj < 0.05 were considered significant. 
Immediately after recording, trunk blood and non-recorded V1 were collected for further analysis. We estimated 
sample size apriori via power analysis assuming the effect size and standard deviation from previous studies at 
N = 5–6, which we obtained in the study.

Quantitative PCR (qPCR). Mice not subjected to MD whose brains were not recorded from (N = 3 Pb, 
N = 3 control) or were recorded from (N = 5 Pb, N = 3 control) were anesthetized under 3.0% isoflurane or nem-
butal/chlorprothixene anesthesia, rapidly decapitated, and bilateral V1 dissected under RNAse-free conditions, 
briefly rinsed in sterile saline (0.9% NaCl), frozen on dry ice, and stored at −80 °C until further processing. Total 
RNA was extracted from unilateral V1 using the RNeasy Lipid Tissue Mini Kit (Qiagen) and stored at −80 °C. 
RNA yields ranged from 1.5 to 10.5 μg/sample with a mean of 5.6 μg. Total V1 RNA was converted to cDNA 
using a High Capacity cDNA Reverse Transcription Kit (Life Technologies). A FXP Biomek Liquid Handler or 
manual approach was used to plate cDNA, Taqman Master Mix II, and Taqman probes (Marcksl1: Mm00456784_
m1, JunB: Mm04243546_s1, Col22a1: Mm01195058_m1, Tnc: Mm00495662_m1, Kank1: Mm00619389_m1, 
Col18a1: Mm00487131_m1, Fermt1: Mm01270148_m1, Ppapdc1a: Mm01276440_m1, Fos: Mm00487425_m1, 
Cd93: Mm00440239_g1, Adam19: Mm01286004_m1, Gapdh: Mm99999915_g1, Eif2ak1: Mm01202300_m1, 
Arc: Mm01204954_g1, Egr2: Mm00456650_m1, Npas4: Mm01227866_g1, Mbp: Mm01262035_m1, Gad1 (also 
known as Gad67): Mm04207432_g1, Gad2 (also known as Gad65): Mm00484623_m1, Pvalb: Mm00443100_m1, 
Vgat (also known as Slc31a1): Mm00494138_m1, Gabra1: Mm00439046_m1, Gphn: Mm00556895_m1, Il1β: 
Mm00434228_m1). qPCR plate reading was performed by the Mount Sinai Quantitative PCR core facility. Using 
SDS 2.4, raw fluorescence signals were normalized to baseline, quality of amplification was assessed, and cycles 
to threshold (CT) were calculated. Fermt1 data was discarded due to poor amplification. ΔCT were calculated 
using as reference the geometric mean of two housekeeping genes, Gapdh and Eif2ak1. Quantification of the log2 
fold change between Pb and control conditions for a given gene was derived via linear regression with ΔCT as 
the outcome variable and recording status (recorded or not recorded), group (Pb or control) and an interaction 
term as the independent variables. In this scenario, the coefficient for group effect is equivalent to the ΔΔCT and 
we took the negative of this coefficient to yield the −ΔΔCT (equivalent to a log2 fold change). This approach 
is reasonable under the assumptions of the linear model given the approximately normal distribution of ΔCTs.

Pb tissue analyses. Brain: Mice not subjected to MD (N = 1 per group) were lightly anesthetized via 3.0% 
isoflurane, decapitated, and whole brain was rapidly frozen in optimal cutting tempature (OCT) compound on 
dry ice and stored at −80 °C. Brains were coronal sectioned at 10 μm thick using a cryostat, placed directly on 
glass slides, briefly air dried, and stored at −20 °C. Brain sections were analyzed for metal concentrations using 
laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The surface of the tissue section 
was rastered with a laser ablation unit (NWR 193 nm) and the ejected material ionized in a mass spectrometer 
(QQQ 8800 Agilent ICP-MS). Helium is used as a carrier gas from the laser ablation cell and mixed with argon via 
Y-piece before introduction to the ICP-MS. The system was tuned daily using National Institute of Standards and 
Technology SRM 612 (trace elements in glass) to monitor sensitivity (maximum analyte ion counts), oxide for-
mation (232Th16O+/232Th+, <0.3%) and fractionation (232Th+/238U+, 100 ± 5%). Blood: Trunk blood was 
collected immediately after recording in MD (Pb N = 5, control N = 6) and no-MD (Pb N = 5, control N = 3) or at 
sacrifice in no-MD animals who were not recorded (Pb N = 3, control N = 3), and no-MD non-recorded animals 
whose brains were sectioned to analyze the cerebral Pb distribution and quantity (Pb N = 1, control N = 1). Blood 
was subjected to in-solution ICP-MS to determine blood Pb levels.

Statistical Analysis. Statistical analyses were completed in the R programming language (v 3.2.2). In all 
cases of multiple hypothesis testing, resulting P values were corrected using the False Discovery Rate (FDR) 
approach46 and is referred to as P-adjusted (Padj) throughout the paper. All tests were 2-sided, except where 
otherwise specified (for comparing the CBI in animals that received MD, we used a one-sided t test since we 
hypothesized a priori that Pb would specifically increase the CBI in Pb versus control). Hypergeometric tests were 
computed via the HTSanalyzeR R package47 and Fisher’s Exact tests via the base R function.
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Data Availability
The microarray gene expression data analyzed in this study is publically available on the Gene Expression Om-
nibus (accession numbers stated in relevant Methods section). Ocular dominance and qPCR data available from 
the corresponding author on request.
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