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Metabolic pathways synthesis 
based on ant colony optimization
Matias F. Gerard, Georgina Stegmayer & Diego H. Milone  

One of the current challenges in bioinformatics is to discover new ways to transform a set of compounds 
into specific products. The usual approach is finding the reactions to synthesize a particular product, 
from a given substrate, by means of classical searching algorithms. However, they have three main 
limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that 
verifies the availability of substrates; and inability to find branched pathways. We present here a novel 
bio-inspired algorithm for synthesizing linear and branched metabolic pathways. It allows relating 
several compounds simultaneously, ensuring the availability of substrates for every reaction in the 
solution. Comparisons with classical searching algorithms and other recent metaheuristic approaches 
show clear advantages of this proposal, fully recovering well-known pathways. Furthermore, solutions 
found can be analyzed in a simple way through graphical representations on the web.

Nowadays, information of metabolic pathways for a large number of living beings is available in databases such 
as KEGG1, MetaCyc2 and Brenda3. This allows the online exploration of the enzymes, biochemical reactions 
catalyzed, and the involved substrates and products. Although individual rules for producing compounds are 
well-known, it is still a challenge to identify the adequate sequence of reactions required for the synthesis of sev-
eral compounds as part of a (novel) complex metabolic network with several branches4.

Traditionally, metabolic pathway synthesis of a target compound from a given source has been addressed by 
methods based on graphs. The main reason is to avoid shortcomings of stoichiometric approaches when applied 
to networks of large size5. The first step is to model compounds and reactions as an appropriate graph6. In a gen-
eral approach for modeling, nodes indicate compounds and edges link substrates and products of the same reac-
tion. The next step is searching for a path over the graph, that connects the source with the target compound using 
some search method. These methods were based mostly on classical Breadth-First Search (BFS) and Depth-First 
Search (DFS) algorithms7. The main problem faced by these methods is avoiding the commonly called pool com-
pounds, such as ATP, NAD and water, which are involved in many different reactions carrying out several tasks. 
Since they have a high connectivity degree, pool compounds are frequently included as intermediate in the solu-
tions found, producing biologically unfeasible pathways.

A systematic approach to deal with pool compounds consists in describing their structures in terms of features 
vectors8 or fingerprints9. These representations can be used, in combination with a similarity measure, to select 
the next more similar compound to the current one, thus avoiding pool compounds. Another option is assigning 
a cost to nodes or links of the graph according to the number of reactions in which each compound participates, 
and then search for pathways with the lower costs10,11. Kotera and co-workers have manually characterized each 
substrate-product pair on every known reaction according to the fulfilled function12,13. Using this characteriza-
tion, several methods first build graphs without biologically irrelevant connections, and then search for meta-
bolic pathways taking into account only those pairs describing main functions14,15. The number of atoms shared 
between substrates and products of reactions has also been used to avoid pool compounds. Based on this infor-
mation, some methods search for metabolic pathways that maximize the number of atoms transferred from the 
source to the target compound16, or at least preserve a given number of them in the path17. An improved version 
of this approach assigns a cost to the connections in the graph based on structural similarity of the compounds 
and the thermodynamics of the reaction that involves them18. Khosraviani et al. have proposed an AND/OR 
boolean representation of the graph using matrix notation19. It allowed search for pathways between source and 
target compounds over a reduced search space by applying boolean operations. However, these strategies have the 
limitation of finding solutions only as linear sequences of reactions (or a combination of them), and they do not 
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take into account the availability of compounds already synthesized. In many cases, this leads to the synthesis of 
metabolic pathways in an uncoordinated fashion, providing solutions without biological sense.

In a previous work, we proposed an algorithm called Evolutionary Metabolic Seeker (EvoMS), which synthe-
sized metabolic pathways using information on the availability of compounds20,21. EvoMS models a metabolic 
pathway as a sequence of feasible reactions that start from a set of initial substrates. In this tool, we proposed the 
set-of-compounds (SoC) model, where a set containing substrates for all reactions in a given sequence is iteratively 
updated with the products of each new feasible reaction added to the sequence. Thereby, searching for a pathway 
consist in finding a sequence of feasible reactions that relates a given group of compounds, subject to the availa-
bility of initial substrates. However, EvoMS is unable to preserve a set of feasible solutions along the search, since 
the availability of substrates is not guaranteed when intermediate solutions are combined to produce new ones. 
As a consequence, the search is very slow and the synthesis of pathways that relate multiple compounds in large 
search spaces is not always possible.

Synthesizing metabolic pathways has the challenge of exploring a large solution space, which grows when 
more reactions and compounds are involved. When the SoC model is considered, this problem becomes more 
difficult and clearly imposes a limitation on the use of classical DFS- and BFS-based algorithms. As frequently 
happens in real problems, the minimum set of available compounds required for synthesizing a pathway may be 
not completely known in advance. In consequence, more compounds than necessary are generally added to the 
initial set, trying to prevent losing potential solutions because some substrates are not available. In order to evalu-
ate how the performance of the algorithms behaves in this context, we designed an experiment where we knew in 
advance the solution to be found and the minimum set of compounds needed to synthesize it. For this purpose, 
a list of 79 reactions belonging to the glycolysis was extracted from KEGG, and used to synthesize a pathway to 
produce 2-phospho-D-glycerate from D-glucose-1-phosphate. Furthermore, the minimum set of compounds 
required to find the solution was identified. Then, we systematically added a larger number of compounds to 
increase the size of the set of initially available ones, and run BFS and DFS to explore the search space generated 
by the SoC model for each initial set of compounds. Figure 1 shows the growth of searching time (average over 
100 runs) for BFS and DFS algorithms according to the number of compounds added to the minimum set of 
initially available ones. As it can be expected, average time grows exponentially with the increase in the size of the 
available compounds set.

A bio-inspired metaheuristic that has proved to efficiently solve such large graph-based problems is the ant 
colony optimization algorithm (ACO). The ACO is an important technique in the field of Swarm Intelligence, 
and it is inspired on the behavior of real ant colonies searching for food22. The ants deposit pheromone on the 
ground in order to mark the routes, from the nest to food, which should be followed by other members of the 
colony. Accumulation of pheromones over paths along the iterations favor solutions that minimize a cost func-
tion23. Those algorithms have been successfully applied to a wide range of problems in many different areas24. 
Particularly, they have proved to be a powerful tool solving biological problems related to protein folding25, 
genetic interactions detection26, RNA sequence design27, protein-protein interaction inhibitors design28, protein 

Figure 1. Average time required (100 runs) for DFS (left) and BFS (right) to search for a pathway between 2 
compounds. The x-axis indicates the number of compounds added to the minimum required set.



www.nature.com/scientificreports/

3Scientific REPORtS |         (2018) 8:16398  | DOI:10.1038/s41598-018-34454-z

structure optimization29 and protein-ligand docking30. Moreover, they have outperformed genetic algorithms in 
a wide range of combinatorial optimization problems31–35.

In this work we propose a novel ant-based algorithm to synthesize metabolic pathways, to efficiently explore 
large search spaces of reactions. Our proposal takes advantage of the way on which ants perform the exploration 
to incorporate information of the compounds availability, in order to build feasible solutions. Furthermore, since 
this algorithm uses the SoC model to search, it is possible to find solutions with both linear and branched topol-
ogy. This algorithm can be suitable for applications such as synthetic biology, interpretation of metabolomics 
experiments and gap filling in metabolic reconstructions.

Proposed Computational Method
State space model and metabolic pathways. Metabolic pathways are networks built by compounds 
and the biochemical reactions that relate them. These reactions allow the synthesis of new compounds from 
other ones. Formally, the reactions are described by typical chemical equations as S(r) ↔ P(r), where S(r) and 
P(r) correspond to the substrates and the products, respectively36. Then, metabolic pathways can be described as 
sequences of sets of compounds (substrates for next reactions), with composition and size defined by the order 
on which the reactions of the pathway are performed37. Following this reasoning, the state space for the problem 
of synthesizing metabolic pathways can be build considering each state as a set of compounds and the relations 
among them. Then, transitions between states are given by those reactions that can be carried out with the availa-
ble substrates in the current state. It must be noted that while available connections among compounds are known 
and fixed for a given set of reactions (typical compounds-and-reactions graph), the graph describing the state 
space changes according to the initial set of available compounds specified. Furthermore, the number of nodes is 
even larger than for compounds-and-reactions graphs, since each node represents a unique state, which in turn 
corresponds to a metabolic network in itself (set of compounds and the relations among them). As a result, every 
path in the search tree built to find a solution on this graph will be feasible, because reactions for which substrates 
are available in the current node can only be performed.

Figure 2 shows an example of a typical tree to explore the search space. The root node, composed by a set of 
four compounds without links, is the initial state of the search. When reaction r1 is applied, for example, a new 
state with one link and five compounds (triangle added) is reached. Now, applying reaction r2 over this node, we 
can reach a new one with a new link and an additional compound. Following this strategy we can reach to a final 
state describing a metabolic pathway that relates 13 compounds (bottom of the figure).

Figure 2. Example of a tree for the exploration of the state space.
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It is important to highlight here that this approach is clearly different from graph search methods37, because 
our proposal does not build first the complete graph and then performs the search within it. Instead, metabolic 
pathways are grown step by step, by choosing one feasible reaction at a time from a list of available reactions. 
Then, the chosen reaction is added to a sequence that starts from a set of available compounds. Moreover, choos-
ing reactions is done with a given probability which is learned while solutions are synthesized. Finally, each state 
explored during the process corresponds to a complete metabolic pathway and not just to a single compound, as 
typically occurs in with classical searching methods.

Ant-based algorithm for searching metabolic pathways. Table 1 presents the general steps of the 
ant-based method which we called PhDSeeker (Pheromone-Directed Seeker). The algorithm receives four inputs: 
a set  of compounds to relate; a subset I D⊆  of compounds which can be used as initial substrate for the met-
abolic pathway; a list  of reactions that can be used to build the solution; a set  of freely available compounds 
(such as water, ATP, etc). As output, it returns a list of reactions π π ππ =  

⁎ ⁎ ⁎ ⁎[ , , , , ]i N0  describing the best 
feasible metabolic pathway found from the initial conditions specified.

PhDSeeker starts building the list of reactions r0 that use any compound in   as substrate. From those reac-
tions, each ant will choose one as the initial reaction of its path. Next, the pheromone matrix Ω is initialized set-
ting Ωi,j = 1. This is used by ants along the search to store the frequency of reactions i → j in the solutions. For the 
particular case of i = 0, Ω stores information of the usefulness for the reactions in r0. This value indicates how 
frequently a given initial reaction leads to a solution.

The searching process begins after r0 and Ω have been initialized. On each iteration of the algorithm, every ant 
performs an independent search, following the same steps (lines 7 to 19). Initially, the ant k chooses one reaction 
r from r0 according to its probability pr, which depends on the values stored in the first row of Ω (line 8). Then, it 
is used to set the first reaction π k

0  of the pathway πk. In addition, substrates S(π0) and products P(π0) of this reac-
tion are combined with the available compounds  to build the initial set of compounds Ck that the ant uses to 
synthesize a pathway linking compounds in  (line 9).

After the first reaction is inserted into the pathway, the ant repeat five operations (lines 10 to 17). Initially, the 
ant identifies all the reactions r for which the substrates are in Ck, filtering those that are already in the pathway 
πk. Then, it chooses one reaction r ∈ r according to its probability 

πp r,i
, and adds the selected reaction to the path-

way (lines 14-15). Finally, the ant updates its set of available compounds Ck with products of the selected reaction 
(line 16). These operations are repeated by every ant until there are no more feasible reactions to synthesize the 
pathway (r = ∅), or a metabolic pathway synthesizing all the final products ( ⊆ C ), is found.

Once the ant completed the search, unnecessary reactions are removed of πk, and the cost of the resulting 
pathway π̂k is calculated (line 18). The pathway cleaning step consists in discarding reactions that do not synthe-
size any of the compounds in , that is, the ones that only produce compounds belonging to , or those which 
synthesize compounds that are not substrate for any reaction. The cost π̂f ( ) is calculated based on the evaluation 

Table 1. Ant-based synthesis of metabolic pathways.



www.nature.com/scientificreports/

5Scientific REPORtS |         (2018) 8:16398  | DOI:10.1038/s41598-018-34454-z

of four characteristics of the pathway (line 19): number of reactions in the pathway π| |ˆ ; number of unique reac-
tions φ π̂( ); number of reactions synthesizing new compounds ϕ π̂( ); and connectivity of the pathway κ π̂( ). The 
number of unique reactions is calculated as ϕ π π π π= | ≠ ∀ < |ˆ ˆ ˆ ˆ j i( ) { / , }i i j , and penalize solutions including reac-
tions used with both directions. The number of reactions synthesizing new compounds is determined as 

∪φ π π π π= | − − ≠ ∅ |∀ <ˆ ˆ ˆ ˆP P( ) { /{ ( ) { ( )} } }i i j i j  , where π̂P( )i  is the set of products for reaction π̂i. This measure 
reaches its maximum value when all reactions in the pathway produce at least one new compound, not previously 
synthesized. Connectivity evaluates the number of final products (compounds in  without the initial substrate) 
synthesized from the initial substrate in the pathway. Let ∩π= ˆX S{ ( ) }0 0  be an initial set of compounds con-
taining only the initial substrate used by the first reaction of the pathway. The update of this set is performed 
according to

∪ ∩π π
=






− ≠ ∅
.+

+ +X X P X S
X

( ( ) ) if ( ) ,
in other case (1)i

i i i i

i
1

1 1ˆ ˆ

The latest updated set XN contains all the compounds synthesized by any reaction related to the initial com-
pound. Based on this set, connectivity κ π̂( ) can take value

 { X( ) 1 if / 1,
in other case, (2)

Nˆ ∩κ π
α

= | | | | =

being α a constant that establishes the cost difference between partial solutions (only some final products are 
synthesized from the initial substrate) and complete ones. Therefore, when α . 1 0 the solutions that relate only 
some of the compounds will cost less than those that relate them all. In contrast, when α . 1 0, the solutions that 
link all the compounds will have lower cost, and will be the ones that the ants will try to build. A recommended 
value is α = 10Nk, being Nk the number of ants used in the search (see Supplementary Figure S2 for a detail on the 
effect of α for more details).

After ants have removed unnecessary reactions from the pathways and the cost of each solution was evaluated, 
the pheromone matrix is updated following two mechanisms (lines 20 and 21). First, the pheromone evaporation 
is done by removing a proportion ρ of the pheromones, in order to emulate the natural process of loss of informa-
tion associated to evaporation. Next, the elements of Ω are updated according to the reactions used in the path-
ways found, and the cost of the solutions. Thus, given a pathway π̂k, the usefulness of the first reaction π̂k

0  is 
updated by adding the quantity 1/f(π̂k) to Ω π̂0, k

0
. Then, the reactions sequence of the pathway is traversed, and the 

pheromone value Ωπ π +ˆ ˆ,i
k

i
k

1
 corresponding to every couple π π +ˆ ˆ,i

k
i
k

1 is updated by adding the quantity 1/f(π̂k). Once 
the three steps of collective knowledge update are finished, the best solution found is saved in π*.

The algorithm searches until the best solution does not change for a given number of iterations, and all the 
ants follow different paths according to their costs.

Datasets and Measures
Reactions used in the experiments were extracted from the KEGG database1 (other repositories such as MetaCyc38 
could be used as well). The direction for each reaction was assigned using the information contained in the 
KGML files associated to the reference maps39,40. Each reversible reaction was modelled as a pair of independent 
reactions with opposite direction. A total of 5 datasets of reactions (glycolysis, proline, xproline, multipaths, ecoli) 
were used in the experiments. Details on the datasets of reactions and the list of freely available compounds, are 
provided in the Supplementary Material, Tables S1 and S2.

Algorithms were evaluated on searching time t, the number of reactions NR in the solution and the branching 
factor β. Even though searching time depends on many elements, it was used as a rough indicator of computa-
tional cost. The branching factor evaluates the relation among reactions in the pathway, measuring the average 
number of reactions that use every non-abundant substrate. It is calculated according to

∑∑β π =
| |

π

=

| |

=

| |

⊆⁎

⁎

S
1( ) 1 ,

(3)f i

S

j
s S r

1 1
( )

f

i j

where ⁎Sf  are the substrates of all reactions in π after filtering the abundant compounds, |π| is the pathway size, 1 
is the indicator function, si is the i- th compound of ⁎Sf , and S(rj) are the substrates of reaction rj.

For comparisons with other state-of-the-art methods, a benchmark dataset of 42 reference pathways derived 
from the aMAZE database41 and provided by Huang et al.18 have been used. It consists of real pathways up to 10 
reactions belonging to E. coli, S. cerevisiae, and H. sapiens that are commonly used for evaluation of pathfinding 
methods in the literature18. Performance on the available synthesized pathways was evaluated according to meas-
ures defined in literature17, being: true positives (TP) those elements (compounds or reactions) found in both 
the reference and the synthesized pathway; false positives (FP) those elements in the synthesized pathway but 
not in the reference one; and false negatives (FN) correspond to elements in the reference pathway but not in the 
synthesized one. Precision is calculated as PR = TP/(TP + FP) and, in this context, it provides information about 
the proportion of compounds/reactions in the synthesized pathway which effectively are in the reference one. The 
higher this value, the fewer compounds/reactions outside the reference pathway will be part of the synthesized 
pathway. Recall is calculated as RC = TP/(TP + FN), and indicates the proportion of compounds/reactions of the 
reference pathway that are in the synthesized one (proportion of the reference pathway effectively recovered). 
Accuracy is calculated as Acc = (PR + RC)/2, and gives a balance between both previous measures.
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Results and Discussion
Comparison of searching times. Searching time required for DFS, BFS, EvoMS and PhDSeeker for find-
ing metabolic pathways was evaluated in a simple problem. This consisted on the search of a metabolic pathway 
between compounds C00103 (D-glucose-1-phosphate) and C00631 (2-phospho-D-glycerate), using the glycolysis 
dataset of reactions and C00103 as initial substrate. For this experiment, the initial set of available compounds 
containing only those required for finding at least one solution was built combining freely available compounds 
with substrates of reactions using C00103. However, it is important to remark that the initial set of available 
compounds can be built with as many compounds as it is desired. A reasonable starting point could include 
compounds such as water, NADH, H+ and many others that are actually freely available in living organisms (see 
Supplementary Table S2 for an example). Then, this set could be extended with other compounds based on the 
knowledge of the organism. For example, metabolomic information could be used to identify some extra com-
pounds that could be included in the set of available ones.

In order to generate different initial conditions for the searching problem, an increasing number of extra 
compounds, randomly selected, was added to the initial set of available compounds. It should be noted that the 
minimum set of initially available compounds can be specified for this problem, since the solution is well-known. 
We performed 16 experiments, each one with 100 runs. Search operators (reactions) were randomly sorted on 
each run of the BFS and DFS algorithms. The maximum search depth for DFS was 10, corresponding to twice the 
number of reactions of the shortest metabolic pathway. Preliminary experiments indicated that EvoMS required 

Figure 3. Searching times required to find a metabolic pathway considering a growing number of compounds 
added to the minimum set of available ones. (a) BFS; (b) DFS; (c) EvoMS; (d) PhDSeeker. Red line denotes the 
median, and circles indicate outliers.

proline xproline

EvoMS PhDSeeker EvoMS PhDSeeker

NR 13.99 (3.85) 9.80 (0.81) 8.20 (3.34) 6.99 (2.69)

β 1.47 (0.18) 1.27 (0.08) 1.45 (0.28) 1.24 (0.08)

t 13.31 (7.44) 1.90 (0.38) 5.01 (3.02) 6.18 (1.67)

Table 2. Average performance for 3-compounds (100 runs of each method). NR: Number of reactions 
comprising the solution. β: branching factor (average number of reactions that use every non-abundant 
substrate). t: time required to find a solution. Standard deviation in brackets.
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up to 100 individuals to find a solution to this problem. In the case of PhDSeeker, it was observed that 5 ants were 
enough to build a metabolic pathway linking both compounds.

Figure 3 shows a boxplot of the searching time for all methods. As it can be seen, classical methods show an 
exponential increase in the searching time, from tenths of seconds to minutes, when a large number of extra com-
pounds is taken into account. Since the root node corresponds to the set of initially available compounds, feasible 
reactions from this set are the possible branches for the first level of the search tree. In consequence, the increase 
in the size of this initial set is quickly reflected as an increase in the number of branches for the first level of the 
search tree, and this effect is then translated to the following levels. Clearly, it leads to a growth in the number 
of states to be explored to find a solution. Moreover, it can also be appreciated a high variability in the searching 
time and large number of outliers, because there is not a-priori knowledge about how the search operators should 
be applied to find solutions in the minimum number of steps. In contrast, searching time for metaheuristic algo-
rithms are practically not modified when increasing the number of extra compounds, because they perform a 
smartest exploration of the search space. Furthermore, this makes searching times variability very small, staying 
always around the second.

Clearly, this result shows that performance of classic search methods is strongly influenced by the initial con-
ditions of the problem. Even in this simple problem with a relatively small search space, the searching time easily 
becomes unmanageable. Instead, the effect on metaheuristics is minimal, making them a suitable tool to address 
real problems of higher complexity.

Increasing the search space. Performance of EvoMS and PhDSeeker was compared by searching pathways 
among compounds C00025 (glutamate), C00122 (fumarate) and C00763 (proline) in proline and xproline data-
sets of reactions. Solution is well-known for proline dataset of reactions, and corresponds to a branched pathway 
starting from C00025. We expected that both algorithms be able to find the solution, regardless the size of the 
search space.

Experiments were performed with the following configuration. EvoMS was run with Nk = 100 individuals, 
crossover probability px = 0.8, mutation probability pm = 0.08, erasure probability pe = 0.8 and valid insertion 
probability pv = 0.5. Those parameters were determined in previous experiments21, specifying the maximum 
number of generations to GM = 1000. In all cases, the best individual was preserved on each generation (elitism) 
and a generational gap of 30 individuals was used. PhDSeeker was run up to a maximum of 100 iterations, using 
Nk = 10 ants and an evaporation rate of ρ = 0.1. In a preliminary experiment with a completely independent data-
set and reference pathway it was observed that those parameters provide a good performance (see Supplementary 
Figure S2 for more details). For both algorithms, the number Nk of individuals was selected to be the minimum 
number of individuals required for finding a metabolic pathway linking the specified compounds.

Table 2 shows performance measures evaluated in both datasets of reactions. While both algorithms generate 
solutions in a wide range of sizes, metabolic pathways found by EvoMS have significantly more reactions than 
the pathways found by PhDSeeker (p < 0.001, with the Wilcoxon signed-rank test), when considering the proline 
dataset of reactions. This is due to the presence of a greater number of redundant reactions that are not filtered 
in the solutions. Regarding the branching factor, it must be noted that both algorithms have β > 1.0, indicating 
that, in fact, solutions are branched. Difference in the average value are given by the way in which each method 
initializes the pathway search. In PhDSeeker, only one reaction using the initial substrate is allowed; since only 
substrates, for this reaction, are provided together with the available compounds. It makes that the branching 
factor depends exclusively on the branches in the pathway found. Instead, EvoMS builds the set of available com-
pounds taking into account substrates for all the reactions using the initial substrate. It makes feasible the incor-
poration of several reactions that depend on the initial substrate. Thus, the branching factor will be increased by 
the presence of these additional initial reactions. Concerning the searching time, results show that the practical 
performance of both algorithms is comparable in general terms. Summarizing, we can say that results obtained 
with both algorithms become more similar when increasing the size of the search space.

Figure 4. Number of runs in which a solution was found.
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Linking more compounds. Results of the previous section shown that both metaheuristics find pathways 
that relate the specified compounds in search spaces of different sizes. In this section, we compared the capability 
for searching pathways in situations where several compounds can be used as starting substrate. Experiments 
were performed using the multipaths dataset of reactions, searching for pathways that relate compounds C00036 
(oxaloacetate), C00118 (glyceraldehyde-3P), C00181 (D-xylose) and C00267 (α-D-glucose). Using these com-
pounds as initial substrate, four experiments (100 runs each) were done. Additionally, we also performed exper-
iments using the automatic initialization strategy to select the best initial substrate. In all cases, we analyzed the 
proportion of runs where a metabolic pathway linking the four compounds was found. EvoMS and PhDSeeker 
were run with similar experimental configuration used in the previous section.

Figure 4 shows the number of runs where a metabolic pathway was found. Every couple of bars presents 
results for EvoMS (striped bars) and PhDSeeker using a given initial substrate. As it can be seen, EvoMS is only 
able to find solutions only when C00267 is used as initial substrate. Furthermore, this algorithm is unable to find 
any solution using C00118. Instead, PhDSeeker founds solutions in every run, regardless of the initial substrate 
considered. Moreover, the automatic selection of initial substrate used three of the four compounds for finding 
pathways to relate them. These results indicate that PhDSeeker outperformed EvoMS for searching pathways 
linking several compounds. The ant-based algorithm found a solution on each run, regardless of the mechanism 
used to select the initial substrate.

Comparison with state-of-the-art algorithms. Performance of PhDSeeker was compared with several 
state-of-the-art metabolic pathfinding methods included in a very recent review42. Based on the availability of the 
algorithms, the comparison was made using AGPathFinder (search based on group-of-atoms-tracking and ther-
modinamics)18, LPAT (search based on maximization of atoms transferred from source to target)17, FMM (search 
based on the minimization of the number of known pathways to be combined in the solution)43 and RouteSearch 
(search based on atom-tracking and thermodinamics)44. Furthermore, in order to extend the comparison to other 
approaches, we also include two methods for subgraph extraction (see Table 3): Graphtools11 and SubNet45 (using 
k Walks strategy). For each pathfinding method, the first 10 solutions for each real reference pathway were eval-
uated, and the solution with higher accuracy was chosen to calculate performance measures. In case of subgraph 
extraction methods, each network found was taken as solution. Clearly, results shown in Table 3 are similar for 
measures calculated on compounds or reactions. Precision results indicate that pathways recovered by PhDSeeker 
are composed mainly by elements of the reference pathways, incorporating only very few foreign components. 
Recall values show that a high proportion of the reference pathways is recovered by PhDSeeker, being only FMM 
slightly better in terms of compounds. However, it is important to note that although compounds for FMM are 
mostly the same than in the reference pathways, this is not the case for reactions, since it does not use the same 
reactions as in the reference pathways. Regarding accuracy, PhDSeeker has the highest values for both com-
pounds and reactions, indicating that it can achieve the best balance between Precision and Recall: pathways 
mainly contain elements of the reference pathway, and only a few external elements are included in some of the 
solutions.

Furthermore, it must be highlighted that our algorithm is designed for finding the shortest feasible pathways. 
In consequence, PhDSeeker was capable of finding solutions that share reactions with the reference pathways and 
that are also shorter, because it replaced several reactions by a unique step in order to minimize the pathway cost. 
While this may reduce precision and recall, pathways found are still fully feasible. Finally, it is important to note 
that our proposal has achieved these good results by using a simple model, which does not need to use informa-
tion of the structure of compounds nor the thermodynamics of reactions.

Metabolic pathways in a model organism. Validation using a standard pathway. Due to the fact that 
the most important point is the biological significance of results, we have used here the real well-known pathway 
for the synthesis of L-lysine (C00047), L-methionine (C00073) and L-threonine (C00188) from oxaloacetate 
(C00036), performed in E. coli, to evaluate the feasibility of solutions found with PhDSeeker. The algorithm was 
run using 10 ants, being the number of reactions in the ecoli dataset the boundary specified for the search.

Experimental results show that both pathways were similar in most reactions, having only a small difference 
in the mechanism for synthesizing C00073. While the standard pathway uses reactions R03260 and R01286 to 
transform C01118 into C00155, the solution found with PhDSeeker only requires reaction R01288 to perform 
this transformation. It is important to highlight that reactions R03260 and R01288 are catalyzed by the same 

COMPOUNDS

AGPathFinder LPAT FMM RouteSearch Graphtools SubNet PhDSeeker

Precision 0.866 0.873 0.887 0.822 0.927 0.457 0.958

Recall 0.826 0.872 0.926 0.818 0.836 0.678 0.914

Accuracy 0.846 0.873 0.907 0.820 0.881 0.568 0.936

REACTIONS

AGPathFinder LPAT FMM RouteSearch Graphtools SubNet PhDSeeker

Precision 0.648 0.777 0.875 0.662 0.712 0.160 0.883

Recall 0.629 0.841 0.840 0.690 0.681 0.584 0.861

Accuracy 0.638 0.809 0.857 0.676 0.697 0.372 0.872

Table 3. Comparison of performance between PhDSeeker and several state-of-the-art methods. Best results in bold.
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enzyme (EC 2.5.1.48), but differ in the substrates used. This indicates that C00155 can be produced by means of 
the two-step way when substrates for the one-step transformation are not available. In conclusion, from a bio-
logical point of view, both pathways are similar. A simple representation of both pathways, the standard and the 
solution found by PhDSeeker, is provided in Supplementary Material, Figure S1.

Discovering a metabolic pathway linking several amino acids. In this section we analyze the capability of 
PhDSeeker to build a pathway that relate five amino acids with different properties. For this purpose, we selected 
threonine (C00188, neutral and polar), methionine (C00073, neutral and nonpolar), phenylalanine (C00079, 
aromatic), arginine (C00062, basic) and aspartic acid (C00049, acid), and we use the latter as initial substrate. 
The search was performed using 10 ants, and reactions in the ecoli dataset also were specified as the boundary for 
this search.

Figure 5 shows an example of a metabolic pathway found and the known pathways to which compounds and 
reactions belong. Clearly, some compounds participate in several pathways, such as the aspartic acid (C00049) 
and oxaloacetate (C00036). As it can be appreciated, arginine, threonine and phenylalanine are synthesized by 
their own pathways, and only share the aspartic acid as initial substrate. This situation is different for methio-
nine, since it can be produced without using aspartic acid, through an independent pathway (reactions in the 
yellow region) that produce L-glutamate (C00025). This compound together with 4-methylthio-2-oxobutanoate 
(C01180) are then used to produce methionine. Although aspartic acid does not contribute to produce methio-
nine, it is still related to its synthesis. It is evident that C00025 is a key compound in the synthesis of C00049 and 
C00073, and must be consumed by R07396 and R00355 to produce their corresponding products. In case of a 
heavy consumption of C00049, production of this amino acid probably will be preferred, decreasing production 
of C00073. Fortunately, both reactions produce 2-oxoglutarate (C00026), which is used for reaction R02916 to 
synthesize more C00025 and continue with the production of methionine. In this context, if R02916 was not 
present, synthesis of methionine probably would be stopped.

It should be noted here, that this solution comprises several known metabolic pathways, and that the algo-
rithm is clearly able to overcome these limitations and find a feasible pathway that relates all the amino acids. 
Moreover, this search was performed automatically, saving time and avoiding the need to explore, by hand or text 
mining, all potential connections among the compounds.

Conclusion
Synthesizing metabolic pathways is still an open challenge that requires the development of novel and more 
powerful computational methods. Here, we presented PhDSeeker, a novel ant-based algorithm for synthesizing 
feasible linear and branched metabolic pathways. Starting from a set of freely available compounds without con-
nections, this algorithm searches for a sequence of feasible reactions that relate a given set of compounds. While 
explores the solutions space, it expands the original set with new compounds and connections, in order to carry 
out more reactions. Therefore, each state corresponds to a set of compounds and the relations among them, while 
transitions between them are performed by applying feasible reactions. This definition leads to a more extensive 
search space than the one associated to a typical compounds-and-reactions graph. However, our algorithm avoids 
this problem building solutions while searching and never working on the whole graph. Results show that this 

Figure 5. Example of a metabolic pathway linking threonine (C00188, neutral and polar), methionine (C00073, 
neutral and nonpolar), phenylalanine (C00079, aromatic), arginine (C00062, basic) and aspartic acid (C00049, 
acid). Well-known pathways involved in the solution are indicated with different colors.
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algorithm is able to find metabolic pathways linking several compounds, even when considering many com-
pounds and a large number of available reactions. Validation tests demonstrate that this proposal can reproduce 
well-known pathways and can also synthesize novel solutions. This new algorithm can be a valuable tool for the 
study of the metabolism, and also for designing novel pathways in metabolic engineering and synthetic biology.

Source Code Availability
Source code of this algorithm is available at https://sourceforge.net/projects/sourcesinc/files/phdseeker/. 
Examples for searching metabolic pathways among several compounds are provided. The software is also availa-
ble as a web demo at http://sinc.unl.edu.ar/web-demo/phdseeker2/.
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