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Prediction of potential disease-
associated microRNAs by 
composite network based inference
Bin-Sheng He1, Jia Qu2 & Min Chen3

MicroRNAs (miRNAs) act a significant role in multiple biological processes and their associations with 
the development of all kinds of complex diseases are much close. In the research area of biology, 
medicine, and bioinformatics, prediction of potential miRNA-disease associations (MDAs) on the base 
of a variety of heterogeneous biological datasets in a short time is an important subject. Therefore, 
we proposed the model of Composite Network based inference for MiRNA-Disease Association 
prediction (CNMDA) through applying random walk to a multi-level composite network constructed by 
heterogeneous dataset of disease, long noncoding RNA (lncRNA) and miRNA. The results showed that 
CNMDA achieved an AUC of 0.8547 in leave-one-out cross validation and an AUC of 0.8533+/−0.0009 in 
5-fold cross validation. In addition, we employed CNMDA to infer novel miRNAs for kidney neoplasms, 
breast neoplasms and lung neoplasms on the base of HMDD v2.0. Also, we employed the approach 
for lung neoplasms on the base of HMDD v1.0 and for breast neoplasms that have no known related 
miRNAs. It was found that CNMDA could be seen as an applicable tool for potential MDAs prediction.

MicroRNAs (miRNAs) is a kind of short noncoding RNA (ncRNA) molecules with about 22 nucleotides in length 
which can regulate complementary messenger RNAs1. Unlike the miRNAs, long noncoding RNAs (lncRNAs) 
are a sort of heterogeneous ncRNAs with about 200 nucleotides and usually show less sequence conservation. 
Accumulating evidence indicates that miRNAs are participated in a wide variety of life process of cells, such as 
proliferation2, development3, aging4, viral infection5, metabolism4,6 and so on5,7. It is no surprise that miRNAs are 
closely related to a number of clinically important diseases8,9. For example, miR-335 and miR-126 were proved 
to be metastasis suppressor miRNAs in human breast cancer10. In addition, previous study also confirmed that 
the differential expression of miR-21, -31, -143 and -145 is closely participate in clinic pathologic features of 
colorectal cancer11. Therefore, identification of disease-related miRNAs would be beneficial for disease diagno-
sis, treatment, and prevention12. Currently, unlike traditional time-consuming biological experiments, adopting 
validation to the predicted miRNA-disease associations (MDAs) obtained from calculation models could reduce 
a lot of time and cost. Therefore, it is very significant to propose effective calculation models to infer potential 
MDAs13–17.

According to the idea that miRNAs with similar functions are usually relevant to similar diseases and the 
reverse is also true. some researchers built elaborate computational models for the identification of poten-
tial MDAs on the basis of known MDAs in databases only. For example, Li et al.18 developed a computational 
approach based on matrix completion, in which the adjacency matrix constructed from known MDAs was 
updated to gain final association scores of each miRNA-disease pair. Considering various types of known MDAs, 
Chen et al.19 constructed an restricted boltzmann machine (RBM) model to further predict four kinds of MDAs.

Based on the information of known MDAs and the corresponding similarity information of diseases and 
miRNAs, Chen et al.20 developed an effective method via combining all those information to construct a het-
erogeneous graph and then further inferred MDAs with the consideration of paths between miRNA nodes and 
disease nodes. Besides, this method could also be implemented to predict for new diseases (miRNAs). Through 
integrating the distribution information of k most similar neighbors per miRNA and the corresponding func-
tional similarity between the miRNA and its neighbors, Xuan et al.21 proposed a reliable computational approach 
to infer novel MDAs. However, HDMP cannot predict disease-related miRNAs for new diseases. After computing 
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miRNAs functional similarity (MFS), Xuan et al.22 proposed a prediction model via implementing random walk 
on constructed miRNA functional similarity network in which they assigned larger transition weights to marked 
nodes. At last, probability association scores of each disease-miRNA pair would be obtained and ranked. A calcu-
lation model was further built by Chen et al.17 in which miRNA’s k-nearest-neighbors (KNNs) and disease’s KNNs 
were respectively searched and then these KNNs would be ranked according to support vector machine. After 
that, they finally got all potential MDAs with weighted voting. Under the framework of semi-supervised learning, 
a novel model23 was presented for MDAs prediction via combining the optimal solutions in the miRNA space and 
disease space. Recently, Chen et al.24 proposed another prediction model through calculating within-score and 
between-score for both miRNAs and diseases which were then combined to obtain the final MDA scores.

Also, researchers put forward some other calculation approaches via considering relevant genes or proteins as a 
bridge to predict novel MDAs. For example, using a discrete probability distribution of hypergeometric, Jiang et al.25  
presented a prediction model on the basis of the constructed integrated network. By connecting miRNAs to 
diseases with the proteins as a bridge between them, a calculation model was employed by Mork et al.26 through 
using a scoring scheme, which can greatly increase the model’s efficiency. Furthermore, Shi et al.27 implemented 
random walk on a built protein similarity network to identify MDAs.

By combining the known MDAs network and MFS network, a new calculating method was studied by 
Chen et al.28 by the analyzed of random walk with restart (RWR). It is worth noting that RWR is a very effective 
model for MDAs prediction. By adopting RWR, a novel model named Composite Network based inference for 
MiRNA-Disease Association prediction (CNMDA) was presented in the light of a multi-level network which 
was built by combination of Gaussian interaction profile kernel similarity (GIPKS) for lncRNAs, integrated 
similarity for miRNAs (ISMs) and diseases (ISDs), known MDAs, lncRNA-disease associations (LDAs) and 
miRNA-lncRNA interactions (MLIs). In addition, leave-one-out cross validation (LOOCV) and 5-fold cross vali-
dation were adopted in this paper to assess CNMDA’s effectiveness. It could be seen that the AUCs of LOOCV and 
5-fold cross validation were respectively 0.8547 and 0.8533+/−0.0009. As for case studies, CNMDA was carried 
out on kidney neoplasms (KN), breast neoplasms (BN) and lung neoplasms (LN) to infer its associated miRNAs 
based on HMDD v2.029. Also according to HMDD v2.0, we further infer novel miRNAs for BN after hiding its 
known associated miRNAs. At last, we carried out the case studies based on HMDD v1.030 to infer LN-related 
miRNAs. Based on the above results, the effectiveness of CNMDA for MDAs prediction was validated.

Results
Cross validation. In this paper, we carried out LOOCV and 5-fold cross validation to assess CNMDA’s 
prediction accuracy according to HMDD v2.029 and then made comparison between CNMDA and four other 
classical computational models: RLSMDA23, HDMP21, WBSMDA24 and RKNNMDA17 (See Fig. 1). In LOOCV, 
test sample is one of the 5430 MDAs; training samples are the rest of 5429 known MDAs; candidate samples 
are those unlabeled 184155 miRNA-disease pairs. When each known MDA was taken to be the test sample, we 
would get association scores for all miRNA-disease pairs after implementing MCMDA and then the ranking 
of test sample among the candidate samples would be gained based on their association scores. We would say 
that the model makes a correctly prediction if the test sample ranked higher than the set threshold. Finally, we 
drew Receiver-Operating Characteristics (ROC) curve through computing the ratio of true positive rate to false 
positive rate. To evaluate CNMDA’s performance, we computed area under the ROC curve (AUC). If AUC = 1, 
CNMDA would possess perfect performance; If AUC = 0.5, CNMDA could only predict randomly. As a result, 
CNMDA, RLSMDA, HDMP, WBSMDA, RKNNMDA obtained AUCs of 0.8547 (0.8533+/−0.0009), 0.8426 
(0.8569+/−0.0020), 0.8366 (0.8342+/−0.0010), 0.8030 (0.8185+/−0.0009) and 0.7159 (0.6723+/−0.0027) in 
the LOOCV (5-fold cross validation), respectively. Through comparative analysis with other method, the reliabil-
ity and effectiveness of CNMDA for identification of potential MDAs were proved.

Case studies. Three different case studies were also implemented to assess CNMDA’ performance. In the 
first case study, CNMDA was employed to predict KN-related miRNAs based on HMDD v2.0. Further, another 
two reliable MDA databases (dbDEMC and miR2Disease) would be utilized to validate the top 50 identified 
outcomes. In the second case study, we respectively inferred BN-associated miRNAs and BN-associated miRNAs 

Figure 1. CNMDA got better AUCs of 0.8547 in the LOOCV in comparison of other four calculation 
approaches (RLSMDA, HDMP, WBSMDA, RKNNMDA).
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after removing all known BN-associated miRNAs in HMDD v2.0. In the third kind of case studies, CNMDA was 
adopted to predict for LN according to associations in HMDD v1.0 and v2.0, respectively.

KN is a disease caused by cellular metabolic disorders31. If kidney tumors are detected and treated early and 
localized in the kidney, Patients would have a good disease-specific survival rate. Otherwise, patients have only 
an 18% two-year survival rate when they present with terminal disease32. With recent researches and studies, 
about two hundred and fifty thousand renal tumor patients are newly diagnosed annually, and KN’ morbidity 
and mortality continue to increase33. Many miRNAs related to KN have been found based on a large number of 
biological experiments. For example, in renal cell carcinoma (RCC), up regulation of miR-21 is related to kidney 
cancer that with lower survival rate34. Through targeting MMP-9 in RCC, miRNA-133b can suppress cell prolif-
eration, migration and invasion35. Finally, we implemented CNMDA for potential KN-related miRNA prediction. 
It was found that 8 of the first 10 and 37 of the first 50 miRNAs were verified (See Supplementary Table 1). we also 
provided the whole scores of potential MDAs on the base of HMDD v2.0 (See Supplementary Table 2).

BN is a major chronic disease affecting adult women and detected breast neoplasms can be removed surgi-
cally36. However, if people with BN have not been detected, BN may develop into a life-threatening clinical recur-
rence in the next 5, 10, 15, or more years37. Recent experimental studies have provide evidences that miRNA-195 
may work as latent biomarker for early BN detection38. To find the novel biomarkers for BN for the treatment of 
the disease is significant. In the second, we employed CNMDA for potential BN-related miRNA prediction. It 
was found that 5 of the first 10 and 31 of the first 50 miRNAs were verified (See Supplementary Table 3). Also, 
we implemented CNMDA for the prediction of BN by hiding all its confirmed associations in HMDD v2.0. This 
means that we would remove all known BN-associated miRNAs and predict potential BN-associated miRNAs 
based on other known associations and corresponding similarity information. Supplementary Table 4 presents 
the top 50 predicted outcomes and their verification evidences. As a result, 9 of the first 10 and 41 of the first 50 
miRNAs were confirmed (See Supplementary Table 4).

LN is the primary reason of cancer deaths on a global scale39. The genetic and epigenetic damage caused 
by tobacco smoke is the main cause of the disease40. Obviously, it is urgent to find a more therapy systemic39. 
In squamous cell carcinoma, miR-126 have been verified to be down regulated and two miRNAs of miR-185∗, 
miR-125a-5p were up regulated39. MiR-205 were expressed differently in the non-small cell lung carcinoma 
(NSCLC)40. In order to test the stability of CNMDA, we employed CNMDA based on the associations in HMDD 
v2.0 and HMDD v1.030, respectively. It was found that 20 and 28 of first 50 associated miRNAs for LN have been 
verified, respectively (See Supplementary Tables 5 and 6).

As seen in the results above, we can arrival at a conclusion that CNMDA possesses excellent predictive perfor-
mance for the novel MDAs prediction.

Discussions
As overwhelming evidences expounded that miRNAs are participated in all sorts of diseases. The development 
of new calculation approaches for predicting MDAs in a short time is important to further experimental vali-
dation. Accordingly, it is now possible to confirmed novel MDAs using biological experiments with low time 
and cost. Existing models are usually proposed based on four different calculation mechanisms41. Some scoring 
functions were constructed to prioritize disease-related miRNAs through carrying out probability distribution. 
Complex network algorithm-based prediction models were introduced through establishing complex network 
based on various data that are collected or calculated from different perspectives. Machine learning-based pre-
diction models were introduced by using powerful machine learning algorithms. Moreover, multiple biological 
information-based models were put forward through constructing intermediate medium associations based on 
various biological datasets. We put forward the computing method of CNMDA to infer novel MDAs. In the 
model, we implemented RWR on a multi-level composite network that was built through combining collected 
and calculated data (ISD, ISM, GIPKS for lncRNAs, experimentally validated MDAs, MLIs and LDAs). From the 
evaluation results, it can be seen that the accuracy of our prediction model was superior in the comparison with 
other four models.

The main merits for the effective performance of CNMDA are as follows: Through taking advantage of 
multi-source information based on reliable database, it is no surprise that the integration strategy of CNMDA 
could predict potential MDAs effectively. Secondly, in comparison of local network information, RWR is an 
iterative process based on global network for the MDAs prediction. The attractive properties of global network 
information have been proved in the identification for potential disease-gene associations, MDAs41,42, LDAs43 
and drug-target interaction44. Furthermore, CNMDA could identify novel diseases that have no known associ-
ated miRNAs. At last, the implementation of CNMDA only needs positive samples as training data. Since there 
is no known negative sample information, the forecasting precision of CNMDA is more convincing. However, 
some limitations also exist in the computation model of CNMDA. For example, the number of experimentally 
determined MDAs, LDAs and MLI is insufficient. For the number of known MDAs, only 5430 known MDAs 
were collected. The more the known MDAs, the higher forecasting precision the model. Importantly, the current 
forecasting precision still needs to be improved according to the evaluation of LOOCV.

Methods
MiRNA-disease associations. Experimentally confirmed MDAs used in this paper were come from 
high-quality database29. Through constructing a adjacency matrix Wdm to indicate the 5430 known MDAs, we 
made use of variables nm and nd to express the total amount of miRNAs and diseases in the known MDAs data-
set, respectively.
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=





W i j if miRNA m j is related to disease d i
otherwise

( , ) 1, ( ) ( )
0, (1)

dm

LncRNA-disease associations. The known LDAs was from the LncRNADisease45. After removing excess 
LDAs whose diseases don’t arise in the 5430 known MDAs mentioned above, we would acquire 250 known LDAs. 
Likewise, we built an adjacency matrix Wdl(i,j) to indicate the 250 known LDAs. Variable nl refer to the number 
of lncRNAs in the 250 known LDAs.

=





W i j if cRNA l j is related to disease d i
otherwise

( , ) 1, ln ( ) ( )
0, (2)

dl

MiRNA-lncRNA interactions. The known MLIs was from starBase v2.046. In the same way, we need to 
delete excess MLIs whose miRNAs and lncRNAs do not exist in the 5430 known MDAs and 250 known LDAs. At 
last, 9088 known MLIs were gotten and an adjacency matrix Wml was used to refer to the 9088 MLIs.

=





W i j if cRNA l j is related to miRNA m i
otherwise

( , ) 1, ln ( ) ( )
0, (3)

ml

MiRNA functional similarity. The scores of MFS were obtained from http://www.cuilab.cn/files/images/
cuilab/misim.zip47. We used FS(i,j) to indicate the score of MFS between miRNA m(i) and miRNA m(j).

Disease semantic similarity model 1 (DSS1). We put forward DSS148 on the basis of Directed Acyclic 
Graph (DAG)49, which can be picked up according to MeSH descriptor of Category C. In the DAG = (D, T(D), 
E(D)) for disease D, all nodes are linked together from father to son using a straight line. The nodes of D and its 
elder can be collected into T(D) and E(D) referring to all the straight lines from father to son. Therefore, contri-
bution of disease d in DAG(D) to the semantic value of disease D can be put forward.
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= Δ ∗ ′ | ′ ∈ ≠
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where Δ is the semantic contribution decay factor. It is worthy of being mentioned that the value of contribution 
for disease D to its own semantic value is 1. The semantic value of disease D could be put forward.
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At last, DSS1 between d(i) and d(j) can be described.
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Disease semantic similarity model 2 (DSS2). In the DSS248, due to the fact that a more specific disease d 
appearing in less DAGs would contribute more to the semantic value of disease D. Accordingly, the contribution 
made by d for the semantic value of D can be described by

= −
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(7)
D

DSS2 between disease d(i) and d(j) can be defined as follows:

∑=
∈

DV D D d2( ) 2( )
(8)d T D

D
( )

=
∑ +

+
∩∈d i d j

D t D t

DV d i DV d j
SS2( ( ), ( ))

( 2( ) 2( ))

2( ( )) 2( ( )) (9)
t T d i T d j d i d j( ( )) ( ( )) ( ) ( )

Gaussian interaction profile kernel similarity. For disease d(u), we used IP(d(u)) to refer to row vectors 
of line u in Wdm on the basis of known MDA. Through watching whether d(u) is related to each miRNA, we com-
puted GIPKS for diseases d(u) and d(v)50.

γ= − −KD d u d v IP d u IP d v( ( ), ( )) exp( ( ( )) ( ( )) ) (10)d
2

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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Similarly, GIPKS for miRNA m(i) and m(j) can be constructed.

γ= − −KM m i m j IP m i IP m j( ( ), ( )) exp( ( ( )) ( ( )) ) (12)m
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For lncRNA l(p) and l(q), GIPKS between them can be constructed.

γ= − −KL l p l q IP l p IP l q( ( ), ( )) exp( ( ( )) ( ( )) ) (14)l
2

∑γ γ=
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Integrated similarity for diseases (ISD) and miRNAs. We have taken into account combining GIPKS 
for diseases, DSS1 and DSS2 to compute ISD between diseases d(u) and d(v)24.

=








+

(16)
SD d u d v

SS d u d v SS d u d v d u and d v has semantic similarity

KD d u d v otherwise
( ( ), ( ))

1( ( ), ( )) 2( ( ), ( ))
2

( ) ( )

( ( ), ( ))

Similarly, the ISM between miRNAs m(i) and m(j) can be put forward by the integration of GIPK for miRNA 
and MFS24.

=



 (17)

S m i m j
FS m i m j m i and m j has functional similarity
KM m i m j otherwise

( ( ), ( ))
( ( ), ( )) ( ) ( )
( ( ), ( ))m

CNMDA. Aiming at the prediction of potential MDAs, a computing method of CNMDA was stated. Carrying 
out RWR on a multi-level composite network that built by integration of ISM, ISD, GIPKS for lncRNA, known 
MDAs, LDAs and MLIs, final association scores of novel MDAs would be obtained (See Fig. 2, motivated by the 

Figure 2. Flowchart of CNMDA for potential MDAs prediction in the light of HMDD v2.0. Each node in the 
constructed multi-level composite network possesses original probability p0. Final scores ∞p  for MDAs would 
be gotten after employing RWR.
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studies of Yao et al.51). In our introduced model, we used W W W W W W, , , , ,l d m ld dm lm to indicate the initial matrix 
of GIPKS for lncRNAs, ISD, ISM, known LDAs, known MDAs and known MLIs, respectively. Then, the initial 

matrix of the multi-level composite network can be defined as =





















W

W W W

W W W

W W W

,
l ld lm

ld
T

d dm

lm
T

dm
T

m

 here, T refer to the transpo-

sition of matrix.
Global information based on the multi-level network would be captured through RWR algorithm. At each 

steps, seed nodes move to their immediate neighbors with a probability δ−(1 ) or go back to the seed nodes with 
a restart probability δ. P0 was put forward to denote the original probability vector, and Pt+1 was introduced to 
represent a probability vector of node at step t + 1, which could be described by:

δ δ= − ++P MP P(1 ) (18)t t1 0

where δ ∈ (0, 1) is a restart probability. In the multi-level network, the initial seed node probability 
α
β

α β
=










∗
∗
− − ∗










P
u
v

w(1 )
,0

0

0

0

 where α, β and (1 − α − β) denote the weight of ISD network, ISM network and the 

network of GIPKS for lncRNAs, respectively. The corresponding u0, v0, w0 are the original probabilities of these 
three-similarity networks respectively. Here, u0 is calculated through assigning equal probability to all nodes in 
LDAs with a total to 1. Similarly, v0, w0 can be calculated.

Meanwhile, the transition matrix =





















M

M M M

M M M

M M M

l ld lm

dl
T

d dm

ml
T

md
T

m

 can be computed in the light of adjacency matrix W. 

M(i,j) represents the transition probability from i to j. In the network of GIPKS for lncRNAs, the transition prob-
ability from lncRNA i(li) to lncRNA j(lj) was put forward.

∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑
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= |

=











− − ≠ ≠

− ≠ =

− = ≠
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M i j l l

x y W i j W i j if W i j W i j

x W i j W i j if W i j W i j

y W i j W i j if W i j W i j

W i j W i j if W i j W i j

( , ) Pr( )

(1 ) ( , )/ ( , ), ( , ) 0 and ( , ) 0

(1 ) ( , )/ ( , ), ( , ) 0 and ( , ) 0

(1 ) ( , )/ ( , ), ( , ) 0 and ( , ) 0

( , )/ ( , ), ( , ) 0 and ( , ) 0 (19)

l j i

l j l j ld j lm

l j l j ld j lm

l j l j ld j lm

l j l j ld j lm

Similarly, in the ISD network, the transition probability from disease i(di) to disease j(dj) was put forward.
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M i j d d

x z W i j W i j if W i j W j i

z W i j W i j if W i j W j i
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(1 ) ( , )/ ( , ), ( , ) 0 and ( , ) 0

(1 ) ( , )/ ( , ), ( , ) 0 and ( , ) 0
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In the ISM network, the transition probability from miRNA i m( )i  to miRNA j m( )j  was put forward.
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In the LDAs network, the transition probability from lncRNA i(li) to disease j(dj) was put forward.

∑ ∑= | =






≠
M i j d l

xW i j W i j if W i j
( , ) Pr( )

( , )/ ( , ), ( , ) 0

0, otherwise (22)
ld j i
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In the MLIs network, transition probability from lncRNA i(li) to miRNA j(mj) was put forward.



www.nature.com/scientificreports/

7Scientific REPORTS |         (2018) 8:15813  | DOI:10.1038/s41598-018-34180-6

∑ ∑= | =
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lm j lm j lm

In the LDAs network, the transition probability from disease i d( )i  to lncRNA j l( )j  was put forward.
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In the MDAs network, the transition probability from disease i d( )i  to miRNA j m( )j  was put forward.
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0, otherwise (25)
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In the MLIs network, the transition probability from miRNA i m( )i  to lncRNA j l( )j  was put forward.
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0, otherwise (26)
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In the MDAs network, the transition probability from miRNA i m( )i  to disease j d( )j  was put forward.
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where x y z, ,  are the jumping probability between the network of GIPKS for lncRNAs and ISD network, between 
the network of GIPKS for lncRNAs and ISM network, and between ISD network and ISM network, respectively. 

CNMDA is performed until the probabilities tend to a steady state, 
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 (the range between 

Pt and P0 computed by L1 norm is smaller than 10−6). Then, the candidate miRNAs can be ranked according to 
∞w .

By incorporating MLIs and LDA into MDAs prediction, RWR was put forward on a constructed multi-level 
network to infer novel MDAs. In the network, because initial MLIs, LDAs and MDAs have more credibility, they 
all as weights in the RWR equations. Obviously, the one interaction and two associations play an equally impor-
tant part in the network to disseminate information of miRNAs, diseases and lncRNAs for the novel MDAs pre-
diction. In this study, we chose the same parameter as the one in previous literature51, which used RWR on the 
same multi-level composite network in their study. Therefore, we set the parameter δ to 0.7 and x, y, z, α, β to 1

3
.
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