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Machine-learning based lipid 
mediator serum concentration 
patterns allow identification of 
multiple sclerosis patients with 
high accuracy
Jörn Lötsch   1,2, Susanne Schiffmann2, Katja Schmitz1, Robert Brunkhorst3, Florian Lerch4, 
Nerea Ferreiros1, Sabine Wicker5, Irmgard Tegeder1, Gerd Geisslinger1,2 & Alfred Ultsch4

Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid 
metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using 
unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, 
swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data 
space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure 
coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a 
biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented 
as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based 
biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy 
subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, 
HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex 
classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of 
approximately 95% in training and test data sets, respectively. The present successful application of 
serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS 
biomarker based on serum lipidomics.

Multiple sclerosis (MS) is regarded as a chronic inflammatory, demyelinating and neurodegenerative autoim-
mune disease that affects the central nervous system1. In the most frequent relapsing-remitting form (RRMS), 
symptomatic periods alternate with longer periods of remission at disease onset but may eventually turn into sec-
ondary progressive disease2. Hence, the disease course is mostly characterized by a worsening of non-remitting 
clinical symptoms with each additional relapse2. The diagnosis, currently based on clinical parameters, the num-
ber, size and location of lesions detected by MRI and spinal fluid diagnostics, is often delayed due to hetero-
geneous symptoms and long recovery phases at the beginning of the disease2, thus preventing timely therapy 
initiation3, and other neurologic diseases may mimic the symptoms in early phases4–6. The search for biomarkers 
to improve the diagnosis of MS is an active research topic7. Approaches include positron emission tomography 
addressing neuro-inflammation and astrocyte markers8, genetic, immune-inflammatory, and oxidative stress 
markers9, Vitamin D binding protein isoforms and apolipoprotein E in cerebrospinal fluid10, and plasma micro 
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RNAs11,12. Further blood-based biomarkers utilize metabolomic13 and proteomic markers14 or serum profiles of 
cytokines, chemokines and pro-apoptotic molecules15.

Lipid metabolism has been suggested, among others1, to be a major pathophysiological mechanism of multiple 
sclerosis (MS)16, even that MS is in fact a disease due to disturbed lipid metabolism17. Among lipids, cholesterol 
and cholesterol turnover products have been associated with MS18, whereas omega-3 lipids were protective by 
preserving the blood brain barrier19. Recent investigations point at several further classes of lipids that are regu-
lated in MS. Currently, a scientific focus centers on prostaglandins, hydroxyeicosatetraenoic acids20, ceramides 
and lysophosphatidic acids21–23. The successful therapy of human MS with fingolimod, which antagonizes func-
tions of sphingosine-1-phosphate (S1P) highlights the pathophysiologic relevance of bioactive lipids. In addition, 
recent research addressing ceramides in MS show that these lipids modify the course of experimental MS mod-
els22,24. The benefits of cannabinoids for symptomatic control of MS-associated pain and muscle spasms25–27 and 
experimentally proven anti-neuro-inflammatory effects of cannabinoids28,29 further suggest a contribution of 
bioactive lipids to symptom control, resolution of inflammation and possibly remyelination17.

Considering the complexity of the lipidome, we searched for a lipidomics based biomarker for MS diagnosis 
and assessment of therapeutic efficacy18,30. This is in line with the evidence that ceramides, lysophosphatidic acids 
(LPA)21,22, endocannabinoids31 or eicosanoids20 are dysregulated in MS patients. Interference with the metabo-
lism or receptor action of these lipids modifies the course of the disease in experimental autoimmune encepha-
lomyelitis (EAE) models of multiple sclerosis in rodents25,32–35 and fingolimod shows that S1P is a key regulator 
of MS in humans. To analyze the potential utility of a complex lipid based MS diagnostic approach, we have 
developed sensitive assays for d = 43 different bioactive lipid serum markers of various classes (ceramides, sphin-
golipids, lysophosphatidic acids (LPAs), endocannabinoids, pterins, prostaglandins, dihydroxyeisocatrienoic 
acids (DHETs), and hydroxyeicosatetraenoic acids (HETEs). As most single markers are also regulated in cancer, 
atherosclerosis or ischemia, a complex biomarker was targeted. Using machine learning techniques36, the present 
investigation aimed at the following. (i) To establish whether the serum concentration patterns of d = 43 lipid 
markers are suitable for the identification of multiple sclerosis patients. (ii) To identify the combination of lipid 
markers (features37) in a reduced set that is accessible to biomedical mechanistic interpretation and not unnec-
essarily burdening to the laboratory analytical resources which provides a classifier or biomarker to discriminate 
between an MS patient or a healthy subject with high accuracy.

Methods
Subjects and study design.  The study followed the Declaration of Helsinki and was approved by the Ethics 
Committee of the Medical Faculty of the Goethe – University Frankfurt am Main, Germany. Informed writ-
ten consent was obtained from all subjects. Employing a parallel group design, patients with multiple sclero-
sis (n = 102, aged 18.2–62.8 years, 31 men) and healthy controls (n = 301, aged 18–53.2 years, 118 men) were 
consecutively recruited from outpatients and inpatients of the Department of Neurology (patients) and from 
students and staff members of the hospital (controls) who routinely reported to the institutional occupational 
health service. Patients and healthy subjects showed a similar sex distribution (χ2-test38: χ2 = 2.1738, degrees of 
freedom, df = 1, p = 0.1404) but different ages (Wilcoxon signed rank test39: W = 25,834, p < 2.2 · 10−16), which 
was taken into consideration during data preprocessing (see respective section below). Data and blood collection 
from MS patients was part of the local bio-banking project (Neurological Department of the Goethe University, 
Frankfurt). Inclusion criteria were age ≥18 years, for patients, a clinically verified diagnosis of multiple sclerosis 
based on McDonald criteria and for controls, no current medical condition queried by medical interview, and no 
drug intake for at least one week except contraceptives, vitamins and L-thyroxin. Demographic data including 
time since diagnosis, Expanded Disability Status Scale (EDSS)40 and current disease modifying medication are 
summarized in Table 1.

Lipid mediator serum concentration analysis.  From each subject, a venous blood sample (9 ml) 
was collected into a serum tube and centrifuged at 3,000 rpm for 10 min. Serum was separated and frozen at 
−80 °C until assay. A total of d = 43 different lipid mediators (Fig. 1) was analyzed from the serum samples. The 

MS 1st course RRMS no relapse RRMS acute relapse SPMS or PPMS

Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n

Sex m f m f m f m f

Age 38.2 7.5 8 31.6 9.1 12 35.5 9.4 16 34.3 8.9 39 33.8 7.0 4 37.2 10.9 18 43.6 18.1 3 49.2 11.0 2

Disease years 0.03 0.04 0.9 2.9 7.5 6.1 7.4 5.9 2.1 1.8 6.7 5.3 5.7 4.7 1.0 1.3

EDSS 0.6 1.0 0.8 1.1 3.1 1.7 2.3 1.6 1.63 1.2 2.0 1.9 4.0 2.8 5.0

Medication

   None 6 11 3 6 1 10 1 1

   β-Interferon 0 0 6 11 2 5 0 1

   Fingolimod 0 0 3 5 0 1 1 0

   Natalizumab 0 0 4 15 0 0 0 0

   Other 2 1 0 2 1 2 1 0

Table 1.  Demographic parameters of the MS patients, disease characteristics and medications. EDSS: 
Expanded Disability Status Scale, RRMS: Relapsing Remitting MS, PPMS: Primary Progressive MS, SPMS: 
Secondary Progressive MS.
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selection included ceramides (Cer16:0, Cer18:0, Cer18:1, Cer20:0, Cer24:0, Cer24:1, GluCerC16:0, GluCerC24:1, 
LacCerC16:0, LacCerC24:0, LacCerC24:0), lyosophosphatidic acids (LPA16:0, LPA18:0, LPA18:1, LPA18:2, 
LPA18:3, LPA20:4)), sphingolipids (sphinganine, sphingosine, S1P, SA1P C16Sphinganine, C18Sphinganine, 

Figure 1.  Serum concentrations of d = 43 lipid mediators (raw data). The data are shown in alphabetical order 
of marker names and for each marker, separately for group membership to the multiple sclerosis patients 
(left boxes, red) or the healthy subjects (right boxes, green). The widths of the boxes are proportional to the 
respective numbers of subjects per group. The quartiles and medians (solid horizontal line within the box) 
are used to construct a “box and whisker” plot. The whiskers add 1.5 times the interquartile range (IQR) to 
the 75th percentile or subtract 1.5 times the IQR from the 25th percentile and are expected to include 99.3% 
of the data if normally distributed. The notches indicate the confidence interval around the median based on 
median ± 1.57 · IQR/n0.5. The figure has been created using the R software package (version 3.4.2 for Linux; 
http://CRAN.R-project.org/)43.

http://CRAN.R-project.org/
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C24Sphinganine, C24:1Sphinganine), prostaglandins (PGD2, PGF1α, PGE2, TXB2), dihydroxyeicosatrienoic 
acids (DHET5.6, DHET11.12, DHET14.15), hydroxyeicosatetraenoic acids (HETE 5 S, HETE_12S, HETE_15S, 
HETE_20S), endocannabinoids (AEA, OEA, PEA, 2-AG) and pterins (biopterin, neopterin). Pterins were 
included because tetrahydrobiopterin regulates the metabolism of multiple bioactive lipids as a coenzyme of 
alkylglycerolmono-oxygenase (AGMO)41.

Serum concentration analyses were performed using liquid chromatography-electrospray ionization-tandem 
mass spectrometry (LC-ESI-MS/MS) as described previously41,42. In brief, eicosanoids (DHET11.12, DHET14.15, 
DHET5.6, HETE12S, HETE15S, HETE20S, HETE5S, PGD2, PGE2, PGF2α, TXB2; PGD2 = prostaglandin D2, 
PGE2 = prostaglandin E2, PGF2α = prostaglandin F2a, TXB2 = thromboxane, DHET = dihydroxyeicosatrienoic 
acid, HETE = hydroxyeicosatetraenoic acid) were assayed in two different LC-MS/MS runs. Prostanoids were 
separated using a Synergi Hydro column (150 × 2 mm, 4 µm, Phenomenex, Aschaffenburg, Germany) and the 
analysis of HETE/DHET was done using a Gemini NX column (150 × 2 mm, 5 µm, Phenomenex). In both cases, 
quantification was performed using a triple quadrupole mass spectrometer QTRAP 5500 (Sciex, Darmstadt, 
Germany) equipped with a Turbo-V-source operating in negative ESI mode. Ceramides (C16Cer, C18Cer, 
C20Cer, C24Cer, C24:1Cer, GluCerC16, GluCerC24:1, LacCerC16, LacCerC24, LacCerC24:1; Cer = ceramide, 
GluCer = glucosylceramide, LacCer = lactosylceramide) were analyzed using a Luna C18 column (150 × 2 mm 
ID, 5 µm particle size, Phenomenex) coupled to an API 4000 mass spectrometer equipped with an APCI 
(Atmospheric Pressure Chemical Ionization) ion source operating in positive mode (Sciex). The analysis of lys-
ophosphatidic acids (LPA16:0, LPA18:0, LPA18:1, LPA18:2, LPA18:3, LPA20:4) was performed using a Mercury 
Luna C18 column (20 × 2 mm, 3 µm, Phenomenex) coupled to a triple quadrupole mass spectrometer (QTRAP 
5500) operating in negative ESI mode. In all cases, the analytes were extracted using liquid-liquid-extraction prior 
to LC-MS/MS-analysis. Sample volumes were 200 µl each for prostanoids and DHET/HETE, 20 µl for ceramides 
and 50 µl for LPA and endocannabinoids. For all analytes, the concentrations of the calibration standards, quality 
controls and samples were evaluated by Analyst software 1.6 and MultiQuant Software 3.0 (Sciex) using the inter-
nal standard method (isotope-dilution mass spectrometry). Calibration curves were calculated by linear regres-
sion with 1/x weighting for ceramides and LPA and by quadratic regression with 1/x2 weighting for eicosanoids.

Data analysis.  Data were analyzed using the R software package (version 3.4.2 for Linux; http://CRAN.R-project. 
org/43) on an Intel Xeon® computer running on Ubuntu Linux 16.04.3 64-bit. The acquired parameters, sub-
sequently called “features”, included d = 43 lipid mediators assayed from the participants’ venous blood serum 
(Fig. 1). The analysis was performed in five main steps (Fig. 2) comprising (i) data preprocessing, (ii) identifica-
tion of a subject’s cluster structure for the lipid markers that coincided with the clinical diagnosis, (iii) selection of 
a suitable machine-learning method for biomarker creation, (iv) classifier (biomarker) building including feature 
selection and performance testing and (v) biomedical interpretation of the identified subset of lipid markers 
sufficient to diagnose MS.

Data preprocessing.  A single outlier in the DHET5.6 serum concentrations was eliminated on the basis of a sig-
nificant Grubbs test44 (G = 19.624, U = 0.03966, p < 2.2 · 10−16). Subsequently, data were preprocessed to correct 
for age and sex effects (significant differences in correlation analyses45 or Wilcoxon signed rank tests39 in several 
parameters, details not shown) based on linear regression or median differences, respectively. Following this 
correction, the statistically significant effects of age and sex were eliminated (age: Spearman’s ρ45 non-significant 
in all markers; sex: Wilcoxon signed rank tests39 non-significant in all markers. Quantile-quantile plots suggested 
a zero invariant log-transformation to LogConcentration = ln (Concentration + 1), which is in line with general 
advices for transformations of blood-concentration data46.

Identification of data cluster structures.  The idea behind this analytical step was that if these clusters of subjects, 
obtained from the lipid marker concentration patterns, were to agree with the clinical diagnosis, then the data set 
was likely to be relevant to the clinical diagnosis of interest and thus, to provide a suitable basis for the creation 
of a biomarker (classifier). As common clustering algorithms such as k-means, Ward, complete- and average 
linkage47 are prone to detect false structures in the data48, unsupervised machine learning was used, implemented 
as a topology-preserving emergent self-organizing feature map (ESOM) (Kohonen SOM49,50) combined with the 
U-matrix51. We have shown recently that this method outperforms classical clustering algorithms in detecting the 
correct structures in artificial data sets and, in contrast to others, does not detect false structures in structure-less 
artificial or biomedical data sets48. As supporting methods, a swarm based projection52 and Minimum Curvilinear 
Embedding53 were used. Furthermore, the classical Ward clustering algorithm54 was applied to reassess subject 
clusters.

In unsupervised machine-learning, the goal is to find “interesting” structures in an unlabeled data set. When 
the identified distance and density based data structures coincided with the known diagnostic groups, i.e., in MS 
or healthy individuals, the d = 43 lipid markers were regarded as providing information relevant for the grouping 
of the cohorts into either patients or controls. This indicated whether the lipid marker concentrations were suita-
ble for the separation of the two groups. The positive expectation was based on a recent analysis of sections of the 
present data set55. This earlier analysis, however, was aimed at analyzing separately the particular classes of lipids 
(eicosanoids, ceramides and lysophosphatidic acids) for their association with the MS diagnostic status rather 
than at biomarker creation. The data space = ∈ ⊂ = …D xi X R i n{ , 1, }d  comprising the concentrations of 
d = 43 lipid markers (zero invariant log-transformed and subsequently normalized to percentages) acquired from 
n = 403 subjects, was explored for structures that possibly overlapped with the known data labeling or the group 
structure of MS patients or controls.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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ESOM49 are based on a topology-preserving projection of high-dimensional data points ∈ ⊂xi X Rd onto a 
two dimensional self-organizing network consisting of a grid of neurons. The neural network consisted of a 
two-dimensional toroid grid51 of so-called neurons with 50 rows and 80 columns (n = 4,000 units, for SOM size 
determination, see48). Each neuron holds, in addition to a position vector on the two-dimensional grid, a further 
vector carrying “weights” of the same dimensions as the input dimensions. The weights were initially drawn ran-
domly from the sets of data variables and subsequently, adapted to the data during the learning phase with 20 
epochs. Following training of the neural network, an ESOM was obtained that represented the subjects on a 
two-dimensional toroid map as the localizations of their respective “best matching units” (BMU). These were 
neurons on the grid, which after ESOM learning, carried the vector that was most similar to a subject’s data vector. 
These calculations were performed using our R package “Umatrix” (https://cran.r-project.org/package=Umatrix)56.

An alternative data projection was obtained using a swarm of intelligent agents called DataBots, i.e., 
self-organizing artificial “life forms” that carry vectors of the biological processes associated with the drugs via 
their genetic targets. The data space was explored for distance-based structures. A parameter-free focusing pro-
jection method of a polar swarm, Pswarm, was used that exploits concepts of self-organization and swarm intelli-
gence. Following successful swarm learning, DataBots carrying items with similar features were placed in groups 
on the projection grid. The identification of emergent structures in the learned structure was further enhanced. 
These calculations were performed using the R library “DatabionicSwarm” (M. Thrun, https://cran.r-project.org/
package=DatabionicSwarm)57.

At the top of the grids on which the data had been projected using either ESOM or swarm based methods, 
the distances between data points were calculated using the so-called U-matrix47,58. Every value (height) in the 
U-matrix depicts the average high-dimensional distance of a prototype in relation to all immediate neighbor-
ing prototypes with regard to grid position. The corresponding visualization technique is a topographical map 
with hypsometric colors59 facilitating the recognition of distance and density based structures. Large “heights” in 
brown and white colors represent large distances between data.

Computed 
ABC analysis

Figure 2.  Flow chart of the data analysis. The figure provides an overview on the applied machine-learning 
approach in three main steps (indicated at the left side: data preprocessing, feature selection and classifier 
building including testing). The white frames show the variable flow, along with group size information. 
The grey frames depict the bioinformatics operations applied on the variables. During feature selection, the 
number of variables qualifying as components of a diagnostic tool respectively classifier was stepwise reduced, 
forwarding to the next analytical step only those features that had passed the criteria of the actual selection 
procedure.

https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=DatabionicSwarm
https://cran.r-project.org/package=DatabionicSwarm
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To further explore the structure of the input data space, unsupervised machine learning was additionally 
implemented as Minimum Curvilinear Embedding53, which is a parameter-free nonlinear data projection 
method60 that uses a so called geodesic distance. It assumes that the high dimensional data reside basically 
on lower dimensional sub-manifolds, which can be effectively represented by a neighborhood graph. Within 
this graph, the data distances are defined as geodesic distances. The most prominent of these projection meth-
ods is the Isomap algorithm61. MCE uses the minimal spanning tree as such a graph structure. In the pres-
ent analysis, a minimum curvilinearity kernel was built on the Euclidean and correlation distance matrices 
provided by the input features, either in the non-preprocessed or in the age and sex corrected data versions, 
using both centered and non-centered versions of the implementation. These calculations were done using a 
script downloaded from https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code/
minimum-curvilinearity-ii-april-2012 and the library “igraph” (Csárdi G. https://cran.r-project.org/web/pack-
ages/igraph/index.html)62. Finally, a further analysis of group structure in the data consisted of Ward clustering, 
which was implemented using the R library “cluster” (M. Maechler, https://cran.r-project.org/package=cluster)63.

Selection of machine-learning methods for classifier creation.  For classifier or biomarker creation, supervised 
machine learning was employed. In the supervised machine learning36 approach, the goal is to learn mapping 
from inputs x to output y, given a labeled set of input-output pairs = | ∈ ∈ = …D x y x y i n{( , ) X, Y, 1 }i i i i , com-
posed of pairs of Boolean values yi ∈ Y = B comprising the diagnoses of either “multiple sclerosis” (1) or “healthy” 
(0), and of values ∈ ⊂x Xi

d  comprising the d features, respectively serum concentrations of lipid markers, 
possibly predicting these diagnoses. Three different supervised machine-learning methods were explored with 
respect to the classification performance they provided in the present data set, comprising (i) k-nearest neigh-
bors64, (ii) adaptive boosting65 and (iii) random forests66.

The k-nearest neighbor (kNN) classification67 is a non-parametric method during which the entire labeled 
training dataset is stored, while a test case is placed in the feature space in the vicinity of the test cases at the small-
est high dimensional distance. The data space consisted of the zero invariant log-transformed lipid marker serum 
concentrations compatible with the Euclidean distance, subsequently normalized to percentages, and the diag-
nosis classes. The test case is given a class label according to the majority vote of the class labels of the k training 
cases in its vicinity. In the present implementation, the size of k was set at a value of 5, which is the default of the R 
package “KernelKnn” (Mouselimis L, https://cran.r-project.org/package=KernelKnn) used for these calculations.

Boosting65 employs a weak learning algorithm. Initially, each of n data points is associated the same weight 
wi = 1/n. A learner is implemented as a small classification and regression tree68, which provides a simple form of 
classification rules, using the Gini impurity (for details, see https://en.wikipedia.org/wiki/Decision_tree_learning 
#Gini_impurity) to find optimal (local) dichotomic decisions. The data space consisted of the zero-invariant log 
transformed lipid marker serum concentrations and the diagnosis classes. The final model combined all models 
using a weighted sum of the outputs that reflect the accuracy of all the constituent models. The number of itera-
tions was heuristically based on the classification accuracy, which indicated no improvement beyond 500 runs. 
These calculations were done using the R package “ada” (http://cran.r-project.org/package=ada69 with the parti-
tioning and classification package “rpart” https://cran.r-project.org/package=rpart).

Random forests create sets of different, uncorrelated and often very simple decision trees66 with conditions of 
features shown as vertices and classes as leaves. The splits of the features are random and the classifier relates to 
the majority vote for class membership provided by a large number of decision trees. The data space consisted of 
the zero-invariant log transformed lipid marker serum concentrations and the diagnosis classes. In the present 
analysis, 1,000 decision trees were built containing sqrt(d) features or nucleotide positions as the standard setting 
implemented in the R library “randomForest” (https://cran.r-project.org/package=randomForest)70. The number 
of trees was heuristically based on visual analysis of the relationship between the number of decision trees and 
the classification accuracy, which indicated that beyond 100 trees, the classification balanced accuracy remained 
stable and a larger number merely consumed available computation time.

Classifier creation.  As random forests provided the best classifier during the machine-leaning methods com-
parison, the biomarker was created using a combination of a random forests approach combined with Bayesian 
statistics as described in the following. The classifier is firstly trained in a labeled data set and subsequently applied 
to novel data where its diagnostic performance is assessed. To this end, the original data set was randomly split 
into a 2/3 sized training data set and a 1/3 sized test data set that both contained the two study groups in size 
proportional counts.

Feature selection: To obtain a classifier accessible for functional interpretation, and to avoid unnecessary labo-
ratory analytics in the future, a feature selection step was included in the analysis with the aim to identify, among 
the d = 43 lipid markers, a subset on which a sensitive diagnosis could be based. Feature selection for classifier 
development was implemented as random forest analysis66 followed by computed ABC analysis71. Random forests 
create sets of different, uncorrelated decision trees66 with conditions of variables (features) as vertices and classes 
as leaves. Each tree in the random forest votes for a class and the final classification assigned to a data point fol-
lows the majority of these class votes. In the present analysis, 500 decision trees containing up to six randomly 
drawn features were calculated from data with equal group sizes randomly drawn from the training data set. The 
number of trees was heuristically based on visual analysis of the relationship between the number of decision 
trees and the classification accuracy. This indicated no improvement beyond 100 trees, so 500 trees were con-
sidered to provide robust results. To establish that these heuristics did not affect the results of classifier creation, 
different numbers of trees such as 100 or 1,000 were also tested, which always led to the selection of the same lipid 
markers as members of the final biomarker.

https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012
https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=KernelKnn
https://en.wikipedia.org/wiki/Decision_tree_learning
http://cran.r-project.org/package=ada
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=randomForest
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From these trials, features or lipid markers were included into the final classifier based on the mean decrease 
in classification accuracy, when the respective feature was excluded from random forest building. The extent of 
this decrease indicated the importance of the particular feature. This procedure was repeated on 1,000 different 
training and test data sets, randomly drawn from the original training data set. Following the concept of a nested 
cross-validation analysis72, the random forest analysis was performed using randomly drawn sub-samples from 
the actual training sample and the forest was applied to the actual test sample. These calculations were done using 
the R library “randomForest” (https://cran.r-project.org/package=randomForest)70.

After each random forest analysis, the values for the mean decrease in tree classification accuracy, when the 
feature was excluded from random forest analysis, were subsequently submitted to computed ABC analysis73. 
This is a categorization technique for the selection of the most important subset among a larger set of items. It 
was chosen since it fitted the basic requirements of feature selection using filtering techniques74. Thus, it easily 
scales to very high-dimensional datasets, is computationally simple and fast, and independent of the classification 
algorithm. Computed ABC analysis aims to divide a set of data into three disjointed subsets called “A”, “B” and 
“C”75. Subset “A” contains the most profitable features76,77 and was therefore, chosen for classifier establishment. 
For each of the 1,000 runs, the size and members of ABC set “A” were retained. The final size of the feature set was 
equal to the most frequent size of set “A” in the 1,000 runs, and the final members of the feature set were chosen 
in decreasing order of their appearance in ABC set “A” among the 1,000 runs. These calculations were done using 
our R package “ABCanalysis” (http://cran.r-project.org/package=ABCanalysis)73.

Before creating the final classifier, each of the selected features was judged by a topical expert who verified 
that no major evidence exists in the published medical literature that the feature is unsuitable to be included in a 
diagnostic tool for multiple sclerosis. An exclusion criterion, for instance, would be that the parameter is known 
to be regulated or used as a marker for non-MS CNS diseases, such as pathogen-caused or autoimmune-mediated 
inflammatory CNS diseases, neuroborreliosis, brain tumor, spinal ischemia, sarcoidosis, vasculitis, acute dissem-
inated encephalopathy or leukodystrophy.

Classifier building: Having passed the above feature selection, the lipid markers were subsequently used to 
generate the classifier. To this end, for each feature f, a classification rule ψ →f Y( )  was used to assign a class label 
to the data on the basis of the observation of its feature vector. This was done by partitioning the feature space into 
two decision regions F1, F2 (yes or no for the diagnosis “multiple sclerosis”, respectively). For each feature f the 
probability density function (PDF) of the zero invariant log-transformed lipid mediator concentrations was mod-
eled by optimizing a Gaussian mixture model (GMM) to the distribution. The GMM was given by
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where N(xf|Meani, SDi) denotes Gaussian probability densities (component, mode) with means, Meansi and 
standard deviations, SDi. The wi are the mixture weights indicating the relative contribution of each component 
Gaussian to the overall distribution, which add up to a value of 1. M denotes the number of components in the 
mixture. GMM fitting and optimization was performed using the R package “AdaptGauss” (https://cran.r-project.
org/package=AdaptGauss)78.

The Bayesian decision rule ψ = > | > |f if p f p f and mean f mean f( ) 1, ( ) ( ) ( multiple sclerosis) ( healthy)i j , 
else 0 was used to assign a decision score to each feature f. This identified specific “yes/no” thresholds for each of 
the features. The final classifier was created by identifying a classification rule ψ → ψ = >Y SF t(t): , (t)d

d
d  that 

assigned a class label to the data based on the sum of decision scores SF of the features, where t is a threshold on 
this sum. All possible values of the threshold t from 1 to |{ABC set A}| were iteratively assessed with respect to the 
product of sensitivity and specificity. This identified an optimum threshold for patient classification. In this clas-
sifier, the relevant lipid mediator concentrations were represented by rules that are comprehensible for biomedical 
experts, which according to artificial intelligence concepts defines a symbolic classifier79.

An alternative sub-symbolic classifier was generated by means of random forest machine learning using the 
same |{ABC set A}| lipid markers as used in the symbolic classifier. In this classifier, the mediator concentrations 
are represented by the many trees of the forest. This eluded direct interpretation by biomedical experts since the 
classification can be obtained, but the details of the lipid mediators triggering the decision are hidden. Finally, a 
further random forest based classifier was created using the complete set of d = 43 lipid markers, with a complete 
nested cross validated approach and additional randomization of the number of features included in each tree and 
the number of trees built in each run. This procedure was implemented in 1,000 runs on resampled data.

Classifier performance testing: The performances of all classifiers were assessed using the test data set drawn 
up at the start of the data analysis and comprised the calculation of standard measures of test performance 
(sensitivity, specificity, balanced accuracy). In addition, the area under the ROC curve (AUC-ROC) and the 
area under the precision-recall curve (AUPRC) were calculated using the R libraries “pROC” (Robin X, https://
cran.r-project.org/package=pROC)80 and “MLmetrics” (Yan Y, https://cran.r-project.org/package=MLmetrics), 
respectively. The 95% confidence intervals of the performance test parameters were obtained as the 2.5th and 
97.5th percentiles of the results of 1,000 runs on Bootstrap resampled data.

Results
Serum concentrations of lipid mediators were available from n = 102 patients with multiple sclerosis and n = 301 
healthy subjects (Fig. 1). From these data, we first established a structure that coincided with the clinical picture 
of MS versus healthy group structure of the study cohort. This provided a basis to consider the lipid markers as 
suitable, in principle, to build a diagnostic biomarker for MS. Such classifiers were created in the second step of 
the analysis.

https://cran.r-project.org/package=randomForest
http://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=AdaptGauss
https://cran.r-project.org/package=AdaptGauss
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=MLmetrics
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Lipid mediator serum concentration patterns based subject clustering.  Serum concentrations of 
d = 43 lipid markers were available from 102 patients with multiple sclerosis and 301 healthy subjects Fig. 1). 
Unsupervised machine learning, applied to identify structures in the data space = = … ⊂D x i{ , 1, , 403}i

d, 
provided an emergent self-organizing feature map (ESOM), in which large U-heights indicated a large gap in the 
data space, whereas low U-heights indicated that the points are close to each other in the data space, indicating 
structure in the data set (Fig. 3A). On the topographic map of the U-matrix, valleys, ridges and basins enhance 
the visibility of the structure of clusters. From this structure, a “mountain range” separated two regions, which 
indicates the emergence of two main clusters in the data. Superimposing onto the cluster structure the class labe-
ling into MS patients or control indicated an almost perfect separation of the diagnostic groups by the cluster 
structure. This was reflected in a 98% balanced accuracy of diagnosis assignment by the obtained cluster assign-
ment of the subjects. The alternative approaches to subject subgroup detection, implemented as swarm based 
projection (Fig. 3B), Minimum Curvilinear Embedding (Fig. 3C,D), and as classical Ward clustering (Fig. 3E), 
also supported a data structure in the input space that coincided with the diagnostic groups. For the results of 
MCE, an apparent spilt of the healthy subjects into two subgroups (Fig. 3C,D) did not show any tendency toward 
a dominance of either sex, which ruled out a possible effect of contraceptive usage as an obvious explanation. 
From these analyses, it was concluded that the set of lipid markers included information suitable to separate MS 
from controls, which had been the aim of this data analysis step.

Figure 3.  Clustering of subjects based on lipid marker serum concentrations, obtained using unsupervised 
machine learning (A–D) or classical Ward clustering (E). (A) U-matrix visualization of distance based 
structures of the serum concentration of d = 43 markers observed in n = 102 multiple sclerosis patients (green 
dots) and n = 301 healthy subjects (blue dots). The figure has been obtained using a projection of the data points 
onto a toroid grid of 4,000 neurons where opposite edges are connected. The dots represent the so-called “best 
matching units” (BMU), i.e., neurons on the grid that after ESOM learning carried the vector that was most 
similar to a subjects’ data vector. The U-matrix visualization was colored as a top view of a topographic map 
with brown (up to snow-covered) heights and green valleys with blue lakes. Watersheds indicate borderlines 
between different clusters (marked with a light blue dotted line). Superimposing the clinical diagnosis almost 
completely coincided with the cluster separation (accuracy 98%). (B) U-matrix visualization of the data 
structure found via a projection onto a toroid neuronal grid using a parameter-free polar swarm, Pswarm 
consisting of so-called DataBots, which self-organizing artificial “life forms” that carry vectors of the biological 
lipid marker concentrations. Superimposing the clinical diagnosis almost completely coincided with the cluster 
separation. (C,D) Minimum Curvilinear Embedding53 using the Euclidean distance matrix of the preprocessed 
data for kernel building and both, the non-centered (C) and the centered (D) versions of the method. 
Agreement with the clinical diagnosis can be concluded from the color-coded separation of the data. (E) Cluster 
structure found using classical Ward clustering. Agreement with the clinical diagnosis was slightly lower than 
with the machine-learned methods. The figure has been created using the R software package (version 3.4.2 for 
Linux; http://CRAN.R-project.org/)43. Specifically, for panel A our R package “Umatrix” (https://cran.r-project.
org/package=Umatrix)56 was used, for panel B the library “DatabionicSwarm” (M. Thrun, https://cran.r-project.
org/package=DatabionicSwarm)52, for panels C and D a script downloaded from https://sites.google.com/site/
carlovittoriocannistraci/5-datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012 and the library 
“igraph” (Csárdi G. https://cran.r-project.org/web/packages/igraph/index.html)62 was used, and for panel E the 
R library “ape”(https://cran.r-project.org/package=ape)105 was used.

http://CRAN.R-project.org/
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=DatabionicSwarm
https://cran.r-project.org/package=DatabionicSwarm
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012
https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/package=ape
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Supervised machine-learning derived MS biomarker.  The final comparative assessment of classifier 
performance provided by k-nearest neighbors, adaptive boosting and random forests, using the complete feature 
sets indicated a slight advantage of the random forests based classifier (Table 2). Therefore, this method was cho-
sen as the basis for feature selection and biomarker creation.

A computed ABC analysis was applied to the mean decreases in classification accuracy when a particular fea-
ture was excluded from random forest building, as calculated during the feature selection step (Fig. 4A). During 
nested cross-validation including random forests, an out-of-bag error of 2% (range (0–9%) was observed. ABC 
analysis assigned 2, 3, 4, 5, 6, 7, 8, 9, or 10 items 2, 1, 1, 12, 26, 129, 549, 271 and 9 times to set “A”, respectively. 
The most frequent size |{ABC set A}| = 8 lipid markers, i.e., the most profitable items for classifier building from 
the set of candidate features (Fig. 4B), was chosen for further analysis. The eight lipid markers that were most fre-
quently members of the ABC set “A” comprised GluCerC16, HETE15S, LPA20:4, biopterin, OEA, LacCerC24:1, 
PEA and C16Sphinganin, which belonged to set “A” 1000, 1000, 997, 867, 795, 791, 750, and 582 times, respec-
tively. They were therefore, chosen as components of the final symbolic classifier. The next most frequent lipid 
marker, HETE12S, was observed 553 times in set “A”, the next, AEA, only 269 times, whereas 24 markers were 
never chosen as most profitable items. The selected features did not interfere with lipid markers for which 

k-nearest 
neighbors

Adaptive 
boosting

Random forests, 
complete feature set

Random forests, 
reduced feature set

Symbolic 
classifier (Table 3)

Sensitivity, recall [%] 100
(96.91–100)

100
(96.94–100)

100
(96.97–100)

99
(96.84–100) 100

Specificity [%] 85.71
(66.67–100)

97.06
(87.88–100) 100 97.22

(89.65–100)
93.06
(87.5–97.89)

Positive predictive value, precision [%] 95.28
(88.89–100)

99
(96–100) 100 99

96.81–100)
83.33
(71.1–94.12)

Negative predictive value [%] 100
(89.66–100)

100
(91.18–100)

100
(91.67–100)

97.14
(90–100) 100

Balanced accuracy [%] 92.51
(83.33–98.96)

98.39
(93.55–100)

100
(98.48–100)

98.21
(94.34–100)

96.53
(93.75–98.95)

Area under the ROC curve [%] 92.51
(83.33–98.96)

98.39
(93.55–100)

100
(98.48–100)

98.21
(94.35–100)

96.53
(93.75–98.95)

Area under the precision-recall curve [%] 98.87
(93.66–99.05)

98.52
(93.98–
99.06)

98.87
(95.23–99.06)

68.89
(55.53–80.15)

68.68
(59.28–77.2)

Table 2.  Test performance measures for the correct prediction of the diagnosis “multiple sclerosis” provided 
by different types of classifiers obtained using k-nearest neighbors (kNN), adaptive boosting or random forests. 
The first three implementations used the full data set with d = 43 lipid markers. Subsequently, a reduced eight-
marker set was obtained using selection. The two columns at the right show the classification performances of 
a random forest and the eight-item serum lipidomics based classifier respectively biomarker with the selected 
features. Parameter values were obtained during 1,000 runs using Bootstrap resampling from the test data 
set. The non-parametric confidence intervals spanning the 2.5th to the 97.5th percentiles of 1,000 Bootstrap 
resampling runs are given in parentheses.

Lipid mediator Threshold*
GluCerC16 <117.93 ng/ml

HETE15S <0.44 ng/ml

LPA20:4 <71.35 ng/ml

Biopterin <1.51 ng/ml

OEA <1.57 ng/ml

LacCerC24:1 >10,880.38 ng/ml

PEA <1.67 ng/ml

C16Sphinganin >107.02 ng/ml

Table 3.  Conditions of the prediction of multiple sclerosis. A patient is likely to have multiple sclerosis if at least three 
of the items (rules) apply, i.e., the conditions given in the rows of the table are true. *Lipid markers had been corrected 
for age and sex. Therefore, application of above rules to concentration measurements requires a correction as 

= + − ⋅Corrected Value Original Value Age( 18)Subject  −










Slope
if male

if female
: Median Sex Difference

: 0Age . The 

value of 18 corresponds to the minimum age in the present cohort and the further parameters of the are given in the 
following: GluCerC16: SlopeAge = 1.6263, Median Sex Difference = −10.2439, HETE15S: SlopeAge = 0.0749, Median 
Sex Difference = 0.3065, LPA20:4: SlopeAge = −0.5206, biopterin: SlopeAge = 0.0184, Median Sex Difference = 0.4211, 
OEA: SlopeAge = −0.0063, Median Sex Difference = 0.32, LacCerC24:1: SlopeAge = −19.0459, Median Sex 
Difference = −329.1148, PEA: SlopeAge = 0.0136, Median Sex Difference = 0.1177, MedianSexDifference = −9.8383, 
C16Sphinganin: SlopeAge = −1.406441, Median Sex Difference = −0.1384429.
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evidence of their regulatory functions in association with differential diagnoses of MS (see methods section) was 
found and therefore, could be verified by experts.

For the item sum based classifier, all possible rule values were iteratively assessed with respect to test perfor-
mance measures, in particular to the sensitivity in relation to specificity product. The best area under the sensi-
tivity versus specificity curve (Fig. 4C) was provided when a subject was assigned to the healthy subjects group 
at a sum of <3 positively answered items (Table 3) or to the multiple sclerosis patients group. Most of these rules 
consisted of an assignment to the multiple sclerosis group when the concentration of the respective lipid medi-
ator fell below a threshold. In other words, most serum lipid mediator concentrations were reduced in multiple 
sclerosis. Exceptions from this pattern were the ceramide LacCerC24:1 and the sphingolipid C16Sphinganin, 
which were found at comparatively higher concentrations in the multiple sclerosis patients. Finally, sub-symbolic 
classifiers based on random forests were created using the reduced d = 8 feature set and the complete d = 43 set 
of lipid markers. For all classifiers, i.e. (i) the reduced set item sum based classifier, (ii) the reduced set random 
forest based classifier, and (iii) the complete set random forest based classifier, the classification performance was 
comparably high (Table 2) with a balanced classification accuracy for association with the multiple sclerosis group 
of approximately 95% or better.

Discussion
The treatment of MS patients should be started as soon as possible after diagnosis has been confirmed in order 
to reduce residual impairment3. In early stages, MS is sometimes difficult to differentiate from other neurologic 
diseases that mimic MS symptoms. Therefore, there is still a need for a biomarker for the diagnosis of MS81. In 
addition, in the MS context, biomarkers are also being sought for the prediction of the disease course and for 
monitoring the response to therapy82,83. In particular, it would be highly desirable to monitor disease activity dur-
ing clinically asymptomatic intervals to escalate therapy if needed. Currently, no blood-derived biomarker for MS 
is available, although many have been suggested84,85. In the analysis presented here, supervised machine-learning 
was successful in detecting the presence or absence of MS at a high accuracy of 96%, with accordingly high scales 
of sensitivity and specificity. The symbolic classifier, i.e., that most accessible to domain expert interpretation 
(Table 3), was slightly outperformed by the subsymbolic classifiers, of which that using the whole set of d = 43 
markers provided, as expected, the maximum performance measure values (Table 2). The lower accuracy of the 
symbolic classifier might partially be the effect of somewhat imbalanced case set sizes. Therefore, sensitivity, spec-
ificity and balanced accuracy are reported for each classifier type (Table 2), since it is known that accuracy alone 
might be misleading in cases where the numbers of cases in the positive (n = 102 MS patients) and negative sets 
(n = 301 controls) are different, i.e. if the sets are imbalanced86.

The identified lipid-mediator derived serum biomarkers are biologically plausible and agree with increasing 
evidence for lipidomic dysregulation of neuro-inflammatory processes and related CNS diseases. Specifically, 
Cer16 and Cer24:1, the precursors of GluCerC16 and LacCerC24:1, respectively, have been shown to be upreg-
ulated in white blood cells isolated from MS patients21,22. Moreover, Cer16 and Cer24, being components of 
extracellular vesicles, might amplify cytokine-induced cell death of myelin-producing oligodendrocytes87. 
Furthermore, HETE15S was shown to be regulated in the cerebrospinal fluid of MS patients20. Similarly, 
enhanced activity of autotaxin, which is an enzyme involved in the biosynthesis of lysophosphatidic acids, was 
observed in serum samples of MS patients35. Biological plausibility of the presently identified components of a 
lipidomics-based MS biomarker extends to endocannabinoids of which, for example, PEA and OEA have been 
found in relapse-remitting MS and secondary progressive MS patients88. Moreover, experimental data89 and a 
therapeutic benefit of Sativex® which contains cannabidiol and tetrahydrocannabinol, further support a func-
tional relevance of endocannabinoids in MS. Finally, neopterin is an activation marker of the innate immune 
system with increased levels in autoimmune diseases including the CSF of MS patients90.

With a diagnostic accuracy of 95% or better, the present serum lipidomics-based diagnostic biomarker com-
pares to, or outperforms the previously best alternative approaches. For example, based on oligoclonal bands 
analyzed in paired CSF and serum specimens, MS could be diagnosed at 84.9% sensitivity and 78.9% specificity91. 
Based on gene expression signatures in peripheral blood mononuclear cells, a combination of expression levels 
of five genes segregated a multiple sclerosis cohort from the respective control cohort with a sensitivity of 91% 
and specificity of 98%92. A miRNA-based marker comprising miR-181c and miR-633 in CSF could differentiate 
relapsing-remitting from secondary progressive MS courses with 82% specificity and 69% sensitivity93. The latter 
study points towards subtype differences, which were not addressed in the present cohort.

Almost all patients had relapsing remitting MS (RRMS), 55 of 102 with a stable, symptom-free disease under 
medication with first or second line disease modifying drugs including beta-interferon, fingolimod, natalizumab, 
fumaric acid or glatiramer acetate, 22 with acute relapse, 6 of them with high-dose prednisolone, and 20 pre-
sented with the first course of the disease. Medication may be a confounding factor affecting bioactive lipids. For 
example, glucocorticoids may reduce LPAs by inhibiting phospholipase A294 and autotaxin95, the major producers 
of extracellular LPAs. Fingolimod may reduce prostaglandins89 because it inhibits phospholipase A296 and sup-
presses the expression or upregulation of cyclooxygenase-297. In addition, fingolimod inhibits autotaxin34,98, the 
latter possibly also affected by natalizumab which interferes with the attachment of autotaxin to the cell surface 
via integrin. Fingolimod, natalizumab and fumaric acid are all second line drugs for escalation therapy. Therefore, 
there is a possibility that the observed differences in lipid levels might reflect drug effects. However, at least for the 
actual medication, this seems unlikely. Specifically, 39 MS patients were receiving no actual medication (Table 1). 
All were correctly assigned to the MS group by the lipid-based classifier, which is incompatible with a causal role 
of the varying medication in the shift in serum lipid markers. Similarly, there was no difference in the number of 
falsely classified patients among the MS subgroups as indicated by non-significant χ2 tests.

The present analysis employed random forests followed by ABC analysis as feature selection procedure71. The 
intention was to obtain a symbolic classifier, i.e., a biomarker that is accessible to medical expert explanation. The 



www.nature.com/scientificreports/

1 1Scientific ReporTs |  (2018) 8:14884  | DOI:10.1038/s41598-018-33077-8

Figure 4.  Feature selection and classifier performance. (A) Feature selection using random forest machine 
learning followed by computed ABC analysis of numerical measures of feature importance for classification. A 
first step of feature selection was analyzing the mean decrease of accuracy over all cross-validated predictions, 
i.e., the change in the number of observations that were incorrectly classified, when the respective variable was 
removed. The bar plot shows the decrease in accuracy, as positive values, in descending numerical order. The 
plot depicts one example out of 1,000 runs and therefore, the order differs from the overall importance order 
of the parameters as given in Table 3. (B) Subsequently, the mean decrease of accuracy associated with each 
variable was submitted to computed ABC analysis, which is an item selection procedure aiming at identification 
of most profitable items from a larger list of items. The ABC plot (blue line) shows the cumulative distribution 
function of the mean decreases in accuracy, along with the identity distribution, xi = constant (magenta line, 
i.e., each feature contributes similarly to the classification accuracy (for further details about computed ABC 
analysis, see73). The plot shows results of the same example run as displayed in panel A. (C) Plot of the classifier 
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selection of d = 8 lipid markers out of 43 candidates corresponds to the Miller optimum of d = 7 ± 2 items99 that 
has been proposed to best suit human comprehension100. However, it should be noted that the most pronounced 
effect was observed with GluCerC16 (Fig. 4A). This marker alone provided a high classification performance of 
more than 90% accuracy that supports a particularly important role of ceramides in the lipid-based pathophysi-
ology of MS21,22. Therefore, it is advised to carefully contemplate the diagnosis of MS in cases where GluCerC16 is 
below the identified concentration threshold (Table 3). The inclusion of d = 8 markers provided further improve-
ment of the classifier performance and made the biomarker more robust than relying on a single laboratory value. 
Given this observation, and considering that the random forest classifier using all candidate lipid markers did 
not provide substantially better diagnostic performance than the sum-based reduced feature set classifier. The 
classifier used outperformed alternative methods of feature selection such as multi-objective parameter tuning101 
which were not applied, because any possible change in the selection of the less important lipid markers could 
have provided only a very small improvement in the classifier performance. Moreover, the use of random forests 
as a basis for the subsequent operations was based on its better performance as compared to alternatives, includ-
ing kNN and adaptive boosting. Therefore, more alternative classifiers were not assessed in line with the focus of 
this report on a suitable lipid-mediator concentration based MS biomarker.

Biomarker creation was preceded by an analysis of the data structures, based on the hypothesis that struc-
tures coinciding with the prior classification into MS patients and controls provides strong indications that the 
data set contains information relevant for the diagnosis. This would make it a suitable basis for a supervised 
machine-learned classifier. In other words, a cluster structure was sought that agreed with the diagnostic groups. 
As a recent report advised caution against classical clustering methods48, different unsupervised machine-learned 
methods were used, though, Ward clustering was also applied. All methods detected data clusters that almost 
perfectly agreed with the clinical pre-classification, including the classical Ward clustering that did not show 
problems occasionally occurring with this method48 with the present data. Thus, independent methods supported 
a data structure in the lipid maker matrix that was compatible with the diagnostic groups.

To further assess the suitability of the chosen analytical design and to explore differential patterns in the 
dataset, a PC-corr analysis102 was run on the data. Specifically, the PC-corr analysis102 provides an algorithm 
that associates any PCA segregation with a discriminative network of features. Such a network can be inspected 
for functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted 
omic data. The PC-corr algorithm itself permits to find the best results of a principal component analysis (PCA). 
PC-corr is an algorithm which is supplementary to PCA. It was developed by Ciucci et al.102 in 2017 to retrieve 
the features’ correlations that generate the segregation of the cohorts along a principal component (PC), therefore 
it is an algorithm that associates to each PC (for which emerges a significant sample discrimination) a discrimi-
native correlation network of the features. As it calculates various quality measures for every combination of PC, 
normalization and centering, it allows the optimal selection of PC for projection. PCA103 uses a rotation of the 
data, to project the data to a subspace of so-called principal components. The first principal component has the 
largest possible variance in the data. Each succeeding orthogonal component is chosen for the highest possible 
remaining variance. PC-corr uses various transformations of the data in the analyses. If its results consist of 
non-significant separations, as judged by quantitative evaluations expressed as p-value, AUC and AUPR) using 
any types of normalization and dimension, then a nonlinear dimension reduction is necessary because the data 
are difficult to linearize by means of different types of normalizations. If the significant separations are found to 
correspond to particular types of normalization and in dimensions that are not within the first three dimensions 
of embedding, then the data present nonlinearities that can be addressed by normalization of the data. This anal-
ysis was performed using an R script provided with the description of the PC-corr analysis (pccorrv2.R, https://
github.com/biomedical-cybernetics/PC-corr_net)102. Applying the PC-corr algorithm suggested that a centered 
PCA, without need of any normalization, produced already a significant segregation of the two cohorts along the 
first dimension (PC1). Indeed, as reported in the Supplementary Table (line 11), the sample segregation along 
PC1 had p-value < 0.001, AUC-ROC of 0.96, AUC-PR of 0.99 and explained 25% of the variance (Fig. 5). This 
result is also confirmed using nonlinear dimension reduction obtained by ESOM and MCE. Hence, the results of 
nonlinear dimension reduction technique confirm the results obtained by PCA analysis, i.e., the use of non-linear 
projection methods in the unsupervised analyses of the data structure supported this observations. The chosen 
analyses (e.g. ESOM and Swarm based projections) also accommodated the intention to favor better performance 
in embedding by adopting the most advanced nonlinear dimension reduction techniques.

To address possible overfitting, the present data set was split into training and test data sets, nested 
cross-validation and random resampling being used. Ideally, an independently acquired second data set would 
have served this purpose. The present analysis provided a basis for further pursuing the development of a 
serum-lipidomics based MS biomarker. However, instead of acquiring similar data set to again verify the pres-
ent results, the present results indicate that the next research efforts should rather focus on a marker for early 

building procedure calculating test performance parameters for every possible sum of positive responses to 
the rules in Table 3. The solid line shows the product of sensitivity and specificity for different item sums. The 
dashed lines show the respective test sensitivity and specificity for every sum of positive items. The classification 
rule tested was “if the sum of the rules that applied was smaller than the actual iteration number then the 
patient belongs to the “healthy subject” group, else to the “multiple sclerosis” group. The analysis was done 
iteratively with item sums increasing by a value of one between each iteration. The figure has been created using 
the R software package (version 3.4.2 for Linux; http://CRAN.R-project.org/)43. In particular, the computed 
ABC analysis was performed and plotted using our R package “ABCanalysis” (http://cran.r-project.org/
package=ABCanalysis)73.

https://github.com/biomedical-cybernetics/PC-corr_net
https://github.com/biomedical-cybernetics/PC-corr_net
http://CRAN.R-project.org/
http://cran.r-project.org/package=ABCanalysis
http://cran.r-project.org/package=ABCanalysis
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diagnosis. Therefore, a prospective study enrolling patients with unclear symptoms or mono-symptomatic disease 
typical for early MS stages2 is the preferred next step in this project. A further limitation should also be prospec-
tively addressed, namely, the age difference observed here between the MS patients and healthy controls. While 
this was eliminated in the preprocessing of the present data set, a prospective study should use age-matching in 
the inclusion criteria. This would eliminate the necessity to rescale the marker concentrations, as shown in the 
legend of Table 3. Moreover, the present study enrolment neglected the use of contraceptives, recently shown to 
alter lipid patterns104. However, if this had been an important confounder, a separate group would have emerged 
among the healthy subjects on the U-matrix (Fig. 3), which was not observed.

Conclusions
Presently, the diagnosis of MS is based on clinical parameters such as the number of relapses, the number and 
size of the lesions detected by MRI, spinal fluid diagnostics and clinical symptoms characterized by the expanded 
disability status scale (EDSS). Several clinical criteria are necessary to diagnose MS and to initiate therapy that 
should be started after the first appearance of clinical symptoms to reduce residual impairment3. Therefore, there 
is a need for a non-invasive biomarker for diagnosis of MS and differentiation of other neurologic diseases, which 
may mimic MS. In the context of MS, biomarkers are also being sought for the prediction of the disease course 
and to monitor the response to therapy82,83. Using a data-driven approach in a cohort of 102 MS patients and 301 
healthy subjects, we have identified a set of serum-based lipid markers of several classes, reported to be modu-
lated in MS (ceramides, sphingolipids, LPAs, endocannabinoids, prostaglandins, pterins, DHETs and HETEs). 
These could be employed for the diagnosis of MS. Applying unsupervised machine-learning techniques, a data 
structure, largely agreeing with the clinical diagnoses, was observed that supports the proposal that the set of 
lipid markers contained information suitable to create a diagnostic tool for multiple sclerosis. Using subsequently 
supervised machine-learning techniques, a classifier was developed that finally takes the form of a questionnaire 
with a small set of “yes/no” decisions about lipid biomarker concentrations. The classifier (biomarker) included 
biologically plausible features, with respect to the identified subset of lipid markers, and predicted MS with an 
accuracy of approximately 95% in the present data set. This encourages further efforts to establish an MS bio-
marker based on serum lipidomics23,55.
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