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Identification of nodal metastasis and tumor extranodal extension (ENE) is crucial for head and neck 
cancer management, but currently only can be diagnosed via postoperative pathology. Pretreatment, 
radiographic identification of ENE, in particular, has proven extremely difficult for clinicians, but would 
be greatly influential in guiding patient management. Here, we show that a deep learning convolutional 
neural network can be trained to identify nodal metastasis and ENE with excellent performance that 
surpasses what human clinicians have historically achieved. We trained a 3-dimensional convolutional 
neural network using a dataset of 2,875 CT-segmented lymph node samples with correlating pathology 
labels, cross-validated and fine-tuned on 124 samples, and conducted testing on a blinded test set 
of 131 samples. On the blinded test set, the model predicted ENE and nodal metastasis each with 
area under the receiver operating characteristic curve (AUC) of 0.91 (95%CI: 0.85–0.97). The model 
has the potential for use as a clinical decision-making tool to help guide head and neck cancer patient 
management.

Approximately 60,000 patients are diagnosed with head and neck squamous cell carcinoma (HNSCC) in the 
United States each year, resulting in around 13,000 deaths annually1. For patients diagnosed with HNSCC, 
definitive treatment strategies consist of radiation with or without chemotherapy or upfront surgery followed by 
adjuvant radiation with chemotherapy as indicated. Diagnosis, prognostic staging, and treatment selection for 
HNSCC is guided by routine diagnostic computed tomography (CT) scan of the head and neck to identify clinical 
tumor and lymph node features. Despite modern imaging techniques, there are certain radiographic features that 
remain difficult to detect by clinicians, including the presence of lymph node metastasis (NM), and of particular 
challenge, lymph node extranodal extension (ENE).

ENE, also known as extracapsular extension or extracapsular spread, occurs when metastatic tumor cells 
within the lymph node break through the nodal capsule into surrounding tissues. Presence of ENE in squamous 
cell carcinoma of the head and neck, found postoperatively, is associated with higher rates of locoregional recur-
rence, distant metastasis, and poorer survival2,3. In current practice, ENE can only be reliably diagnosed from 
postoperative pathology, and identification of pathologic ENE is an indication for adjuvant treatment intensifi-
cation with the addition of chemotherapy to radiation therapy2. Prior study of radiologic ENE detection demon-
strates overall suboptimal performance, with area under the curve (AUC) of the receiver operating characteristic 
plot ranging from 0.65–0.694. There is also high intra-observer variability in the prediction of ENE from CT4–8. 
Patients who undergo surgery and are found to have pathologic ENE are often subjected to tri-modality treatment 
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(surgery followed by chemoradiation), a paradigm that is associated with increased acute and chronic morbid-
ity and healthcare costs, but not improved outcomes compared to chemoradiation alone9–11. Studies of patients 
selected to undergo upfront surgery have shown high use of tri-modality treatment, suggesting that incidental 
finding of pathologic ENE is not uncommon12–15. Additionally, both clinically overt and pathologic ENE have 
been incorporated into the AJCC 8th edition prognostic staging system for HNSCC16. This highlights the impor-
tance of ENE identification in the management of HNSCC and the need to develop better methods to better 
predict in the pretreatment setting. While radiologic detection of nodal metastasis (NM) on diagnostic imaging 
has proven more successful than detection of ENE, there remains room for improvement in this aspect of initial 
staging as well.

Machine learning, a field at the intersection of data and computer science, applied mathematics, and statis-
tics, has shown promise in computer vision applications in the consumer electronics and technology industries. 
Machine learning has more recently been applied in medical imaging analysis, when its use is incorporated into 
radiomics studies, which extract and analyze quantitative image features17,18. Deep learning, a machine learn-
ing method, utilizes multiply layered neural networks to develop robust predictive models and has been shown 
to outperform other forms of machine learning on imaging analysis and predictive model development19–21. 
Furthermore, deep learning neural networks (DLNNs) using convolutional layers have been shown to be particu-
larly high-performing in image analysis problems22. There have been no studies to date utilizing deep learning to 
detect malignant features of HNSCC nodes. We sought to develop a deep learning model to detect ENE and NM 
in HNSCC patients on pretreatment diagnostic CT scans.

Results
Patient and lymph node characteristics. Of the 794 patients who underwent surgical lymph node dis-
section at our institution from 2013–2017, 347 met initial criteria based on primary site, and 270 had preopera-
tive, contrast-enhanced CT scans available for analysis (Table 1). The median time from CT scan to surgery was 
23 days (range: 1–93 days), and 258 patients (95.6%) had CT scans within 60 days of surgery. Following patho-
logic correlation with CT scans, 653 lymph nodes were segmented in total (range: 1–5 per patient): 380 negative 
nodes, 153 NM without ENE, and 120 NM with ENE. Median region of interest (ROI) diameter was significantly 
greater in NM with ENE (23 mm, range: 10–64 mm), than NM without ENE (16 mm, range: 6–42 mm), or nega-
tive nodes (10 mm, range: 4–20 mm) (P < 0.001).

Patient Cohort
Patients 
(N = 270)

Lymph Nodes 
(N = 653)

Primary Cancer Site n (%) n (%)

Oropharynx 72 (26.7) 178 (27.3)

Oral Cavity 106 (39.3) 251 (38.4)

Larynx/Hypopharynx/Nasopharynx 48 (17.8) 126 (19.3)

Salivary Gland 18 (6.7) 36 (5.5)

Unknown/Other 26 (9.6) 62 (9.5)

Clinical T-stage

  T0 5 (1.9) 17 (2.6)

  T1 36 (13.3) 91 (13.9)

  T2 72 (26.7) 172 (26.3)

  T3 37 (13.7) 94 (14.4)

  T4 44 (16.3) 107 (16.4)

  Unknown 76 (28.2) 172 (26.3)

Clinical N-stage

  N0 83 (30.7) 185 (28.3)

  N1 38 (14.1) 82 (12.6)

  N2 76 (28.2) 209 (32.0)

  N3 9 (3.3) 33 (5.1)

  Unknown 64 (23.7) 144 (22.0)

HPV/p16 Status*

  Negative 188 (69.6) 454 (69.5)

  Positive 76 (28.2) 185 (28.3)

  Unknown 6 (2.2) 14 (2.2)

Lymph Node Pathology

  Negative 380 (58.2)

  Nodal Metastasis, ENE(−) 153 (23.4)

  Node Metastasis, ENE(+) 120 (18.4)

Table 1. Study Patient and Lymph Node Characteristics. *Patients with non-oropharyngeal carcinoma who 
did not undergo HPV or p16 testing were coded as negative, given the very low incidence of HPV/p16 positive 
tumors in these disease sites. Abbreviations: ENE = extranodal extension.
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DLNN training and validation. Following lymph node ROI preprocessing (Methods, Fig. 1), the lymph 
node dataset was divided by 20%, yielding an independent test set of 131 nodes (76 negative, 31 NM without 
ENE, 24 NM with ENE). This set was isolated and blinded from view until final testing. We then split the remain-
ing sample (522 nodes) by 20% (16% overall), stratified by node-category, yielding a training cohort of 417 and 
validation cohort of 105 nodes. To diminish the effect of sample imbalance, random oversampling was used on 
the training and validation sets in parallel to boost the number of ENE samples by a factor of two23. To avoid 
overfitting, to which neural networks are prone, we utilized data augmentation on the training set with a series of 
random rotations and flips. Specifically, augmentation consisted of two flips and two rotations for all cases (4×), 
an additional rotation for all NM cases with or without ENE (5×), and yet an additional combined flip-rotation 
for all ENE cases (6×). Following oversampling and augmentation, there were 2875 samples in the training set 
and 124 samples in the validation set. Training and validation loss plot is found in Fig. S1.

DLNN Model selection. On comparison of the three tested DLNN architectures (BoxNet, SmallNet, and 
DualNet; see Methods), the DualNet DLNN (Fig. 2) yielded the highest overall AUC for ENE and loss overall 
loss on the independent test set (Table 2). Merging HPV/p16-status with the DualNet model did not improve 
performance metrics. Merging HPV/p16-status also did not improve performance metrics for the subgroup of 
oropharyngeal cancer patients (n = 30) (Table S1), though evaluation in this subgroup may be limited given fur-
ther reduction in sample size. The DualNet model was selected as the final DLNN for further testing. Five-fold 
cross validation for the DualNet model yielded mean AUC 0.89 for ENE.

Model performance and benchmark comparisons on independent test set. On evaluation of per-
formance metrics on the blinded test set for ENE prediction for lymph node segmentations ≥1 cm (n = 98), the 
DLNN demonstrated AUC: 0.91 (95%CI: 0.85–0.97), accuracy: 85.7%, sensitivity: 0.88 (false negative rate: 0.12), 
specificity: 0.85, (false positive rate: 0.15), PPV: 0.66, and NPV: 0.95. The random forest model yielded AUC: 0.88 
(95%CI: 0.81–0.95), and the benchmark model yielded AUC: 0.81 (95%CI: 0.76–0.86) (Fig. 3). All model perfor-
mance metrics were favorable for the DLNN compared to the other models in the prediction of ENE (Table 3). 
For NM prediction (n = 131), the DLNN demonstrated AUC: 0.91 (95%CI: 0.86–0.96), accuracy: 85.5%, sensitiv-
ity: 0.84, specificity: 0.87, PPV: 0.88, and NPV: 0.82. The random forest model yielded AUC: 0.91 (95%CI: 0.86–
0.97), and the benchmark model yielded AUC: 0.86 (95%CI: 0.83–0.89). For NM prediction, other performance 
metrics for the DLNN were similar to those of the random forest classifier and were favorable compared to the 
benchmark logistic model. The DLNN calibration plots for the test set demonstrated good agreement (Fig. S2).

Figure 1. (A,B) Lymph Node Region of Interest Preprocessing. (A) 2D representation of 3D lymph node 
segmentation preprocessing resulting in a dimension-preserving input (1) and a size-invariant, “zoomed-in” 
input (2). (B) Representation of actual 3D input arrays for dual-input deep learning neural network.
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Discussion
We constructed a DLNN algorithm that successfully predicts the presence or absence of extranodal extension 
and nodal metastasis when applied to preoperative CT imaging for HNSCC patients. We found that a DLNN 
using raw pixel information and a random forest classifier utilizing predefined radiomic features perform favora-
bly when compared to a benchmark clinical-risk factor regression model and historical radiologic diagnostic 
controls, and that DLNNs appear to have the highest performance of the models tested. Using raw pixel data 

Figure 2. Deep Learning Neural Network (DLNN) Model Architecture. Dimension-preserving input “BoxNet” 
DLNN (A) is merged with size-invariant “SmallNet” DLNN (B) to form the dual-input, “DualNet” DLNN 
(C) with model output. The model has the capability to merge HPV/p16-status (D). Note: dropout, batch 
normalization, and activation layers not shown.
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alone, the DLNN model predicted lymph node ENE with AUC of 0.91, sensitivity of 88% (false negative rate: 
12%), and specificity of 85% (false positive rate: 15%). To our knowledge, this is the first study to utilize machine 
learning algorithms to successfully predict ENE in HNSCC. These findings have promising implications for use of 

DLNN Version

Training Set 
(n = 2875)

Validation Set 
(n = 124) Test Set (n = 98*)

AUC Loss AUC Loss AUC Loss

BoxNet 0.95 0.443 0.87 0.522 0.90 0.565

SmallNet 0.95 0.406 0.86 0.467 0.88 0.573

DualNet 0.99 0.182 0.87 0.403 0.91 0.483

BoxNet + HPV status 0.97 0.407 0.83 0.521 0.88 0.554

SmallNet + HPV status 0.96 0.431 0.89 0.450 0.88 0.519

DualNet + HPV status 0.99 0.165 0.90 0.417 0.87 0.547

Table 2. DLNN Performance Metric Comparisons for Model Selection. Loss represents overall cross-entropy 
loss of the multilabel prediction for extranodal extension (ENE) and nodal metastasis. AUC calculated from 
ENE classification predictions. *Test set for ENE includes lymph nodes with region of interest diameters ≥1 cm. 
Abbreviations: AUC = area under the curve.

Figure 3. (A,B) Test Set ROC Curve Comparisons for Extranodal Extension (ENE) and Nodal Metastasis 
Prediction for Deep Learning Neural Network (DLNN), Radiomic Feature Random Forest, and Benchmark 
Logistic Model.
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DLNNs as clinical decision-making tools and patient risk-stratifiers. Additionally, this study highlights the utility 
of CT-based neural networks in diagnostic medical imaging.

Up to this point, ENE prediction by radiologic assessment has been suboptimal. Radiologic criteria proposed 
for the detection of ENE, include (1) presence of a thick-walled, enhancing nodal margin; (2) loss of outer nodal 
margin definitions; and (3) infiltration of the adjacent fat lanes around portions of the node24. Prior studies of 
radiologists utilizing these criteria along with clinical judgment have demonstrated variable performance in ENE 
prediction. The most recent study to assess the performance of two independent observers in detecting ENE on 
contrast-enhanced CT demonstrated accuracies of 67–70%, sensitivities of 57–66%, specificities of 76–81%, and 
low inter-observer agreement with a kappa coefficient of 0.595. Another study of two independent observers 
re-reviewing CT scans showed more favorable results with sensitivity of 73% and specificity of 91%, whereas 
another utilizing the initial diagnostic radiology report showed sensitivity of 44% and specificity of 98%25. One 
study analyzing p16-positive HNSCC with nodes ≥1 centimeter in diameter, which is similar to the ROI diameter 
we tested in our study, showed sensitivity of 47–55%, specificity of 70–85%, and accuracy of 62–63%, and AUC of 
0.65–0.694. Taken together, these studies demonstrate high variability and generally suboptimal performance in 
the detection of radiographic ENE, with higher rates of specificity than sensitivity. The DLNN model constructed 
in this study demonstrates superior performance in the prediction of ENE, and its use has the potential to provide 
prognostic information and help select appropriate management for patients with the goal of reducing rates of 
tri-modality therapy, which historically can be indicated in up to 50% of patients undergoing surgery26. Regarding 
detection of NM, traditional radiographic assessment, using a threshold of 10 mm in minimal axial diameter 
along with other features, such as central necrosis and loss of normal fatty hilum27, yields good predictive perfor-
mance, with sensitivities and specificities 72–83% utilizing contrast-enhanced CT alone28,29. Performance metrics 
in these studies fluctuate based on the granularity of the unit of analysis (node, neck level, or neck side), with 
node-level analyses demonstrating the poorest results (sensitivity: 0.77, specificity: 0.85, AUC: 0.84)30. By com-
parison, our DLNN yielded AUC values of >0.90 for both ENE and NM detection at the node-level, representing 
favorable results compared to historical radiological studies. Another benefit of the DLNN is that it is less prone 
to inter-observer variability seen in prior study of radiologic ENE and NM detection.

It is important to note that predictive performance of nodal metastases increases with the incorporation of 
FDG-PET/CT with sensitivities and specificities ranging from 83–96%29,31,32. While there is limited evidence 
suggesting that very high lymph node SUVmax on PET/CT is associated with ENE presence, this has not has 
been shown translate into high performance in ENE prediction33. While it is reasonable to hypothesize that 
high SUV represents a more aggressive tumor phenotype that would increase the likelihood of ENE, PET/
CT lacks iodinated-contrast enhancement and generally has lower spatial resolution compared to diagnos-
tic, contrast-enhanced CT, and thus may not provide a performance boost in ENE detection versus CT alone. 
Additionally, MRI has been shown to be less effective than contrast-enhanced CT for ENE detection34, and is 
not routinely used in the diagnostic workup of HNSCC patients at most institutions. We did not evaluate the 
incorporation of PET/CT or MRI data to DLNN algorithms in this study, though these are interesting avenues 
for future investigation.

Compared to the DLNN, the benchmark logistic regression model utilizing clinical risk factors and lymph 
node ROI diameter performed inferiorly, though still achieved an AUC of 0.81. Certain predictive features of the 
benchmark model, such as primary site, clinical nodal status, and HPV are specific to our institutional sample, 
however, and thus this model is likely biased and expected to generalize poorly. Construction of the bench-
mark model yielded several noteworthy findings. Increasing radiographic lymph node diameter was found to 
be predictive of ENE, a finding that had been suggested from surgical series with pathologic lymph node exam-
ination15,35. Additionally, while HPV/p16 status itself was not independently associated with ENE, we found a 
significant negative interaction between HPV/p16 status and node diameter in predicting ENE: with increasing 
lymph node diameter, HPV/p16 positivity reduced the probability of ENE. This is a novel finding to our knowl-
edge, and one that merits consideration in the radiologic assessment of ENE when more complex techniques are 
not available. It should be noted that ROI diameter for the study was extracted from the lymph node ROI during 
image preprocessing using methodology that is similar to, but not replicative of the revised RECIST method often 

Performance 
Metric

Extranodal Extension (ENE) Nodal Metastasis (NM)

ENE Test Set (n = 98*) Test Set (n = 131)

DualNet 
DLNN

Random 
Forest

Benchmark 
Logistic

DualNet 
DLNN

Random 
Forest

Benchmark 
Logistic

AUC 0.91 0.88 0.81 0.91 0.91 0.86

Accuracy 85.7% 82.6% 77.7% 85.5% 84.7% 76.1%

Sensitivity 0.88 0.79 0.72 0.84 0.75 0.79

Specificity 0.85 0.84 0.80 0.87 0.92 0.74

PPV 0.66 0.61 0.54 0.88 0.87 0.69

NPV 0.95 0.93 0.89 0.82 0.83 0.83

Youden Index 0.73 0.63 0.51 0.71 0.67 0.53

Table 3. Model Performance and Benchmark Comparisons on Independent Test Set By Lymph Node 
Feature. *Test set for ENE includes lymph nodes with region of interest diameters ≥ 1 cm. Abbreviations: 
AUC = area under the curve; PPV = positive predictive value; NPV = negative predictive value. Youden 
index = Sensitivity + Specificity − 1.
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used by radiologists36. The ROI was expanded by several millimeters to encompass fat-tissue planes just periph-
eral to the lymph node. Absolute values of ROI diameter reported in this study are, therefore, likely slightly higher 
than short-axis diameter measurements traditionally reported and should not be directly compared. However, 
observed changes in diameter and its associations with NM and ENE would be unaffected by this. While ENE has 
been shown to be associated with greater lymph node diameter, one large series found that one-third of nodes 
with ENE were 10 mm or smaller35,37. There were no cases of ENE identified pathologically when ROI diameter 
was <10 mm in this study, and so it is unclear if the models would generalize to sub-centimeter lymph nodes for 
ENE prediction.

We also found that a traditional radiomics approach with pre-defined feature extraction entered into a ran-
dom forest model achieves high performance in ENE (AUC: 0.88) and NM (AUC: 0.91) detection, albeit lower 
than the DLNN model. The pre-defined feature approach has the benefit of faster training time and computa-
tional workload, when compared to the DLNN. However, the DLNN approach simplifies the multistep process 
of feature selection and extraction by utilizing raw HU values to learn the most predictive features directly from 
the image, resulting in an end-to-end prediction model that is likely to be more generalizable and reproducible.

In the design and testing of deep neural networks there are nearly limitless possible combinations of architec-
tures and model hyper-parameters from which to choose. Invariably, if allowed to train for long enough, complex 
neural networks will learn to memorize the training dataset, leading to overfitting problems when testing on yet 
unseen data, which is perhaps the most common and critical limitation when implementing neural networks. 
To prevent this, we utilized three tiers of data, including a blinded test set separated prior to model construction 
and training. We determined final network architectures and hyperparameters based solely on results from the 
training and validation datasets, and utilized techniques such as early-stopping, L2 regularization, dropout, batch 
normalization, and intensive data augmentation to prevent overfitting.

There are several other limitations to this study. First, the process of individual lymph node CT labeling in 
correlation with pathology reports is subject to some degree of uncertainty and subjectivity. We attempted to mit-
igate this by conducting radiology and pathology reviews of the segmentations and pathology reports to confirm 
the specific location and size of nodes, when possible, so that a confident CT correlation could be made. Despite 
this, only lymph nodes for which a definitive correlation could be made were included in the labeled dataset, 
potentially biasing the dataset to those nodes that could be definitively correlated with pathologic report. We 
considered conducting a patient-level analysis for global ENE prediction, but decided that a node-level analysis 
would be a much more feasible approach for a machine learning classifier than analysis of the entire CT scan, par-
ticularly given the patient sample size in the study. Our study size was limited to the number of HNSCC patients 
undergoing LND at our institution, and increasing the sample size of our training dataset would likely boost 
the predictive performance of the model. It is also possible that other DLNN architectures, such as residual net-
works, or use of popular, pre-trained 2D networks with transfer learning might achieve even greater accuracy21. 
We decided to utilize a 3D approach to preserve spatiality of learned lymph node features, despite the higher 
computational burden and relative novelty of this approach for CT scan analysis. Additionally, data from several 
different CT scanner models was used in the training of the DLNN. Inclusion of multiple scanner models intro-
duces data heterogeneity in scan-specific parameters such as pixel size, tube voltage, and IV contrast protocol, 
though we found that the deviation of these parameters was relatively low overall. To help mitigate the effects of 
data heterogeneity, we utilized scan resampling and normalization techniques during image preprocessing. While 
scanner and protocol heterogeneity may reduce DLNN performance, it also reflects the real-world application of 
the model, where a variety of scanners are used, and this may enhance model generalizability. The ultimate goal 
of this project is to develop a usable clinical assistance tool to guide patient selection and risk stratification for 
HNSCC. To that end, it is possible that our model will perform less optimally on external, non-institutional data. 
However, despite neck dissections being performed at a single institution, almost half of CT scans in the study 
originated at outside facilities, using a wide variety of scanner models. Therefore, we expect that the diversity in 
scan origin will help improve the generalizability of the DLNN model’s performance.

In conclusion, we established that a deep learning neural network can be successfully trained with routine pre-
treatment imaging to identify malignant nodal features of head and neck cancers, namely lymph node metastasis 
and extranodal extension, that previously could not be reliably identified by human clinicians. Clinical applica-
tion of this model may help inform prognosis and treatment decision-making in patients considering upfront 
surgery or chemoradiation. External validation and prospective testing are underway to determine if these results 
are generalizable and improve patient outcomes. Further investigation will determine if the model can be extrap-
olated to predict nodal features for malignancies of other anatomic sites.

Methods
Patient database, pathology review. Research was conducted in accordance with the Declaration of 
Helsinki guidelines and following the Yale University Institutional Review Board approval. Waiver of consent 
was obtained from the Yale University Institutional Review Board prior to research initiation. We conducted a 
retrospective review of consecutive patients who underwent neck lymph node dissection (LND) at the authors’ 
university medical center from May, 2013 through March, 2017. Patients with a diagnosis of non-metastatic 
HNSCC or salivary gland carcinoma who had a diagnostic, intravenous contrast-enhanced CT scan of the neck at 
our institution or an outside facility within three months prior to LND were included. Salivary gland carcinomas 
were included to boost the training sample size and assist with learning of low-level features. Patients with prior 
neck radiotherapy or dissection were excluded. A database of demographic, clinical, and detailed pathologic 
information was collected, including number of pathologic LNs positive, nodal level, sizes of LNs, and presence 
of ENE on a node-by-node basis.
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CT scans and image acquisition. Of 270 patient contrast-enhanced CT scans included, 157 (58.1%) were 
performed at our institution and 113 (41.9%) were from outside facilities. Scans were performed on 11 different 
CT scanner models from multiple institutions, and scanner specifications and imaging protocol details can be 
found in Tables S2 and S3. CT scans were diagnostic quality, using 120 kVp energy, slice thickness 2–3 mm, 
pixel spacing 0.3–0.7 mm, and with iodinated-contrast administered intravenously. Preoperative CT scans for 
the patients meeting inclusion criteria were de-identified and exported in their entirety as decompressed Digital 
Imaging and Communications in Medicine (DICOM) files38.

Lymph node segmentation and labeling. For each CT scan, 3-dimensional (3D) LN segmentations 
were manually contoured slice-by-slice in the axial plane. Segmentations were then labeled as “negative,” “nodal 
metastasis (NM) without ENE,” or “NM with ENE” based on correlation with the corresponding LND pathology 
report, according to a standardized protocol for ENE and NM labeling. Specifically, a lymph node was only classi-
fied into the above categories if it could be deduced from correlative review of the pathology report that, (1) ENE 
and/or NM was confirmed present, and (2) the CT-identified LN matched in location, anatomic level, and size 
as described in the pathology report. For the purpose of this study, ENE was defined as tumor extending beyond 
the wall of the capsule regardless of extent. Both microscopic and macroscopic extent of tumor were classified 
as ENE for the study. All pathology reports diagnosing ENE were re-reviewed by a board-certified pathologist 
(SMS) for accuracy, and to provide clarity regarding location, size, and number of nodes with ENE (Fig. S3). All 
LN segmentations and labels were reviewed by two radiation oncologists (ZAH, BHK) for consensus regarding 
segmentation accuracy. At least one lymph node was segmented and labeled for each patient scan. Confluent 
nodes were segmented as a single nodal volume, unless a tissue plane could be identified to differentiate the two. 
Segmentations and labeling were performed using the medical image visualization software, Osirix 9.0 (Pixmeo; 
Geneva, Switzerland).

Lymph node segmentation preprocessing. For each lymph node, a 3D binary mask was created from 
the segmentation’s voxel coordinates using the convex hull method (Fig. 1). The mask was dilated circumferen-
tially by ten pixels to encompass tissue adjacent to the lymph node, which was hypothesized to contain infor-
mation pertinent to ENE detection. All CT images and 3D masks were resampled in the axial plane to 0.75 mm 
pixel spacing with bicubic and bilinear interpolation, respectively. A region of interest (ROI) was then extracted 
from the CT image by multiplication with the binary mask. In order to preserve lymph node size information, 
the resampled ROI was placed within a standardized bounding box of zeroed voxels, the volume of which was 
set to fit the largest lymph node segmentation in the dataset. The ROI was centered within the bounding box. 
Hounsfield unit (HU) values were clipped at values below −400 and above +400 to limit the algorithm input to 
HU values in the range of soft tissues. The values were then normalized to unit variance. Following extraction of 
all images, a bounding box size of 118 (x) × 118 (y) × 32 (z) was determined to be the minimal volume necessary 
to encompass the size of each ROI, and was used as the standard input shape for the DLNN. A separate version of 
the preprocessing method with additional resampling in the Z-plane was implemented to determine the impact 
on model performance (Table S4).

A second, zoomed-in, size-invariant ROI volume input was created in order to provide the neural network 
with additional data. We hypothesized that this would help the neural network focus on features unrelated to 
lymph node size. To achieve this, we cropped the aforementioned bounding box to the edge of the lymph node 
ROI, and then resized all ROIs to 32 (x) × 32 (y) × 32 (z). Preprocessing was performed using Python v3.5 with 
SciPy 1.0.0 and OpenCV 3.0 packages. The data that support the findings of this study are available, with restric-
tions, from the authors.

Deep learning neural network (DLNN) architecture. We constructed a 3D deep learning convolu-
tional neural network, designed to learn hierarchical representations of the spatial imaging data39,40. There has 
been extensive research surrounding 2D DLNN architectures to optimize performance for 2D image analysis, and 
several successful architectures, such as “AlexNet”, “VGG”, and “ResNet” have emerged over the past few years25. 
However, the adaptation of these models to 3D image analysis problems, such as CT-based lymph node classifica-
tion, has been less established. Prior investigation into classification of 3D shapes, as well as spatiotemporal video 
data has yielded promising architectures and has also suggested that certain 2D architectures, such as “VGG”, can 
be adapted successfully to 3D analysis22,39,41,42. We designed a 3D DLNN architecture based on these principles 
(Fig. 2). We designed a model utilizing the dimension-preserving, 118 × 118 × 32 bounding box input (BoxNet), 
as well as a size-invariant model utilizing the 32 × 32 × 32 input (SmallNet). The dimension-preserving model 
followed a traditional DLNN framework of convolutional layers with progressively increasing number of features, 
followed by several fully connected layers. The size-invariant model utilized a bottleneck convolutional layer and 
a network-in-network convolutional layer at the end of the model to reduce computational load and overfitting43. 
We then merged these two networks into a dual-input DLNN (“DualNet”) to accept both dimension-preserving 
and size-invariant inputs. The hidden layers of the network used leaky rectified linear unit (ReLU) activation 
functions with α = 0.0344. The DLNN biases were initialized to zero and weights were initialized using the for-
mula described by He et al.45. Batch normalization, dropout, and L2 regularization were utilized to prevent over-
fitting. The final model was built with the capacity to receive and merge tumor human papilloma virus (HPV) 
and/or p16-status into the network to determine if this boosted predictive performance. The DLNN was designed 
to produce multi-label output probabilities for NM and ENE using sigmoid classifiers. The ground-truth compar-
ison labels consisted of NM (yes/no) and ENE (yes/no) and were not mutually exclusive. The model source code 
is available from the corresponding author on reasonable request.
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DLNN Implementation and Training Details. The lymph node dataset was shuffled and split into train-
ing (64%), validation (16%), and test set (20%), stratified by node-category to keep equivalent ratios of negative, 
NM without ENE, and NM with ENE nodes in each set. The test set was then isolated from view until final model 
testing. During DLNN training, the network weights were optimized via the Adam optimizer46 with an initial 
learning rate of 0.001 and mini-batch size of 20. The loss function used was binary cross-entropy. Each DLNN 
model was trained for up to 100 epochs on the training dataset and validated after each epoch on the validation 
set. Validation loss was calculated after each epoch and model weights were saved following each epoch that 
showed improvement in validation loss. The learning rate was decayed to 0.5 of its value after five consecu-
tive epochs without improvement in validation loss. Training was stopped early if 20 consecutive epochs passed 
without improvement in the validation loss. We implemented training and validation with the raw image data 
alone and with image data combined with HPV/p16-status. The DLNN models (BoxNet, SmallNet, and DualNet) 
were compared via AUC for ENE classification as well as cross-entropy loss. The selected model then underwent 
five-fold cross validation to ensure robustness. The network was coded and implemented in Python v3.5 with 
Keras v2.0 and TensorFlow. The algorithm was trained on a Tesla V100 graphics processing unit (Nvidia; Santa 
Clara, CA).

Comparison models. To provide a baseline comparison to the DLNN for performance, we constructed 
a benchmark logistic regression model based on pretreatment clinicopathologic risk factors aggregated from 
patient charts and diagnostic scans. The model was designed to include information that would be available in 
the typical pretreatment setting (Table S5). This included lymph node ROI short-axis diameter (mm) that was 
extracted during image preprocessing and calculated by determining the maximum diameter of the lymph node 
ROI in each dimension and choosing the minimum of those three values. Variables that showed associations with 
NM and/or ENE with significance P < 0.10 on univariable logistic regression were selected to be included in the 
multivariable models. Separate binary classification models were constructed for NM and ENE. Models were 
tested for covariate interactions with HPV/p16 status. Bootstrapping (100 repetitions) was used to decrease the 
risk of overfitting. Logistic regression analyses were conducted using Stata v13.0 (StataCorp, College Station, TX). 
The final logistic regression models are found in Table S6.

For further performance comparison, we constructed a radiomic feature model by extracting 99 predefined 
radiomics features using an open-source feature-extractor for Python, PyRadiomics (Table S7)47. Features were 
extracted from each ROI segmentation following resampling, and each value was normalized to unit variance. A 
random forest classifier was implemented using the Scikit Learn package for Python. Random forest uses ensem-
bles of decision trees with bootstrapped sampling and is considered one of the most powerful machine learning 
techniques for image classification outside of deep learning17,48. The classifier used Gini impurity criterion with 
10,000 estimators, each with a max of 99 features. The model was fit on the combined training-validation sets used 
in DLNN training with bootstrapping and was tested on the same independent test set used for DLNN testing.

Model evaluation and performance statistics. Performance of each of the models was evaluated on 
the independent test set using area under the curve (AUC) of the Receiver Operating Characteristic (ROC) curve 
of model prediction probabilities for NM and ENE. The likelihood of ENE occurring in sub-centimeter lymph 
nodes is low35, and the smallest ROI diameter of a node with ENE in our study dataset was 10 mm. Therefore, for 
ENE classification, the DLNN and random forest classifiers were tested and compared on the subset of ≥1 cm 
nodes from test set (n = 98), making the classification problem both more challenging and more representative 
of a real-world, clinical scenario. Likewise, the benchmark logistic ENE model was fit to only nodes ≥1 cm. Each 
model generated probabilities of NM and ENE for the test cases, which were compared to the ground-truth 
labels to calculate AUCs. 95% Confidence intervals (CI) for each model’s AUC were calculated using the Delong 
method49. For the purposes of model comparison, prediction thresholds were chosen to maximize the Youden 
Index (sensitivity + specificity − 1), and binary predictions were generated. Using the binary predictions, we 
evaluated accuracy, sensitivity (1 − false negative rate), specificity (1 − false positive rate), PPV, and NPV for each 
model on the test set. Calibration of the DLNN for NM and ENE was performed by plotting the predicted and 
true classes by quintile and using the Hosmer-Lemeshow test.
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