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Artificial Shape Perception Retina 
Network Based on Tunable 
Memristive Neurons
Lin Bao   1, Jian Kang1, Yichen Fang1, Zhizhen Yu1, Zongwei Wang   1, Yuchao Yang   1,2, 
Yimao Cai1,2 & Ru Huang1,2

Retina shows an extremely high signal processing efficiency because of its specific signal processing 
strategy which called computing in sensor. In retina, photoreceptor cells encode light signals into 
spikes and ganglion cells finish the shape perception process. In order to realize the neuromorphic 
vision sensor, the one-transistor-one-memristor (1T1M) structure which formed by one memristor and 
one MOSFET in serial is used to construct photoreceptor cell and ganglion cell. The voltage changes 
between two terminals of memristor and MOSFET can mimic the changes of membrane potential 
caused by spikes and illumination respectively. In this paper, the tunable memristive neurons with 1T1M 
structures are built. According to the concept of receptive field of ganglion cells (GCs) in the retina, 
the artificial shape perception retina network is constructed with these memristive neurons. The final 
results show that the artificial retina can extract shape information from the image and transfer it into 
spike frequency realizing the function of computing in sensor.

It makes a great sense for using biological principles to design microelectronic circuits1,2. On one hand, neural 
system has many hierarchical and parallel signal processing units. In the retina, every photoreceptor cell is a pro-
cessing unit which encode illumination signal into spikes. Each ganglion cell connects with several photoreceptor 
cells and detects the activity differences between these cells. Because of this highly parallel computing strategy, 
it only takes two steps for retina to finish shape perception process which shows much higher efficiency than 
traditional circuits. On the other hand, retina is not only a perceptive organ but an important component of cen-
tral nervous system which means that the information can be processed in the retina. In other words, the retina 
shows a specific computing strategy which called computing in sensor. This locally computing strategy reduces 
the transmission cost between sensors and processors, so that the signal processing can be faster. So, the artificial 
retina network will be faster and smarter than traditional image processing device.

There are two types of photoreceptor cells in the retina: cone cells and rod cells3,4. Photon is absorbed by pig-
ments (include opsin and retinal) which located in the rhodopsin (Fig. 1. (a))5,6. Photon will induce the isomer-
ization of retinal so that the concentration of cGMP (a kind of intracellular messenger) will decrease7–10. The 
decreasing concentration of cGMP will close the Na+ channels so that the inward sodium current will decrease 
and the cell membrane will be hyperpolarized. So the membrane potential of photoreceptor cell has a positive 
correlation with the concentration of cGMP. Because of illumination will decrease the concentration of cGMP, it 
is harder for photoreceptor cells to create spikes when they are exposed in light. When there is almost no cGMP 
in the cell, cell won’t fire. In conclusion, the illumination will increase the equivalent threshold (Vth) of photore-
ceptor cells. The spiking frequency of cells will decrease when the illumination is increased.

The photoreceptor cells code the information into a spike train and send it to the ganglion cells (GCs). 
Experiment results show that the GCs in the retina of monkey and cat have two types of receptive fields: the 
on-center type and the off-center type (Fig. 1. (b))11. In Fig. 1. (b), the yellow bar represents the specific illumina-
tion period and the blue bars represent the spikes which recorded from the neuron. The on-center cells are excited 
(i.e. release more spikes) when the center of receptive field is illuminated. But when surrounding areas are illumi-
nated, the excitation will be suppressed and the cell won’t release spike. On the contrary, center-illumination will 
suppress the off-center cells and surrounding illumination will excite them. For two types of cells, the dispersed 
light makes no difference to their spiking frequency. In summary, GCs are sensitive to the difference of light 
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rather than the light itself12. By this way, the shape of objects can be extracted and sent to higher nerve centers. 
In the higher level of visual perception processes, more complicated spatial features can be extracted. By these 
hierarchical perception processes, the vision can be formed in the brain.

In order to construct artificial shape perception retina network, two challenges need to be overcomed. In gen-
eral, information is represented by electrical signals and delivered by synapses between neurons. Conventional 
integrated-and-fire neuron can be used to complete data processing. However, in photoreceptor neurons, mem-
brane potential is not only affected by other neurons but also the light signals in the environment. The conven-
tional integrate-and-fire model cannot completely describe the photoreceptor cells. So, on the cell level, a tunable 
artificial neuron needs to be constructed in order to mimic photoreceptor cells and ganglion cells. As mentioned 
above, the receptive field of ganglion cell is the core of shape perception process. So, on the network level, in order 
to realize the receptive field of ganglion cell, the connections between photoreceptors and ganglion cell need to 
be constructed.

In traditional CMOS based electrical neurons, the cell membrane was usually mimicked by a capacitor13–15. 
However, even in the most advanced technology node, realizing the capacitance densities of biological mem-
branes (~10fF μm−2) is still a challenge16. Researchers from IBM have put forward a concept that the voltage 
between two terminals of phase-change RAM (PCRAM) can be used to mimic the membrane potential17. 
With this concept, they built the integrate-and-fire neurons, and solved the integration problem of electronic 
neurons. However, the modulation effects during integrate period were still not included in their model. The 
one-transistor-one-memristor (1T1M) structure which formed by one memristor and one MOSFET in serial is 

Figure 1.  (a) Light changes the membrane potential of rod cells in retina. Light is absorbed by pigments 
(include opsin and retinal) which located in the rhodopsin. Photon will induce the isomerization of retinal and 
the concentration of cGMP (a kind of intracellular messenger) will decrease. The activity of Na+ channels has 
a positive correlation with the concentration of cGMP. So the light will hyperpolarize the cell membrane and 
the spiking frequency of rod cells will decrease. (b) The on-center receptive field and off-center receptive field 
of ganglion cells (GCs). The yellow bar represents the specific illumination period and the blue bars represent 
the spikes which recorded from the neuron. For the on-center cells, center illumination will increase the 
spiking frequency and the surrounding illumination will decrease the spiking frequency. For off-center cells, 
by contrast, the surrounding illumination will increase the spiking frequency and the center illumination will 
decrease the spiking frequency. For two types of cells, the dispersed light makes no difference to their spiking 
frequency. In summary, the GCs are sensitive to the difference of light rather than the light itself. By this feature, 
GCs can extract the shape of objects and code them into spike trains.
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widely used in resistive memories and neuromorphic systems18–23. Because of the memristor can be integrated on 
the drain electrode of MOSFET, the 1T1M device can achieve a high density of integration24. Setting a leading-out 
terminal between memristor and MOSFET, then the 1T1M structure can be seen as a four-terminals device, 
and it can conveniently be designed to mimic the modulation effects of light signals in the environment. In this 
paper, a novel tunable integrate-and-fire memristive neuron was built on 1T1M structure. With these neurons, 
we mimicked the behaviour of photoreceptor cells and demonstrated the concept of receptive field of ganglion 
cells (GCs). In the end, an artificial shape perception retina network was built. The simulation results show that 
the artificial shape perception retina network can extract shape information from the image and transform it into 
spike frequency realizing the function of computing in sensor.

Tunable Memristive Neuron.  In general, the behavior of neurons can be described by integrate-and–fire 
model. However, as mentioned above, for photoreceptor cells, their behaviors are not only affected by synaptic 
inputs but also the light signals in the environment. So, the conventional integrate-and-fire model cannot com-
pletely describe these neurons. By using 1T1M structure, the changes of membrane potential resulting from 
synaptic inputs and light signals can be separated. The voltage changes between two terminals of memristor can 
mimic the changes of membrane potential caused by synaptic inputs. The voltage changes between two terminals 
of MOSFET can mimic the changes of membrane potential caused by light signals in the environment. With 
1T1M structure, the tunable integrate process of photoreceptors can be described. By means of peripheral circuit, 
the neuron can realize the fire process and reset process (Fig. 2. (a)). In this work, the function of peripheral cir-
cuit is realized by Agilent B1500A (See Supplementary Information, Fig. S1. (b)).

In Fig. 2. (a), V0 represents the membrane potential. The gate potential of MOSFET (Vth) is corresponding to 
equivalent threshold of photoreceptor cell. As mentioned in introduction, there is a positive correlation between 
the light intensity and the equivalent threshold of photoreceptor cell. So, in the following analysis, Vth is used to 
represent both the equivalent threshold of photoreceptor cells and the light intensity. For a specific light intensity, 
the gate potential is a constant so that the MOSFET can be seen as a resistor. When there is an input pulse, T1 will 
be turned on. As a consequence, the resistance of memristor will decrease and V0 will increase. In fact, if the gate 
potential is set to be a constant, the artificial neuron will work in traditional integrate-and-fire mode and can be 
used to mimic universal neurons. T2, T5 and D-Latch are used to read the membrane potential V0. When there is 
a rising edge of read clock signal, if V0 reaches threshold of the D-Latch (VDL), the D-Latch will latch a high level. 
At the same time the reset circuit will be activated. T3, T4 and T6 will be turned on and V0 is codetermined by the 
resistance of all MOSFETs. At this time, the circuit is in a transition stage and the value of V0 has no effect on out-
put. When the falling edge of read clock is coming, T2 and T5 will be turned off so that the memristor will be reset 
by T6 and T3. At same time, the input of D-Latch will be reset to low level by T3 and T4. The output of D-Latch 
will come back to low level when the next rising edge of read clock is coming. By this way, the memristive neuron 
finished the process of integrate-and-fire. It is a remarkable fact that the spiking frequency of memristive neuron 
has an upper limit which determined by the read clock. In fact, the highest spiking frequency of the memristive 
neuron equals to the half of the read clock frequency. Moreover, the rising edge of the output spike is coincided 
with the rising edge of read clock. These features are determined by the circuit structure, and will be used to con-
struct the artificial retina network.

In the photoreceptor cells, the more illumination, the lower concentration of cGMP. As a consequence, the 
outward sodium current will be larger than inward sodium current and the membrane potential will decrease. 
There is a corresponding process in the memristive neuron. The increasing of Vth will increase the drain current of 
MOSFET (i.e. the outward sodium current of neuron) and will cause the decrease of V0, so that the neuron needs 
more input spikes to trigger an output spike. Figure 2. (b) is a schematic diagram which shows the differences of 
integrate rate when applying different gate potentials (Vth1, Vth2, Vth1 > Vth2). The higher gate potential, the slower 
integrate rate. So the gate potential will affect the spiking frequency of memristive neuron. Figure 2. (d) shows 
the result of a measurement and it is consistent with Fig. 2. (b). Under the low Vth (500 mV), V0 has exceeded the 
VDL even though there isn’t an input pulse. In this case, the spiking frequency of memristive neuron equals to 
half of the read clock frequency. The drain current is very small when the gate voltage is equal to 500 mV, so the 
resistance change rate of the memristor and the increase rate of V0 are very slow. Besides, because of the equiva-
lent resistance of MOSFET is much higher than the memristor (See Supplementary Information, Fig. S2. (c)), V0 
has a smaller raise. Under the middle Vth (700 mV, can be seen as Vth2), the drain current has increased and the 
increase of V0 has been accelerated. At this time, the resistance of memristor and MOSFET are in the same level, 
so the increase of V0 is more obvious. Because of the decrease of MOSFET equivalent resistance, the initial state 
of V0 is below the VDL, and the memristive neuron shows the function of “integrate-and-fire”. Under the high Vth 
(900 mV, can be seen as Vth1), there is a further increase of drain current, and the V0 shows a sharp rising edge. 
Meanwhile, because of the equivalent resistance of MOSFET is very small, the initial state of V0 has a further 
decrease. It is easy to see from the Fig. 2. (d) that the higher gate potential, the longer time for V0 to reach the VDL 
and the larger spiking interval of memristive neuron. By the tuning effect of MOSFET, the memristive neuron can 
response to spike input and analog signal at the same time, which is the key point in mimicking the photoreceptor 
cells. Figure 2. (e) shows the number of pulses required to fire the neuron under different Vth. Obviously, with the 
increase of the Vth, neuron needs more input pulses to trigger an output spike. When the Vth lower than 400 mV, 
the relationship will nearly be a constant, we deem that three input pulses can trigger an output spike.

Artificial Shape Perception Retina Network.  Organisms have a hierarchical perception process. Retina 
plays an important role in the formation of vision. As the visual receptor, the absorption of light and the pretreat-
ing of light signals are finished in retina. Retina needs to attract useful information from the light signal and codes 
it into action potential trains. The ganglion cells (GCs) which located in retina have the function of extracting 
the edges of image17. So the imitation of GCs is the core process of constructing artificial retina. As mentioned in 
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introduction, there are two kinds of GCs. The common characteristic of these GCs is they can compare the output 
signals of some photoreceptors and they will be excited when there are differences between these signals. So the 
GC-photoreceptors system can be abstracted as a multi-inputs comparator. This is the core idea of our network 
designing.

As there is not full knowledge about the representation of information in neural system yet, we made some 
assumptions in the construction of artificial retina network to simplify circuit designing. First of all, it is observed 
by biologists that the amplitudes of action potentials are nearly equal17,25. So we can assume that the electrical sig-
nals in neural systems only have two values: the high level and the low level (i.e. the “1” and the “0”). The “1” rep-
resents that there is an action potential at the moment, and the “0” represents that there isn’t an action potential at 
the moment. Possibility of the emergence of action potential (i.e. high level) is adjusted by the neuron. Secondly, 
the neuron has a silent period which named absolute refractory period17,25–27. During this period, the neuron can-
not be stimulated to fire. Obviously, the spiking frequency of neuron is limited by the absolute refractory period. 
So, it is reasonable to assume that there is a local clock signal in neural system. The frequency of this local clock (f0)  
can be described by the following formula:

Figure 2.  (a) The structure of tunable memristive neuron. When there is an input pulse, the resistance of 
memristor will decrease. Vread is divided by memristor and MOSFET and V0 is the voltage between two 
terminals of MOSFET. When there is a rising edge of read clock, the D-Latch will read the V0. If V0 reaches 
the threshold of D-Latch (VDL), the output of D-Latch will change to a high level. Then the reset circuit will 
work. When the falling edge of the read clock is coming, the memristor and the output of D-Latch will be reset. 
(b) The sequence diagram of memristive neuron. (c) The TEM image of the HfOx-based memristor. (d) The 
relationship between V0 and input pulse number under different gate potentials. The higher gate potential, the 
harder for V0 to reach VDL. (e) The relationship between the gate potential (Vth) and input pulse number when 
there is one output spike. When the Vth lower than 400 mV, the relationship will nearly be a constant, we deem 
that three input pulses can trigger an output spike.
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and the spiking frequency of all neurons in the local area will not be higher than f0. As mentioned above, the 
highest spiking frequency of memristive neuron equals to the half of read clock frequency. So the read clock 
can be used as local clock in the network. Thirdly, in this work, the spiking frequency of neuron is regarded as 
the representation of information in neural system. As the arrival instants of spikes aren’t involved in this rep-
resentation, so the artificial retina network in our work is different with conventional Spiking Neural Network 
(SNN)28. The last assumption is that an integrate-and-fire neuron can be regarded as a frequency divider which 
has some degrees of random. In this work, because of the integrate-and-fire process of memristive neurons is 
affected by physical signals (light signals) or chemical signals (neural messager proteins) rather than only affected 
by other neurons, the memristive neurons can be abstracted as random frequency dividers which modulated by 
the outside signals. In Fig. 2. (e), we have showed the correlation between the gate potential (Vth) and input pulse 
number when there is one output spike. This correlation can be also well represented in the model we built for this 
tunable memristive neuron (See Supplementary Information Fig. S6) and based on this model, the artificial shape 
perception retina network was constructed.

Figure 3. (a) shows the structure of double-inputs comparator of detecting illumination differences. The model 
of memristive neuron which used in this network was fitted by experimental data. There are six key nodes in 
the network, and Fig. 3. (b) shows the waveform of these notes. Double-inputs comparator can be divided into 
three layers: the input layer, the comparison layer and the output layer. The input layer consists of Neuron1 and 
Neuron2. The Vth terminals of two neurons are directly connected with analog inputs from the outside (i.e. the 
grayscale of two pixels. In the simulation, pixel1 and pixel2 are double floating point values between 0 V and 
1 V.). Clock1 is the local clock which has the highest frequency in the network. The local clock signal is divided 

Figure 3.  (a) The structure of double-inputs comparator. The circuit consists of three layers: input layer, 
comparison layer and output layer. (b) The waveform of six key nodes in the network under different inputs. The 
more difference between two input signals, The higher frequency of output. (c) The correlation between output 
frequency and input voltage difference. Black line (red line) represents the correlation between output frequency 
and voltage difference when Pixel1 (Pixel2) voltage is kept at 0.55 V.
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by Neuron1 and Neuron2 under the modulation of pxiel1 and pixel2. It can be seen from Fig. 3. (b) ① and ②, 
the increase of Vth will induce the decrease of the spiking frequency. This feature is determined by the structure of 
memristive neuron and is consistant with photoreceptor cells. Obviously, the input layer has coded the grayscale 
of image (the grayscale information can come from sensor or storage device) into the frequency of spike trains.

The main function of comparison layer is to obtain the difference of two input frequencies. The comparison 
layer mainly consists of two neurons (Neuron3 and Neuron4), two D-Latches and a XNOR gate. As the function 
of comparison layer is only related to the pulse input, the Vth is set to be a constant potential (1 V) and the neu-
rons work in traditonal integrate-and-fire mode. Clock2 is the reset clock of D-Latch. In a period of Clock2, the 
Neuron3 and Neuron4 only fire one time, and the higher frequency of input, the shorter time before neuron to 
fire. By this way, the fire moment can represent the frequency of input. The D-Latch transforms the pulse signal 
into the rising edge signal and sends them to the XNOR gate forming an output. In Fig. 3. (b), ③④⑤show the 
waveforms of three key nodes in the comparison layer. Obviously, the earlier arrival rising edge is corresponding 
to the higher frequency of input. The larger difference of two frequencies, the larger time difference of two rising 
edges. The comparison layer codes the difference of two input frequencies into the duration of low level of output.

The level signal generated in the comparison layer will be transformed into spike trains in the output layer. 
Because of the function of output layer is only related to the level signal, the pulse input terminal is connected 
to the local clock. From ⑤ and ⑥ in Fig. 3. (b), it can be seen that the longer duration of low level of the input, 
the more spikes will be generated in one period of Clock2, and the higher spiking frequency of the output layer. 
Figure 3. (c) shows the correlation between output frequency and input voltage difference of double-inputs com-
parator (for 3D-graph, see Supplementary Information Fig. S4). In conclusion, the double-inputs comparator 
codes the difference of two analog inputs into a spike train, and the frequency of output has a positive correlation 
with the difference of two inputs.

One of the merits of this double-inputs comparator is that it can be expanded to the multiple-inputs com-
parator. For example, a five-inputs comparator can be built in the same approach and be applied to mimic the 
receptive field of the ganglion cells (GCs) in retina. Figure 4. (a) shows the structure of five-inputs comparator. In 
this structure, the function units (FUs) consists of one input layer and one comparison layer which structures are 
same with what have shown in the Fig. 3. (a). The OR gate and the AND gate extract the first arrival rising edge 
and the last arrival rising edge from the outputs of FUs. The time difference between two rising edge determines 
the spiking frequency of GC. Five-inputs comparator with the center-surround receptive field is the unit circuit of 
artificial shape perception retina network, and can extract the shape information from images. The shape extrac-
tion process is illustrated in Fig. 4 (b)(the image used for processing comes from29). With artificial shape percep-
tion retina network, the grayscale matrix is transformed into the frequency matrix, and the edges in the image 
were detected. Because of there is a parallel correlation between every unit circuit, the artificial shape perception 
retina network has much higher efficacy than traditional CPU-based serial structures.

Discussion
The variation of switching parameters is one of the major challenges to birth the memristive computing sys-
tem. It can be seen from the Fig. 1. (e), the dispersed points show there has a distribution of integrate parame-
ters of memristive neuron which caused by the variation of the memristor (Supplementary Information Fig. S5 
shows the histogram of deviation between fitting curve and experimental data). Considering this variability of 
memristor, in the model of memristive neuron, a random number is used to correct the output frequency (See 
Supplementary Information Fig. S6 (a)). However, in fact, these variations have little impact on our network. It 
is because the special frequency-based information representation has an average effect so that the variation will 
be suppressed at some degrees. A little bit more spikes or fewer spikes won’t destroy too much information coded 
in the spike frequency. Moreover, because of the two-value representation of action potentials (i.e. the network 
can be seen as a digital circuit at some degrees), the variation of spike amplitude has little impact on information 
integrity. By these robust information coding principles, the nervous systems of organisms can work in many 
hostile environments and these principles are exactly what we need in circuit designing.

There are several artificial neurons have been put forward in recent years, for example, the neuristor which 
based on Mott memristor and phase change neuron which based on PCRAM. In the neuristors or traditional 
CMOS-based neurons, the membrane potential is represented by the voltage between two terminals of a capac-
itor. However, it is hard to fabricate large bulk capacitors on silicon substrate. As a consequence, the integrate 
ability of capacitor-based artificial neurons is limited by the capacitance (i.e. a small number of input spikes will 
trigger an output). In the phase change neuron, the capacitor has been replaced by a PCRAM, so a better integrate 
process has been achieved. This strategy has been emulated in our work and a memristor based 1T1M structure 
has been used to control membrane potential. The greatest beneficial of our model is that the influences of envi-
ronment (both physical and chemical) can be introduced in the integrate process. These influences can be very 
important in information processing. For example, only the photoreceptor cells are able to be influenced by light 
signals can the vision be realized. However, there are still some weakness points of our neuron model. Because 
of there needs to be a reset circuit, the complexity of this neuron model is hard to be reduced. Replacing bipolar 
devices by unipolar devices may simplify the reset circuit and achieve a higher integration level. For designing an 
artificial neuron which is full-featured and simple-structured, a further work still needs to be done in the future.

Conclusion
Machine vision is one center of attention in the field of information science. As an important neural unit, retina 
works with a high efficiency data processing strategy called computing in sensor. In the neuromorphic circuits, 
with the lack of suitable electronic neuron elements, the development of artificial retina circuit has been limited. 
In this paper, we proposed a new type of memristive neuron based on one-transistor-one-memristor (1T1M) 
structure which can integrate spike signal and analog signal at same time. The memristor and MOSFET integrate 
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spike signal and light signal respectively, and the fire process can be realized by peripheral circuit. With these neu-
rons, we demonstrated the concept of receptive field of ganglion cells (GCs), and the artificial shape perception 
retina network was built. With the benefit of parallel structure, artificial shape perception retina network has high 
efficiency on image processing, showing the potential in the mobile terminal applications. Moreover, the infor-
mation in the network is represented by the frequency of two-value spike trains, so the artificial retina network 
has a good characteristics of anti-disturbance. Combined with artificial synapses formed by memristors30–34, this 
artificial shape perception retina network can be used as the receptor and is promising for implementing the 
advanced neuromorphic systems with complicated visual functions.

Methods
The tunable memristive neuron used in this work is based on a hybrid integration of a HfOx-based memristor and 
a nMOSFET by a standard CMOS process (Fig. 2. (c)). The W/HfOx/Ti sandwich structure and MOSFET were 
integrated by 0.13μm logic process. A tungsten plug was fabricated on the drain electrode of MOSFET and it was 
used as the bottom electrode of memristor. Then a 5 nm HfOx film was deposited by ALD. At the last, a 10 nm Ti 
film was deposited on the HfOx by PVD and used as the top electrode. The size of device is 0.26 μm × 0.26 μm, 
defined by the tungsten plug. See Supplementary Information for more characteristics of the device.

The 1T1M device was characterized by Agilent B1500A (See Supplementary Information Fig. S1). The ampli-
tude and the period of input pulses are 700 mV and 10 ms.The read pulse was a spike train with 100 mV for 
amplitude and 10 ms for period. Time difference between input signal and read signal is 1 ms. The threshold of 

Figure 4.  (a) The structure of five-inputs comparator which is the unit circuit of the artificial retina network. 
(b) With artificial shape perception retina network, the grayscale matrix is transformed into the frequency 
matrix, and the edges in the image were detected (the image used for processing comes from27).
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cell membrane is set to be 70 mV. The electrical signals used in experiment are generated by Agilent B1500A. The 
experimental data was used to construct tunable memristive neuron model and the artificial retina circuit was 
based on this model.

The construction and simulation of artificial shape perception retina network were finished by 
MATLAB-SIMULINK R2016B. See Supplementary Information Fig. S6 for the circuit diagram.

References
	 1.	 Pickett, M. D., Medeirosribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nature Materials 12, 114–117 

(2013).
	 2.	 Yumin Kim. et al. Nociceptive Memristor. Advanced Materials 30, 1704320 (2018).
	 3.	 Balasubramanian, V. & Sterling, P. Receptive fields and functional architecture in the retina. J. Physiol. 587, 2753–2767 (2009).
	 4.	 Masland, R. H. The fundamental plan of the retina. Nature Neuroscience 4, 877–886 (2001).
	 5.	 Brown, P. K. & Wald, G. Visual Pigments in Human and Monkey Retinas. Nature 200, 37–43 (1963).
	 6.	 Marks, W. B., Dobelle, W. H. & Macnichol, E. F. Jr. Visual Pigments of Single Primate Cones. Science 143, 1181–1183 (1964).
	 7.	 Matthews, R. G., Hubbard, R., Brown, P. K. & Wald, G. Tautomeric Forms of Metarhodopsin. Journal of General Physiology 47, 

215–240 (1963).
	 8.	 Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal 

rod outer segment. Nature 313, 310–313 (1985).
	 9.	 Stryer, L. & Bourne, H. R. G proteins: a family of signal transducers. Annual Review of Cell Biology 2, 391–419 (1986).
	10.	 Yau, K. W. & Nakatani, K. Cation selectivity of light-sensitive conductance in retinal rods. Nature 309, 352–354 (1984).
	11.	 Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 37–68 (1953).
	12.	 Kuffler, S. W. & Nicholls, J. G. From neuron to brain. Quarterly Review of Biology 94, 303–322 (1976).
	13.	 Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing 

dependent plasticity. IEEE Trans. Neural Networks 17, 211–221 (2006).
	14.	 Schemmel, J., Fieres, J. & Meier, K. Proc. Wafer-scale integration of analog neural networks. Int. Joint Conf. Neural Networks 3, 

431–438 (2008).
	15.	 Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).
	16.	 Gentet, L. J., Stuart, G. J. & Clements, J. D. Direct Measurement of Specific Membrane Capacitance in Neurons. Biophys. J. 79, 

314–320 (2000).
	17.	 Tuma, T., Pantazi, A., Le, G. M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nature Nanotechnology 11, 693 

(2016).
	18.	 Wu, M. C., Lin, Y. W., Jang, W. Y. & Lin, C. H. Low-Power and Highly Reliable Multilevel Operation in 1T1R RRAM. IEEE Electron 

Device Letters 32, 1026–1028 (2011).
	19.	 Zangeneh, M. & Joshi, A. Design and Optimization of Nonvolatile Multibit 1T1R Resistive RAM. IEEE Transactions on Very Large 

Scale Integration Systems 22, 1815–1828 (2014).
	20.	 Chen, Y. Y., Komura, M., Degraeve, R. & Govoreanu, B. Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low 

operating current. Electron Devices Meeting 10(1), 1–1.4 (2013).
	21.	 Zhuo-Rui Wang. et al. Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory. IEEE Electron Device 

Letters 38, 179–182 (2017).
	22.	 Ambrogio, S., Balatti, S., Nardi, F., Facchinetti, S. & Ielmini, D. Spike-timing dependent plasticity in a transistor-selected resistive 

switching memory. Nanotechnology 24, 3840123 (2013).
	23.	 Xue Yang. et al. Nonassociative learning implementation by a single memristor-based multi-terminal synaptic device. Nanoscale 8, 

18897 (2016).
	24.	 Philip Wong., H.-S. et al. Metal–Oxide RRAM. Proceedings of the IEEE 100, 1951–1970 (2012).
	25.	 Kandel E. R., Schwartz J. H., Jessell T. M., Siegelbaum S. A. and Hudspeth A. Principles of Neural Science, 5th ed. J. New York, NY: 

McGraw-Hill., 4, 1414 (2000).
	26.	 Gallistel, C. R., Rolls, E. & Greene, D. Neuron Function Inferred from Behavioral and Electrophysiological Estimates of Refractory 

Period. Science 166, 1028–1030 (1969).
	27.	 Rolls, E. T. Absolute refractory period of neurons involved in MFB self-stimulation. Physiology & Behavior 7, 311–315 (1971).
	28.	 Ghosh-Dastidar, S. & Adeli, H. Spiking Neural Networks. International Journal of Neural Systems 19, 295–308 (2009).
	29.	 Can Li. et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics 1, 52–59 (2018).
	30.	 Yi, L. et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Scientific Reports 

4, 4906 (2014).
	31.	 Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials 16, 

101–108 (2017).
	32.	 Wang., Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics 1, 137–145 

(2018).
	33.	 Yi Li, Y. Z. et al. Ultrafast Synaptic Events in a Chalcogenide Memristor. Scientific Reports 3, 1619 (2013).
	34.	 Chang, T., Jo, S.-H. & Lu, W. Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor. ACS Nano 9, 

7669–7676 (2011).

Acknowledgements
This work is supported in by National Natural Science Foundation of China (No. 61834001, No. 61574007 and 
No. 61421005).

Author Contributions
Lin Bao and Jian Kang conceived, directed, and analyzed all experimental research and prepared the manuscript. 
Yichen Fang, Zhizhen Yu and Zongwei Wang performed device fabrication, electrical measurements, simulation.
Yuchao Yang, Yimao Cai and Ru Huang constructed the research frame. All authors discussed the results and 
implications and commented on the manuscript at all stages.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31958-6.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-018-31958-6


www.nature.com/scientificreports/

9Scientific Reports |  (2018) 8:13727  | DOI:10.1038/s41598-018-31958-6

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Artificial Shape Perception Retina Network Based on Tunable Memristive Neurons

	Tunable Memristive Neuron. 
	Artificial Shape Perception Retina Network. 
	Discussion

	Conclusion

	Methods

	Acknowledgements

	Figure 1 (a) Light changes the membrane potential of rod cells in retina.
	Figure 2 (a) The structure of tunable memristive neuron.
	Figure 3 (a) The structure of double-inputs comparator.
	Figure 4 (a) The structure of five-inputs comparator which is the unit circuit of the artificial retina network.




