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A comparative analysis of 
approaches to network-dismantling
Sebastian Wandelt1,2,3, Xiaoqian Sun1,2, Daozhong Feng1, Massimiliano Zanin4,5 & 
Shlomo Havlin6

Estimating, understanding, and improving the robustness of networks has many application areas 
such as bioinformatics, transportation, or computational linguistics. Accordingly, with the rise of 
network science for modeling complex systems, many methods for robustness estimation and network 
dismantling have been developed and applied to real-world problems. The state-of-the-art in this field 
is quite fuzzy, as results are published in various domain-specific venues and using different datasets. In 
this study, we report, to the best of our knowledge, on the analysis of the largest benchmark regarding 
network dismantling. We reimplemented and compared 13 competitors on 12 types of random 
networks, including ER, BA, and WS, with different network generation parameters. We find that 
network metrics, proposed more than 20 years ago, are often non-dominating competitors, while many 
recently proposed techniques perform well only on specific network types. Besides the solution quality, 
we also investigate the execution time. Moreover, we analyze the similarity of competitors, as induced 
by their node rankings. We compare and validate our results on real-world networks. Our study is aimed 
to be a reference for selecting a network dismantling method for a given network, considering accuracy 
requirements and run time constraints.

During the last decades, empirical studies have characterized a plethora of real-world systems through the com-
plex network perspective1,2, including air transport3–7, power grids8,9, the Internet backbone10,11, inter-bank12, 
or inter-personal networks13. One of the most relevant topics has been the assessment of their robustness, i.e. 
the capacity to keep performing their intended function after a major failure. This is not surprising, taking into 
account that all previous examples share a common feature: they are critical infrastructures, in that their failure 
would lead to major disruptions in our society. Examples of recent extensive, wide-ranging network failures 
include the European air traffic disruption caused by the Icelandic Eyjafallajökull volcano eruption14, large-scale 
power outages in the United States15, computer virus spreading16, or the cross-continental supply-chain short-
ages in the Japanese 2011 tsunami aftermath17, and others18. In all these events, the affected countries had to face 
extremely high economic costs19. Researchers have thus tried to quantify how the connectivity is affected by node 
(and link) removal, both due to random (unintentional) and targeted (intentional) processes. A complementary 
problem soon arose: the identification of the most effective strategies for disrupting (or attacking) a network. 
Such analysis yields important insights in a twofold way. First of all, it allows to move from assessing to improving 
resilience, by forecasting what a rational attacker might do and thus identifying which elements should prima 
facie be protected. Secondly, there are instances in which we actually need to disrupt a network, as for instance to 
stop the propagation of a disease or a computer virus, or to impair the growth of a cancer cell. In these situations, 
designing an efficient disruption strategy means achieving the goal while respectively minimizing the cost of 
immunisation strategies or the number of drugs to be prescribed.

Research on connectivity robustness has been performed in various scientific disciplines, the most impor-
tant ones including complex network theory, bioinformatics, transportation/logistics and communication. While 
there are subtle differences in these robustness definitions, the goal is always to identify the most critical nodes 
in a given network, i.e. those whose removal would severely impair the network dynamics. Notably, complex 
network theory has allowed to obtain some principle results that are independent from the specific system under 
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study. Most networks, sharing a scale-free structure, present a well-recognized resilience against random fail-
ures20, but disintegrate rapidly under intentional attacks primarily targeting important nodes21–23. Moreover, ini-
tial shocks can sometimes lead to cascading failures24.

In parallel to those theoretical results, several methods have been proposed in the last decade for dismantling 
a network, i.e. for identifying the sequence of nodes that maximizes the damage on the network connectivity. As 
the exact solution is computationally intractable for medium and large networks, several approximations have 
been proposed, based on collective influence25, decycling and tree breaking26, articulation points27, spectrality28, 
or network communities29. Other related works rely on standard network metrics and their variants, including 
degree, k-shell decomposition30, betweenness31, and approximate betweenness32.

In spite of these results, two major problems are subject to further research. First of all, the proposed methods 
substantially differ in terms of underlying principles, performance and computational cost. Some of them are 
more efficient in dismantling specific types of networks; others have a general applicability, but the scaling of their 
computational cost reduces their usefulness in large systems. Although newly published methods are sometimes 
compared to prior works, the selection of these latter ones is largely arbitrary and comparisons are carried out on 
few distinct networks. Secondly, even if such results are reported, their interpretation is usually far from trivial, as 
there is no theory supporting the selection of the best metric for measuring (and hence compare) algorithm’s per-
formances. As a consequence of the heterogeneity of approaches and problems, the lack of common benchmarks, 
and the dispersal of research in different communities, today it is hardly possible to choose the best algorithm for 
a given problem.

In this study, we present (to the best of our knowledge) the most comprehensive benchmark on network dis-
mantling algorithms to date. We have (re)implemented a set of 13 competitors, to ensure code homogeneity; and 
have tested them on a large set of networks of different topologies and sizes. We identified large heterogeneities 
in algorithm performances, as well as differences in run time of factors of more than 1000 between the fastest and 
slowest algorithms. These results allow us to draw several interesting conclusions about optimality, scalability, 
applicability, as well as potential future research directions. Additionally, the practitioner interested in selecting 
an algorithm for network dismantling and with a clear application in mind, will here find a valuable guide for 
making an informed choice.

The remainder of this paper is organized as follows. We describe the benchmark setup, the networks, and 
competitors in Section 2. All evaluation results are presented and discussed in Section 3. The paper is concluded 
with Section 4.

Methods
Measuring attack efficacy.  Inspired by the well-known concept of percolation in statistical physics33–37, 
the robustness of a network is usually defined as the critical fraction of nodes that, when removed, causes a 
sudden disintegration21. The disintegration is measured as the relative reduction in the size of the giant (largest 
connected) component. The smaller the size of the remaining giant component, the more the network is consid-
ered to have been disintegrated38, the rationale being that the functionality of a network strongly depends on the 
number of connected nodes.

In this study, we use the robustness measure R39. Given a network composed of N nodes, R is defined as
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where s(Q) is the size of the giant component after removing Q nodes. Intuitively this is equivalent to assessing 
how many nodes the giant component contains when a new node is deleted from the network, and sum this for 
all nodes. Note that the computation of R requires a ranking of the nodes, defining the sequence in which they are 
deleted from the network. In general, we are interested in the minimum R over all possible node orders. Since the 
computation of this optimal node order is an NP hard problem, researchers resort to sub-optimal and approx-
imated methods, either tailored specifically for network dismantling25–28,40,41, or based on traditional network 
metrics30,31,42,43.

In order to illustrate the problems that can arise from the use of sub-optimal attack algorithms, we here briefly 
present the results obtained for the lesmis network44. Lesmis encodes coappearances in the novel Les Miserables, 
is composed of 77 nodes and 254 links, and is frequently used in studies on complex networks. The network is 
depicted in Fig. 1(left), while its disruption process is shown in Fig. 1(right). In the ladder graph, each curve 
represents the evolution of the giant component size as more nodes are deleted, for one of the 13 algorithms here 
considered (see Section 2.2 for details); the legend also reports the corresponding R values and computation 
times. It can be seen that results are quite heterogeneous, suggesting that these methods rely on idiosyncratic 
strategies for defining the importance of nodes. Moreover, R values are spread over a large interval, from 0.09 
(for BI, ABI) to 0.21 (for KSH): the best algorithms are thus twice as effective in dismantling the network than 
the worst one.

If one is usually interested in the strongest attack, and thus in the smallest R value, two issues have to be taken 
into account. First, even though BI and ABI have yielded the best results, this does not imply that these two algo-
rithms will always outperform the others, as their performance is problem-dependent. Second, the low R value 
has to be balanced with the running time of the methods. This is especially relevant when designing attacks on 
larger networks, because the worst-case runtime complexity prohibits execution in a reasonable amount of time.

It is finally worth noting that the R value is a standard measure used in several recent studies, which aggregates 
the robustness over all nodes. The size of the giant component as a fraction of network size, on the other hand, 
requires to fix a specific attack length, e.g. 5%, 10% or 50% of the nodes. Alternatively, one can fix an interesting 
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component size threshold and report the required length of an attack. In general, dismantling methods which 
perform poorly when considering a component threshold, will also perform poorly when assessed through R.

Competitors.  Below, we list the 13 methods evaluated and compared in our study. The first five are specif-
ically designed for dismantling networks, while the remaining seven leverage on network metrics often used in 
empirical studies. Note that there are other methods, which are not used frequently, given that they are signifi-
cantly harder to implement45.

•	 ND: Network dismantling (ND) assumes that for a large class of random graphs, the problem of network 
dismantling is connected to the decycling problem, which addressed the removal of vertices until a graph 
becomes acyclic26. The authors propose a three-stage Min-Sum algorithm for efficiently dismantling net-
works, which are summarized as follows. Firstly, at the core of the algorithm is a variant of Min-Sum message 
passing for decycling, developed in41,46. The second step has the goal of tree breaking. After all cycles are 
broken, some of the tree components may still be larger than the desired threshold. These components are 
further broken into smaller components, removing a fraction of nodes that vanishes in the large size limit. 
Finally, cycles are closed greedily, in order to improve the efficiency of the algorithm with many short cycles.

•	 CI: Collective influence (CI) is a node importance measure for identifying influential spreaders in a net-
work25. The authors noted that the problem of influence is tightly related to the problem of network dis-
mantling, i.e., the removal of most influential nodes in a network often dismantles the network into many 
disconnected non-extensive components. The collective influence of a node is measured by the number of 
nodes within a given radius k, usually referred to as a k-ball of a node. Intuitively, this measure is an extension 
of degree metric to take into account neighbors at a distance of k. In hierarchical networks, the CI value can 
be easily computed in O(N * logN) time. Originally designed for efficiently attacking hierarchical networks, CI 
has now been used in several research studies on general graphs. In order to reduce the computational cost, a 
max heap data structure40 has been included in the implementation.

•	 APTA: Brute-force articulation point attack (APTA) targets articulation points in a network27. An articula-
tion point (AP) is a node whose removal disconnects a network. All APs can be identified by performing a 
variant of depth-first search, starting from a random node in the network; see47 for a linear-time implemen-
tation. It is surprising that the linear-time algorithm does not only reveal all APs, but also gives an estimate of 
the component sizes after removal of each AP from the network. This yields an attacking strategy by greedily 
attacking the AP with the largest effect (i.e., smallest maximum size of resulting components). If a network 
instance does not have a AP, for instance, a circle graph, then we attack one node with the highest-degree 
randomly. The resulting attacking method scales very well with the number of nodes, given the identification 
of node candidates in linear-time. Nevertheless, the greedy character of APTA should be understood: At each 
step of an attack, a locally-optimal AP is chosen, but there is no guarantee for a global optimum.

•	 GND: Generalized network dismantling (GND) was recently proposed as a method to dismantle networks 
while taking into account node-specific costs28. Under the assumption of unit costs for nodes, GND can be 
used for solving the standard network dismantling problem. GND relies on spectral cuts, using an efficient 
spectral approximation by a Power Laplacian operator, which can be computed in O(N * (log2 + εN)), with ε 
being larger than 0. The actual choice of the value is involved28 (see the discussion in their supplementary28), 
but, essentially, any value larger than ε guarantees convergence. For the experiments in our study, we have 
set ε = 3. Larger values increased the computation time significantly, while not always improving the quality 
further.

Figure 1.  Example network (left) and its robustness curves (right). The network lesmis consists of 77 nodes and 
254 links. The average degree is 6.597. The competitors in our study reveal very distinct attacking strategies and 
percolation thresholds for the network. In the legend, all methods are ordered by increasing value of R, see Eq. (1). 
The range of R is between 0.09 and 0.21, which shows the importance of selecting an appropriate attacking strategy 
for a given network.
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•	 COMM: Community-based29 attacks initially rely on the identification of the communities composing the 
network, usually based on the concept of modularity48. In our study, communities are extracted through a 
general search strategy for the optimization of modularity49. Other community methods can be used, for 
instance, the widely-used Louvain method50. Given a community structure was obtained, inter-community 
connections are identified by calculating nodes’ betweenness centralities, and removed iteratively. For the 
remaining parts of the network, which cannot be divided into communities, nodes are ranked by degree.

•	 DEG: Degree is a simple local network metric, which quantifies the importance of a node by counting its 
number of direct neighbors. This indicator is simple and fast to compute, although it codifies no informa-
tion about the macro-scale network structure. A static attack DEG is based on sorting nodes by descending 
degrees and removing them accordingly.

•	 DEGI: An iterative variant of DEG, introduced to account for dynamic changes in the degree of nodes while 
the attack is being executed42.

•	 B: Betweenness centrality31,51 is a macro-scale network metric measuring the number of times a node appears 
in the shortest path between pairs of nodes. Calculating the exact betweenness centrality entails a high com-
putational cost, with a complexity of O(nm) when using Brandes’ algorithm52 on unweighted graphs, where n 
is the number of nodes and m is the number of edges in network.

•	 BI: An iterative variant of B, introduced to account for changes in the betweenness while nodes are being 
removed42.

•	 AB: Given the worst-case time complexity of betweenness (B) computation, it is often helpful to compute and 
use an approximate betweenness32. This algorithm reduces the time complexity by sampling only a subset of 
all possible node pairs in the network, such that only logn paths are taken into account.

•	 ABI: An iterative variant of AB, introduced to account for changes in the approximate betweenness when 
nodes are being removed42.

•	 KSH: K-shell iteration factor53 is based on the coreness of nodes in a network30. In general, a large value indi-
cates that the node has a strong ability to spread information. The algorithm combines shell decomposition 
and iterative node removal, for then using changes in the neighbourhood as an estimator of the impact for 
each node.

•	 CHD: CoreHD attacks54 combine DEGI and k-core30 to achieve a decycling of networks. It iteratively removes 
the highest degree node among network 2-core graphs, until no 2-core graph remains, for then treating the 
remaining part through tree-breaking.

Synthetic network models.  In this study we initially evaluate all competitors against a set of synthetic 
networks - note that this evaluation will be extended to real-world networks in Section 3.5. Synthetic networks, 
i.e. networks that are the result of applying generative functions, present the advantage of displaying specific top-
ological features that are both a priori known and tuneable.

For this study, we selected a collection of 12 network types, summarized in Table 1. Four of these types are 
standard complex network models: Barabasi-Albert (BA)55, Watt-Strogatz (WS)56, Erdos-Renyi (ER)57, and 
Regular Graphs (RG). The remaining eight types are specific graphs with interesting topologies or properties, 
making them valuable for robustness analyses: Circle Graphs (CG), Grid Graphs (GG), Path Graphs (PG), Barbell 
Graphs (BG), Wheel Graphs (WG), Ladder Graphs (LG), Binary Trees (BT), and Hyper Graphs (HG). Figure 2 
visualizes one instance for each of the 12 networks types.

The generative functions supporting the creation of these synthetic networks include a set of parameters con-
trolling the size and structure of the resulting network instances. For the sake of completeness, each synthetic model 
has been executed with several parameter combinations, each one of these including five random realizations. In 
total, results have been calculated over a set of 600 networks, representing a wide range of topological structures.

We summarize eight of the most important topological properties of the synthetic networks in Fig. 3. The 
eight histograms confirm that the set is representative of many topological structures, including heterogene-
ous examples of modularity, efficiency and assortativity values. Additionally, Fig. 4 reports the R values of all 

ID Name Parameters (n = number of nodes)

BA Barabasi-Albert n in [100,500,1000], number of edges m per node in [1,3,5,7,9]

ER Erdos-Renyi n in [100,500,1000], edge probability p in [0.01,0.02,0.03,0.04,0.05]

WS Watt-Strogatz n in [100,500,1000], ring size k in [3,5,7,9], rewiring probability p = [0.1,0.4,0.7]

RG Regular graphs n in [100,500,1000], node degree d in [3,4,5]

GG Grid graphs Side length d in [5,10,15,20,25,30]

PG Path graphs n in [100,500,1000]

CG Circle graphs n in [100,500,1000]

WG Wheel graphs n in [100,500,1000]

LG Ladder graphs n in [100,500,1000]

BT Binary trees Branching factor r in [2,3], height of tree h in [3,4]

HG Hypercube graphs Dimension d in [2,3,4,5,6,7,8]

BG Barbell graphs Bell size m1 in [5,10,15,20], path length m2 in [5,10,15,20]

Table 1.  Overview of 12 random network types.
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networks, as obtained with the best competitor of those used in our study. Within each network type and network 
generation parameter group, networks have similar robustness properties, as highlighted by the small range of R 
values. The only exceptions are ER and WS, whose robustness heterogeneity depends largely on the interaction 
between the network size and generation parameters, i.e., the same parameter setting yields robust networks for 
small n, but highly vulnerable networks for larger n. In Fig. 5, we further split up the ER and WS networks by tak-
ing into account their size. It can be seen that with a fixed number of nodes, the range of R values is again reduced.

In synthesis, the set of synthetic networks considered is representative of very different topological structures, 
and of a wide range of robustness. This will ensure that subsequent analyses will not be biased by a specific net-
work characteristic, and that results will have high generalizability.

Results
In the following, we report the results of our study. Section 3.1 firstly compares all competitors with respect to 
their accuracy, i.e. how small is the obtained R value in each network type. The correlation between competitors, 
i.e. the relationship between the node rankings they yield, is analyzed in Section 3.2. In Section 3.3, we set the 
focus on the running time of each method and see how it changes with the size of the network. We combine 
both criteria, optimality and scalability, in Section 3.4, where we report results regarding the Pareto front of both 
dimensions, identifying dominating competitors. Section 3.5 compares the results obtained in Section 3.1–3.4 
with those for real-world networks. Finally, we discuss the differences and similarities to other robustness esti-
mation methods in Section 3.6 and additional results on modularity in Section 3.7. Code is available at https://
github.com/hubsw/NetworkDismantling for free academic use.

Figure 2.  Visualization of one realization for each type of the 12 networks in this study. These realizations are to 
be understood as samples only, not all realizations of a network have highly similar visual properties, since their 
structure largely depends on the chosen parameters, particularly for BA, ER, WS, and RG.

Figure 3.  Statistics of selected topological metric values in the synthetic network set. The x-axis shows the range of 
values for each metric and the y-axis the absolute frequency of graphs having a metric value in that range.

https://github.com/hubsw/NetworkDismantling
https://github.com/hubsw/NetworkDismantling
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Ranking for attack efficacy.  The major goal when estimating the robustness of a network is to compute the 
smallest valid R, where valid refers to the fact that it is calculated from a ranking over all nodes in the network. 
As we showed in Section 1, and particularly in Fig. 1, the R values yielded by different methods can substantially 
vary. Figure 6 visualizes the frequency that each competing method yields the smallest R, disaggregated by net-
work type and generation parameters. We find that BI yields the best attack in 70−80% of the cases. The major 
exception is HG, whose network structure is better dismantled by using the CI technique. Next to BI, the two 
competitors ABI and CHD perform rather well on most networks in our study. On the other side of the ranking, 
the worst competitors are DEG, DEGI, KSH and COMM.

Given that BI yields the smallest R for the majority of networks in our study, we here report on a comparison 
of the competitors’ performance using BI as a baseline. In Fig. 7, we report the difference betweeen the R value of 
BI for each competitor and network instance, with competitors sorted according to their respective median. The 
boxplot reveals that ABI and CHD are very close competitors to BI; nevertheless, while the median R difference 
is quite close to zero, differences in specific networks can reach 0.05 (ABI). On the other end of the ranking, the 
worst competitors, when BI is used as a baseline, are KSH and AB, with a median R difference of 0.13. Note that 
the worst algorithms in Fig. 7 do not need to (and indeed do not) coincide with those of Fig. 6, as both graphs 
represent different quantities. To illustrate, suppose a method that always yields the second best solution: by never 
yielding the best solution it would be the worst in Fig. 7, while would be the second in Fig. 6. Additionally, it is 
interesting to note that the static version of BI, namely B, is much worse than many other competitors, includ-
ing DEG and DEGI. This is probably due to the fact that the deletion of few nodes can substantially change the 
betweenness structure of the network, thus requiring an iterative computation; on the other hand, deleting one 
node can only change the degree of neighbouring ones by one.

Comparing node rankings.  As discussed in Section 3.1, competitors often compute different node rank-
ings, thus yielding significantly different R values. An interesting question is the quantification of such difference: 
how much do the node rankings of two competitors coincide? Or, in other words, how different are the under-
lying node selection strategies? Note that this is not a trivial issue, as similar strategies, yielding slightly different 
node rankings, can result in radical different R values; similarly, two completely different strategies, i.e. exploiting 
different structural characteristics, may end up with compatible rankings.

In Fig. 8, we give an example for the node ranking similarity of all competitors against BI for a lesmis network. 
The more points are clustered around the main diagonal, the more correlated the two competitors’ rankings are. 

Figure 4.  Minimum R values for all network sub-types in our study. It can be seen that, for each type, network 
realizations cover a wide range of R values, from highly fragile to very robust ones.

Figure 5.  Minimum R values for two network sub-types ER and WS, with different network sizes. Each type-
size combination covers a small range of R values.
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It is worth highlighting that ABI and BI are highly correlated, as expected being the former an approximated 
version of the latter. Additionally, all methods seem to converge to a common sequence in the final phase of an 
attack, indicating that the competitive advantage of BI resides in the initial choices. With this example in mind, 
we proceed to report some more general insights on node ranking similarity.

In Fig. 9 we report the median correlation coefficient between node rankings obtained by all pairs of algo-
rithms. This has been calculated considering all synthetic networks with R ≤ 0.05, the rationale being that we are 
interested in the node ranking similarity for highly vulnerable networks only. We can identify several pairs of 
highly-similar competitors. While B and AB are highly correlated, it is interesting to note that ABI and BI are not. 
This is a surprising result, and indicates that, while ABI is an approximated version of BI, they reach quite differ-
ent solutions - a feature that does not happen in the B - AB case. Additionally, the apparently conflicting results 
of Figs 8 and 9 suggest a high variability, with correlated rankings only for some specific topologies. These results 
are further surprising if one considers that both ABI and BI compute very efficient attacks (as reported in Fig. 7). 
If two good solutions can be reached through two different paths, it may be expected a further improvement 
when both are combined - a relevant topic for future research. Figure 9 further suggests that DEG is more similar 
to any other method than the median of all other pairs; the degree sequence may thus be the best representative 
combination of all methods.

Ranking for scalability.  We analyze and compare the scalability of all competitors, an aspect of utmost 
importance in real applications. Towards this aim, we considered instances of the same network type, respectively 
with 100 and 1000 nodes, for then calculating the ratio between the median running time for both groups. Such 
ratio indicates how much the computational cost increases when the network size is one order of magnitude 
larger. The results are shown in Fig. 10. We find that around half of the methods (AB, ND, DEG, KSH, APTA, and 
GND) are rather scalable, with an almost linear increase of the computational cost. The worst case is observed 
for BI, with an increase of the run time by a factor of 103, i.e. its computational cost scales with the cube of the 
number of nodes, preventing it to be executed even on medium-size networks. It is interesting to note the large 

Figure 6.  Relative frequency of results yielding minimum R values for each competitor and network subtype. 
BI is the competitor with the smallest R value, leading to the most damaging network attacks. Other, less 
competitive competitors include ABI and CHD. The performance of a method often depends on the network 
type: For instance, ND is excellent on several parameter combinations for hypercube graphs.

Figure 7.  Comparison of R values for different competitors against BI, the most accurate method in our study. 
For each competitor, we plot the distribution of all R values as a box plot. Each box covers the values within 
boundaries X,Y. Competitors are sorted according to their median deviations to BI values. The best competitors 
are ABI and CHD, which have an absolute difference in R values of 0.01–0.02 for the majority of network 
instances. Moreover, their maximum deviation is between 0.05–0.08. Other competitors, including AB and 
DEG, have much higher deviations, with a difference of 0.5 as the maximum case, which essentially renders 
them useless for accurate estimations of network robustness.
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spread of CI values: while being very efficient for tree-like and hierarchical structures, where nodes have a small 
(constant) maximum degree, CI becomes inefficient for networks with high degree nodes, since even small ball 
sizes require to repeatedly analyze large parts of the network.

Optimality of methods regarding Pareto front.  The results in Section 3.1 and Section 3.3 treat efficacy 
(in terms of obtaining small R values) and scalabiliy (increase in computational cost) as separate indicators. 
Nevertheless real experiments usually impose a trade-off between both aspects, as the size of the network and the 
limited availability of computational resources can force the choice of faster, if less accurate, methods. In what 
follows, we combine both aspects by analyzing the shape of the corresponding Pareto fronts.

For the sake of clarity, Fig. 11 firstly illustrates the methodology with a specific example. It can be seen that 
out of 13 competitors, only five compute an interesting, non-dominated solution, while the remaining 8 are dom-
inated in one of the two considered dimensions. In order to assess the quality of a solution, we measure the dis-
tance between the solution and the Pareto front - as in Fig. 11(right). The larger the distance, the less competitive 
is that specific solution. Moreover, we can measure the one-dimensional distance to the next best competitor on 
the Pareto front; depending on the direction, we can assess its competitiveness regarding quality and run time. 
Note that we measure the distance in the log-space, such that a distance of one means that we need to improve 
either the quality or the run time by one order of magnitude.

In Fig. 12, we plot the median distance to the Pareto front for each competitor and network type. We can see 
that DEG is always on the Pareto front, because it computes the fastest attack. Similarly, BI and ABI are often on 
the Pareto front, because they compute very strong attacks and good trade-offs, respectively. Other competitors 
are close to the Pareto front for selected network types. A few competitors have rather large median distances, 
including B, which means that they are not very interesting from a quality nor a run time point of view. A further 

Figure 8.  Correlation of node removal strategies for each competitor against BI, for a BA network with n = 100 
and m = 3. For each pair of competitors, a dot represents a node in the network, while the x-coordinate is the 
rank in the first competitors and the y-coordinate is the rank in BI. A straight line indicates a perfect correlation 
between rank orders, while a scattered collection of points indicates rather uncorrelated ranks. For each pair of 
competitors, we show the correlation coefficient and p-value in parenthesis. For instance, ABI and BI are highly 
correlated, with a correlation coefficient of 0.91 and p-value of 6.1e−40 for this specific network.

Figure 9.  Order comparison of all against all for small values of R (smaller than 0.05). For each network 
realization, we have computed the pairwise correlation coefficient for all competitors. The number reports the 
median correlation coefficient over all network realizations. Cells filled in darker color have a larger median 
correlation coefficient. The diagonal represents pairs of identical competitors. B and AB are correlated most. 
Other interesting high correlations include CI/ND, DEG/KSH, and B/DEG.
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aggregated version of these results is shown in Fig. 13. In Fig. 14, we conclude how Pareto fronts indicate the 
goodness of a specific method and how it could be improved. Note that DEG is at the origin because it is the fast-
est competitor for each network in our study, and therefore, always on the Pareto front.

Real-world networks.  We finally complement the results obtained for the synthetic set with similar analyses 
for real-world networks. We applied all competitors to the following twenty real-world networks, used in many 
other studies on this subject, most of which can be downloaded from the UCI Network Data Repository58. The 
networks are listed in Table 2 along with selected topological properties.

As an illustrative example, in Fig. 15 we visualize the robustness curves for the adjnoun and celegansneural 
networks - competitors are ranked in each figure according to the respective R value. It can be seen that results 
obtained for synthetic networks, in terms of ranking of methods according to their attack efficacy, match quite 
well with the real case. To further support this observation, we show the competitor ranking distribution accord-
ing to the computation of the smallest R value in Fig. 16. We see that the ranking distributions between random 
and real-world networks largely coincide: results obtained for synthetic networks thus seem to be of general 
applicability.

Other methods for measuring the robustness.  In our previous experiments, we have analyzed the 
robustness of networks regarding R, which measures the relative size of the giant component during an attack 
process. Another measure for estimating the response of complex networks to disruptions is the global efficiency, 
which takes into account how efficiently information is propagated in a network59. The propagation efficiency 
between a pair of nodes is inversely proportional to shortest distance between both nodes in the network. In 
Fig. 17, we compare the global efficiency with the relative size of the giant component over time for some BA net-
work instances with different k. Obviously, these two measures are highly correlated. In additional experiments, 
we compared the area under the curve (essentially the R value) for both measures and each network: The mean 
correlation coefficient over all networks is 0.943, i.e., both robustness measures are indeed highly correlated. 
Therefore, we believe that our choice of R over the relative size of the giant component is representative for a wider 
range of robustness measures.

Sensitivity of COM to network modularity.  We have performed additional experiments where we com-
pare the R values of COM with the best method, BI. The results are reported in Fig. 18. We find that for networks 
with very small modularity COM performs similar to BI, given that these networks are usually very robust to 
targeted attacks. With increasing modularity, the BI significantly outperforms COM, given the existence of vul-
nerable nodes. Only for networks with large modularity, COM become almost as effective as BI again, given that it 
can exploit community structure for attack generation. It should be noted that for our generated networks, COM 
never significantly outperforms BI, independent of the modularity.

Conclusions
The problem of measuring the resilience of a network to targeted attacks, and the other side of the coin, i.e. the 
design of optimised strategies for network dismantling, are rapidly becoming major topics of research in the 
complex network community. This is undeniably due to the adverse consequences associated with a low resilience 
of real-world systems, and especially of critical infrastructures. As a consequence, many research works have 
appeared, and a large set of different attack strategies have been proposed. Yet, on the other hand, these proposals 
have not been organically organised: a practitioner would then find it difficult to compare them, and eventually 
choose the one most suitable for the system under analysis. In this contribution we have systematically evaluated 
the state-of-the-art in complex network robustness and dismantling. Specifically, a large set of algorithms have 
been compared, both against real and synthetic networks, and taking into account elements like different network 

Figure 10.  Scalability of competitors with an increasing number of nodes in the network. We report the 
running time increase for a network, once the number of nodes is increased by a factor of 10. For some 
competitors we observe a very large variation of running times (indicated by larger boxplots).
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sizes, link densities, and generation parameters. All strategies have been evaluated according to their accuracy, 
computational cost, and reliability. This yielded several important conclusions, that are discussed below.

First of all, our analysis allows identifying which are the best algorithms. It might be surprising to see that the 
best algorithm is BI (betweenness interactive), probably one of the oldest and conceptually simplest approaches. 
BI is efficient because the definition of the betweenness is extremely well aligned with the problem at hand - 
i.e. disrupt the main communication paths of the network. Employing BI comes at a price: A run time at least 

Figure 11.  Visualization of Pareto front (center) and normalized Pareto front distance (right). Only few 
competitors, in this case five, contribute to the set of interesting solutions, which are identified by the Pareto 
front spanned up by two dimensions (R value and running time). BI is the most accurate competitor and also 
the slowest competitor. DEG, on the other hand, estimates the robustness very quick, but less accurate. ABI, 
DEGI, and ND provide a trade-off between fast execution and accurate R values. The y-axis (running time) is 
log-scaled. The normalized Pareto front makes the results comparable over different networks.

Figure 12.  Distance from Pareto front for each competitor, broken down into network subtypes. A distance of 
zero (white color) indicates that a method is on the Pareto front. Larger distances are generally less interesting, 
since such competitors are dominated by other competitors. BI, DEG, and ABI often can be found on the pareto 
front and, therefore, provide non-dominating solutions. We can see that some methods are complementary in 
their distance to the Pareto front, for instance, ABI and AB.

Figure 13.  Distance from Pareto front for each competitor, aggregated by network types. Larger distances are 
generally less interesting, since such competitors are dominated by other competitors. Several networks stand 
out, e.g. WG, PG and BT, in that many competitors do not perform well on them, i.e., the Pareto front is much 
smaller. For instance, in case of BT, the degree of a node is sufficient to deduce a very effective node removal 
strategy. Most networks are dismantled by DEG and ABI in an effective way.



www.nature.com/scientificreports/

1 1SCIENTIfIC ReportS |  (2018) 8:13513  | DOI:10.1038/s41598-018-31902-8

Figure 14.  Pareto front-distance broken down into two dimensions: Inaccurary (ΔR) and slowness(Δt). The 
position of a competitor in a scatter plot reveals, in which direction a competitor should be improved, in order 
to be more competitive. For instance, BI is always very close to the Pareto front regarding the quality of solutions 
(small ΔR), but the running time should be reduced significantly (larger Δt). ND, on the other hand, should be 
improved to compute better attacks, in order to be more competitive.

Figure 15.  Visualization of the robustness curves for two real-world networks: Adjnoun and celegansneural.

Network N E AVG Degree Density Assortativity

karate 34 78 2.29 0.13904 −0.476

dolphins 62 159 2.56 0.08408 −0.044

lesmis 77 254 3.30 0.08681 −0.165

polbooks 105 441 4.20 0.08077 −0.128

adjnoun 112 425 3.79 0.06837 −0.129

football 115 613 5.33 0.09352 0.162

celegansneural 297 2148 7.23 0.04887 −0.163

usair 332 2126 6.40 0.03869 −0.208

netscience 379 914 2.41 0.01276 −0.082

polblogs 1,222 16,714 13.68 0.02240 −0.221

petster-hamster 2,000 16,098 8.05 0.00805 0.023

facebook 4,039 88,234 21.85 0.01082 0.064

eva 4,475 4,652 1.04 0.00046 −0.185

power 4,941 6,594 1.33 0.00054 0.003

hep-th 5,835 13,815 2.37 0.00081 0.185

astroph 17,903 196,972 11.00 0.00123 0.201

condmat 21,363 91,286 4.27 0.00040 0.125

internet 22,963 48,436 2.11 0.00018 −0.198

enron 33,696 180,811 5.37 0.00032 −0.116

twitter 81,306 1,342,296 16.51 0.00041 −0.039

Table 2.  Overview of twenty real networks and selected network properties, ordered by the number of nodes. 
Values are for the giant component of the network.
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quadratic in the number of nodes, for sparse networks; and cubic in dense networks. Therefore, we need addi-
tional approaches for larger networks.

CI was published essentially comparing to degree-based attacks only, without a comparison to 
betweenness-based competitors (B or BI). The major contribution of CI regarding network dismantling is that 
it brought the idea of analyzing real-word network robustness into the top journals. CI was the first method 
to run in almost linear time, O(NlogN), for specific networks, and to significantly outperform degree in their 

Figure 16.  Comparison of ranking distributions for several real-world networks and the results obtained from 
random networks.

Figure 17.  Comparison of the size of giant component with global efficiency.

Figure 18.  Effectivity of COM for networks with different modularity Y-axis is the difference of R values 
obtained by COM and those obtained by BI.
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experiments. Moreover, CI was specifically designed to find optimal attacks in hierarchical networks with tree 
structures. Many real-world networks, however, are not purely tree-structured. Therefore, it is not surprising to 
see that CI does not perform well, when running it on previously unseen network types and comparing it to previ-
ously unconsidered competitors. Regarding ND, it should first be noted that ND performs much better than CI in 
our study. Intuitively, this makes sense, since CI was the main competitor evaluated when ND was proposed and 
published. In addition, the authors of ND compared against degree, eigenvector centrality and a solution based 
on simulated annealing. Yet, the authors did not assess their method compared to betweenness or approximate 
versions of betweenness (B, BI, AB, and ABI), the strongest competitors in our study. So, similar to the case of 
CI, the performance of ND can be explained by the experimental setup of the authors. Many recently-proposed 
strategies are designed to provide suboptimal but computationally efficient solutions. The user should understand 
a tradeoff between effectiveness and speed. We see this as a major motivation and major contribution of our study, 
to compare a whole set of heuristics (including computationally expensive ones) on a wide range of methods, in 
order to assess the possible degree of optimality.

As a result of our study, we highly recommend the usage of BI for assessing the quality of novel proposed 
competitors on smaller datasets. Moreover, ABI should be the first choice as a competitor for larger networks, as it 
provides the best tradeoff between solution quality and runtime in our study. In order to foster the interpretability 
of results, and consequently increase the usefulness of this line of research, standards for the publication of new 
strategies should be raised. We believe that the present work can be a first small step in this direction.

In the present study, we have chosen the size of networks in such a way that all methods can be compared 
with reasonable runtime. According to our experiments, BI is the best method for all networks, but its runtime 
complexity is about O(N3). This implies that, if the size of an input network is increased by a factor of 10, the 
runtime will be approximately 1000 times longer. Given that we aimed at a full comparison of network methods, 
the execution of all experiments on hundreds of random networks is simply not feasible. Assessing the robustness 
of very large random networks with a reduced number of scalable methods, as identified in our study, is one 
possibility for future work.

Our study leads to several additional observations and interesting directions for future work. First, several 
methods are highly competitive with BI. The major goal for future research should be to make them more efficient 
regarding the run time. One challenging problem is to always maintain a list of connected components during 
an attack generation, while avoiding quadratic time complexity. Second, the use of approximate methods, such 
as ABI, for network dismantling should be explored and exploited further. Finally, we showed that ND and BI 
actually compute quite different attacks, while both being close to BI. An intelligent combination of these two 
methods might lead to even stronger attacks, possibly outperforming BI. Future studies could investigate the 
robustness of multiplex/multi-layer networks60–63.

Data Availability
All networks used in this study are available from the UCI Network Data Repository58.
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