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Polarity of CD4+ T cells towards the 
antigen presenting cell is regulated 
by the Lck adapter TSAd
Greger Abrahamsen1, Vibeke Sundvold-Gjerstad1, Meseret Habtamu1,2, Bjarne Bogen3,4 & 
Anne Spurkland1

Polarization of T cells towards the antigen presenting cell (APC) is critically important for appropriate 
activation and differentiation of the naïve T cell. Here we used imaging flow cytometry (IFC) and show 
that the activation induced Lck and Itk adapter T cell specific adapter protein (TSAd), encoded by 
SH2D2A, modulates polarization of T cells towards the APC. Upon exposure to APC presenting the 
cognate antigen Id, Sh2d2a−/− CD4+ T cells expressing Id-specific transgenic T cell receptor (TCR), 
displayed impaired polarization of F-actin and TCR to the immunological synapse (IS). Sh2d2a−/− 
T-cells that did polarize F-actin and TCR still displayed impaired polarization of PKCξ, PAR3 and the 
microtubule-organizing center (MTOC). In vitro differentiation of activated Sh2d2a−/− T cells was 
skewed towards an effector memory (Tem) rather than a central memory (Tcm) phenotype. A similar 
trend was observed for Id-specific TCR Sh2d2a−/− T cells stimulated with APC and cognate antigen. 
Taken together our data suggest that TSAd modulates differentiation of experienced T cells possibly 
through polarization of CD4+ T cells towards the APC.

Upon stimulation of T cells via TCR and other surface receptors, initiation of signalling cascades eventually 
results in proliferation and differentiation into various T cell phenotypes1. The molecular details for how signal-
ling in T cells is controlled after the initial triggering of the TCR is not fully understood.

TCR binding to its cognate antigen-MHC complex on antigen presenting cells may result in formation of 
an immunological synapse (IS) at the interface between the T cell and the APC. IS formation is dependent on 
localized intracellular signals that results in cytoskeletal and membrane reorganization towards the contact site 
(reviewed in2). Polarisation of actin, TCR and signalling molecules towards the IS are required for proper acti-
vation and function of T cells, where CD4+ T cells engage with the APC for several hours1. Sustained TCR 
signalling is subsequently maintained through recycling TCR and Lck to the IS during activation3,4, until signal 
termination by negative feedback mechanisms or TCR degradation5,6. Providing a critical regulatory stimulus, the 
IS facilitates differentiation of T cells into Tem or Tcm subsets,1,7,8.

Interruption of IS formation may skew or disrupt CD8+ T cell differentiation9–12. Upon triggering of the TCR, 
formation of the IS initially involves reorganising the actin cytoskeleton towards the cell interface, followed by 
movement of TCR micro-clusters towards the centre of the IS (cSMAC). As the IS matures, polymerized actin 
reorganises and relocates to the periphery (dSMAC) while microtubule organizing centre (MTOC) reorients to a 
position beneath the IS (reviewed in13).

A novel player in regulation of T cell polarity, may be the cytosolic Lck and Itk adapter TSAd14, encoded by 
SH2D2A. We recently found that lack of TSAd is associated with reduced accumulation of F-actin at the inter-
phase between CD4+ T cells and APC14. TSAd is induced in both CD4+ and CD8+ T cells upon engagement of 
the TCR15,16. However, the role of TSAd in activated T cells is only partially understood. TSAd affects proximal T 
cell signalling events via its interaction with Lck16,17, possibly by promoting phosphorylation of Lck Tyr192 by Itk14. 
TSAd also regulates chemokine induced T cell migration and actin polymerization via its interaction with Itk18.

Despite TSAd being involved in TCR signalling, unchallenged Sh2d2a−/− mice display only minor alter-
ation in overall immune phenotype15,19,20. TSAd may influence specific NK cell immune responses, since 
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Sh2d2a−/− mice displayed reduced clearance of a mutant murine cytomegalovirus which does not activate the 
NK cell receptor Ly49H21. Recently, we found that TSAd affects CD4+ T cell-mediated rejection of experimental 
multiple myeloma19. Wild type mice are highly susceptible to MOPC315 myeloma, while mice carrying transgenic 
TCR, recognizing a peptide (Id) derived from the variable region of the L chain of the MOPC315 IgA (Id-specific 
TCR), are partially protected22. The Id-peptide is presented on I-Ed by tumor-infiltrating macrophages. Rejection 
is caused by interplay of Th1 T cells and M1-activated macrophages23. The Sh2d2a−/− Id-specific TCR mice dis-
played increased resistance towards myeloma19, however the molecular mechanism for the increased resistance 
remains to be determined.

We here examined the hypothesis that TSAd regulates T cell differentiation through altered polarization of T 
cells towards APC. Using imaging flow cytometry (IFC), the distribution of signalling molecules towards the IS 
in T-cell/APC conjugates was assessed19. We found that in Id-specific TCR T cells, TSAd affected actin polymer-
ization as well as polarization of TCR, PKCξ and MTOC at the IS. Our results suggest that altered polarization of 
T cells may influence differentiation of effector and memory T cells.

Results
TSAd is continuously expressed in activated T cells. We previously demonstrated increased resistance 
towards experimental myeloma in the absence of TSAd19. Resistance towards myeloma in this model is driven by 
tumor-specific Th1 cells which activate tumor-infiltrating antigen-presenting macrophages24,25. TSAd expression 
is induced in T cells upon activation through the TCR/CD3 complex15,16. To begin to explore the molecular mech-
anism for increased resistance to myeloma in the absence of TSAd, we thus first asked whether TSAd continues 
to be expressed in proliferating T cells. The amount of TSAd in CD3/CD28 activated human CD4+ T cells was 
measured in dividing cells using CTV dilution combined with intracellular staining for TSAd. TSAd was found 
to be expressed at the same level over several generations of proliferating human CD4+ cells (Fig. 1A) indicating 
that this intracellular Lck-adapter potentially could affect T cell proliferation, differentiation or cell survival.

TSAd promotes differentiation of Th1 cells with a central memory phenotype. Having found 
that TSAd is continuously expressed in proliferating T cells, we next asked whether TSAd affects the proliferation 
and phenotype of activated CD4+ T cells. Previous studies of short term stimulated TSAd deficient T cells have 
revealed conflicting results15,18,20. Here we stimulated murine Sh2d2a+/+ or Sh2d2a−/− CD4+ T cells from 
C57/BL6 mice for three days using anti-CD3/anti-CD28 activator beads as a surrogate for APC, followed by 
incubation with IL-2 for six days to promote cytokine mediated proliferation26 (Fig. 1B and C). Live cells were 
counted at the indicated times, and the frequency of live cells expressing CD44 and CD62L was analysed by flow 
cytometry in order to assess the size of the T cell populations with a central memory phenotype (i.e. Tcm or 
CD44high/CD62Lhigh) and an effector memory phenotype (i.e. Tem or CD44high/CD62Low) (Fig. 1B and C).  
Over the nine days of IL-2 stimulation, the accumulated proliferation of Sh2d2A−/−CD4+ T cells was signifi-
cantly lower than that of Sh2d2a+/+ CD4+ T cells (Fig. 1C). Moreover, the cultured Sh2d2a−/− CD4+ T cells 
were significant skewed towards a Tem phenotype as compared to Sh2d2a+/+ CD4+ T cells (Fig. 1D). Similarly, 
Sh2d2a−/− Id-specific TCR transgenic CD4+ T cells19,27 cultured under Th1 stimulating conditions in the pres-
ence of Id-peptide loaded APCs from Sh2d2a+/+ spleens22, displayed a significantly reduced accumulated pro-
liferative response compared to the corresponding Sh2d2a+/+ Id-specific TCR CD4+ T cells (Fig. 1E). These 
same cells showed a trend towards skewed Tem differentiation (Fig. 1F). Taken together, these data suggests that 
TSAd influences cytokine mediated proliferation and differentiation of T cells.

TSAd regulates polarization of F-actin in antigen stimulated CD4+ T cells. Asymmetric distri-
bution of signalling molecules in APC-conjugated T cells have previously been associated with subsequent dif-
ferentiation of T cells into Tcm and Tem cells8. TSAd regulates actin polymerization at the interphase between 
T cell and APC14. As TSAd is continuously expressed in activated T cells over multiple cell divisions, and since 
cytokine mediated proliferation of Sh2d2a−/− T cells is diminished compared to Sh2d2a+/+ T cells, we thus 
asked whether TSAd affects the polarization of critical molecules towards the IS in experienced T cells. Briefly, to 
generate IS-positive Id-specific T:APC-conjugates in vitro Id-specific TCR CD4+ T cell blasts were used to ensure 
adequate expression of TSAd (Fig. 1A) and its interaction partner Itk14. SNARF-labeled T cells were co-incubated 
with A20 lymphoma cells or F9 lymphoma cells expressing Id-peptides bound to I-Ed (F9 is a derivative of A20) as 
APC for 30 minutes (for details see Materials and Methods). After staining with Id-specific TCR specific antibody 
and phalloidin labelling F-actin, cells were analysed by IFC. T-cells conjugated to APC were examined for polar-
isation of F-actin to the IS (Fig. 2A and B). Polarisation of F-actin was determined by comparing the signal in 
the synapse mask to the signal in the whole cell (see Materials and methods for details). In line with our previous 
finding14, significantly fewer conjugated Sh2d2a−/− T cells polarised F-actin to the IS compared to Sh2d2a+/+ 
T cells (Fig. 2C and D). However, among conjugated T cells displaying polarized F-actin, the degree of polarized 
F-actin, as assessed by the median polarisation ratio, was no significant difference in Sh2d2a−/− compared to 
Sh2d2a+/+ T cells (Fig. 2E).

TSAd regulates polarization of TCR to the IS. Presence of polarized F-actin on the T cell side of the 
Id-specific T:APC contact area was defined as a marker for IS-positive T cells. TCR is known to accumulate at 
the centre of the mature IS13. We thus considered that accumulation of the Id-specific TCR at the IS may be a 
marker for a maturing synapse. When analysing IS-positive Id-specific T:APC conjugates, formed after 30 min-
utes of co-incubation of T cells with APC, for accumulation of TCR at the IS (Fig. 2F), we found that IS-positive 
Sh2d2a−/− T cells displayed significantly fewer Id-specific T:APC conjugates with polarized TCR than their 
Sh2d2a+/+ counterpart (Fig. 2G and H). However, although the median polarisation ratio of TCR also was lower 
in Sh2d2a−/− T cells compared to Sh2d2a+/+ T cells displaying a maturing IS, this difference did not reach 
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Figure 1. TSAd impact on proliferation and phenotype of CD4+ T cells. (A) TSAd is expressed in proliferating 
human CD4+ T cells upon anti-CD3/CD28 stimulation. Dot plots show TSAd expression in relation to CTV 
dilution, while histogram shows degree of CTV dilution over 4 days with or without stimulation. (B) Dot plots 
show expression of CD62L and CD44 in Sh2d2a+/+ and Sh2d2a−/− mouse CD4+ T cells from C57/BL6 mice 
upon anti-CD3/CD28 and IL2 stimulation, over 9 days in vitro. (C) Accumulated proliferation of CD4+ T cells 
from Sh2d2a+/+ and Sh2d2a−/− mice stimulated as in (B). (D) Relative proportion of Tcm and Tem cells in 
T-cell cultures stimulated as in (B). Data in C and D represent mean +/−SD of three independent experiments. 
Statistical significance was assessed by two-way ANOVA. E) Accumulated proliferation of Id-specific TCR 
transgenic CD4+ T cells from Sh2d2a+/+ and Sh2d2a−/− mice upon culture under Th1 skewing conditions 
(peptide loaded APC in presence of IL12 and anti-IL4). Data represent mean +/− SD of three independent 
experiments. Statistical significance was assessed as in C and D. (F) Graph shows the frequency of GB113+ T 
cells with Tcm or Tem phenotype. Data in G and H represents mean +/− SD of 3 independent experiments, 
analysed using paired student’s t-test.
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Figure 2. TSAd affects polarization of actin, TCR and polarity complex proteins at the IS. Murine Id-specific 
TCR-transgenic CD4+ T cells were incubated for 30 minutes in the presence of Id negative (A20 cells) or Id 
positive (F9 cells) APC, prior to staining with the indicated markers and analysis of T cell:APC conjugates by 
IFC. (A) Conjugates are identified as a single SNARF+ T cell in association with an unlabeled APC. A T cell 
mask is applied together with a synapse mask. The polarization feature is determined as the signal intensity in 
the synapse area relative to that of the entire T cell. A value >1.5 implies that the marker is polarized towards 
the APC. Conjugates where F-actin in T cells is polarized towards the APC is defined as IS positive. IS-positive 
conjugates with polarized GB113+ (Id-specific TCR) are defined as maturing IS-positive. Conjugates with a 
maturing IS are then analyzed for polarization of other markers, as indicated in the text and figures.) Masking 
strategy was employed to identify the T cell synapse in T cell:APC conjugates. Sample images show absence (−) 
and presence (+) of F-actin polarization towards IS in Id-specific T:APC conjugates. (C) Histogram shows ratio 
of F-actin intensity values at synapse of individual Sh2d2a+/+ or Sh2d2a−/− Id-specific TCR CD4+ T cells 
interacting with Id negative A20 cells or Id positive F9 cells (all analyzed conjugates from one representative 
experiment). The polarization ratio was calculated by dividing the F-actin signal in the synapse mask with 
the F-actin signal in the entire cell. The stippled line indicates the threshold value of 1.5. Conjugates with 
polarization ratio >1.5 were defined as having F-actin polarized to the IS. (D) Graph shows frequency of Id-
specific T:APC conjugates displaying F-actin polarization ratio >1.5. (E) Graph shows median F-actin intensity 
ratio values in Id-specific T:APC conjugates in the presence of Id positive F9. Data in C and D represents 
median values (+95% CI) of three independent experiments, paired student’s t-test. (F) Polarization of Id-
specific TCR (staining with TCR clonotype-specific GB113 mAb) in conjugates displaying F-actin polarization. 
Image gallery shows conjugate without (−) and with (+) Id-specific TCR polarization. (G) Histogram shows 
Id-specific TCR intensity values (calculated as for F-actin above) at synapse of individual Sh2d2a+/+ or 
Sh2d2a−/− Id-specific TCR CD4+ T cells in conjugate with Id negative or positive APC as in (B) and gated 
for polarization of F-actin (all analyzed conjugates from one representative experiment). Stippled line defines 
threshold for identification of conjugates with Id-specific TCR polarized to IS. Non-parametric Mann-Whitney 
test. (H) Graph shows frequency of Id-specific T:APC conjugates with Id-specific TCR polarized to the synapse. 
(I) Graph shows median Id-specific TCR polarization ratios towards synapse in Id-specific T:APC conjugates. 
Data in G and H represent median values (+95% CI) of three independent experiments, analyzed using paired 
student’s t-test. (J) Image gallery showing polarization of PKCξ towards synapse upon engagement of TCR. 
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statistical significance (Fig. 2I). No significant differences in the frequency of T-APC conjugates with polarized 
F-actin or TCR was observed between Sh2d2a+/+ and Sh2d2a−/− T cells when A20 cells lacking Id was used 
as APC (Fig. 2C and G and data not shown). Taken together, these results indicate a deficiency of IS maturation 
in the absence of TSAd.

TSAd regulates polarization of polarity proteins in T cells. T cell polarity28–32 is controlled by highly 
conserved intracellular polarity proteins known as the Scribble (including Scrib and SAP97) and PAR3 (includ-
ing PAR3, PKCξ and PKCθ) protein complexes respectively. These polarity complexes define distinct spatial 
regions of the cell through differential localisation of macromolecules. There is accumulating evidence that the 
PAR3 complex modulates T cell polarisation, migration and IS formation29–31,33,34. In order to examine whether 
polarisation complexes were affected by the absence of TSAd, we analysed Id-specific T:APC conjugates with 
a maturing IS (displaying accumulation of F-actin and TCR) for distribution of PAR3, PKCξ, PKCθ, Scrib or 
SAP97 (Fig. 2J). In Id-specific T:APC conjugates having a maturing IS after 30 minutes of co-incubation of T 
cells with APC, there was no significant difference in the frequency of conjugates displaying asymmetric distri-
bution of polarity complexes within the T cell (Fig. 2K). However, the proportions of PKCξ and SCRIB polarised 
towards the synapse in the conjugates, as measured by their median polarisation ratios, were significantly lower in 
Sh2d2a−/− than in Sh2d2a+/+ T cells (Fig. 2L). In Id-specific T:APC conjugates involving A20 cells, there were 
no significant differences (data not shown).

TSAd promotes re-localization of MTOC to the maturing IS of CD4+ T cells. The relocation of 
MTOC to beneath the interface between the T cell and the APC is a hallmark of a mature IS13. Having found that 
Sh2d2a−/− T cells displayed reduced frequency of conjugates with polarised F-actin, TCR and reduced polarisa-
tion of the PAR3 complex member PKCξ to the IS, we went on to assess the relocation of the MTOC in Id-specific 
T:APC conjugates. T cells and APC’s were co-incubated for 30 minutes, followed by visualization of MTOC by 
intracellular staining for γ-tubulin. The maturing IS was defined as previously described, using phalloidin and 
anti-TCR staining of the conjugates (Figs 2A and 3A). The intensity ratio of γ-tubulin at the synapse was assessed 
as previously described (Figs 2A, 3B and Materials and methods).The frequency of conjugates displaying MTOC 
re-localisation beneath the IS in T cells was significantly lower in Sh2d2a−/− compared to Sh2d2a+/+ T cells 
(Fig. 3C). However, once the MTOC was polarised, the proportion of γ-tubulin signal relocating to the IS was not 
significantly different in Sh2d2a−/− T cells compared to that observed in Sh2d2a+/+ (Fig. 3D).

TSAd influences the kinetics of F-actin, TCR, PKCξ and MTOC polarisation in CD4+ T 
cells. Having found that maturation of the IS was affected in Sh2d2a−/− T cells early after conjugation with 
APC, we proceeded to analyse the kinetics of IS maturation in Sh2d2a+/+ and Sh2d2a−/− T cells over a 12 hour 
time course, including also the polarisation of the polarity proteins PAR3 and PKCξ (Fig. 4). As previously, T 
cells and Id-positive APC (F9 cells) were co-incubated for the indicated time points, followed by staining with 
the indicated antibodies. The initial reduced frequency of Sh2d2a−/− T cells displaying polarized F-actin as well 
as the relative amount of F-actin polarized to the IS in conjugated Sh2d2a−/− T cells was not observed at later 
time points (Fig. 4A and B). Similarly, the difference in frequency of TCR polarised conjugates towards IS was 
not observed at later time points (Fig. 4C). As already noted, the relative amount of TCR accumulated towards 
the synapse was not significantly different at early time points and remained so throughout the entire time course 
(Fig. 4D). The frequency of conjugates with PKCξ polarised towards the mature IS was similar in Sh2d2a−/− and 
Sh2d2a+/+ T cells over the course of the experiment (Fig. 4E), while the reduced amount of polarized PKCξ in 
Sh2d2a−/− was only observed for up to 60 minutes of Id-specific T:APC co-culture (Fig. 4F). Both the frequency 
of conjugates with PAR3 at the IS, as well as the amount of PAR3 polarised towards the mature IS, was signifi-
cantly lower in Sh2d2a−/− only at the latest time point tested (720 minutes) (Fig. 5G and H). The frequency of 
conjugates with polarized γ-tubulin was significantly lower in Sh2d2a−/− over the course of the experiment 
(Fig. 4I). However once polarisation occurred, γ-tubulin was similarly polarised as assessed by polarisation ratio, 
irrespective of TSAd (Fig. 4J). There were no significant differences in polarisation in the absence of Id presenta-
tion (data not shown). Taken together, these results support a role for TSAd in regulating maturation and organ-
isation of the IS at early time points during initial T cell:APC interaction.

IFNγ is reduced in antigen stimulated Sh2d2a−/−Id-specific TCR T cells. Cytokine secretion is 
a crucial part of T cell effector function. Several cytokines are polarised and secreted through the IS, including 
IFNγ35. Polarisation of IFNγ to the IS is dependent on polarisation of F-actin, but not MTOC reorientation35,36. 
Having found that TSAd influences accumulation of polarized F-actin as well as members of the PAR3 polarity 
complex to the IS, we examined whether Sh2d2a−/− also affected IFNγ during T cell:APC interaction.

As above Id-specific TCR T blasts and APC were co-incubated for the indicated time points and subsequently 
stained intracellularly for IFNγ- F-actin and TCR. IFNγ expression in Id-specific TCR T cells with maturing 
IS was assessed (Fig. 5A). After 30 minutes incubation, both Sh2d2a+/+ and Sh2d2a−/− Id-specific T:APC 

(K) Graph shows relative frequencies of Id-specific T: -APC conjugates with polarization of indicated polarity 
complex molecules towards IS relative to Sh2d2a+/+. (L) Graph show relative values of the intensity ratios 
in Id-specific T:-APC conjugates of the indicated polarity complex molecules. (j) and (K) Data represents the 
median values (+95% CI) normalized to those observed in Sh2d2a+/+ Id-specific T: APC conjugates of three 
independent experiments, n >50 gated events in each experiment. Statistical significance was assessed using 
paired student’s t-test.
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conjugates displayed intracellular IFNγ (Fig. 5B,C). The number of IFNγ expressing Sh2d2a+/+ T cells varied 
throughout the experiment, while after 720 minutes of incubation significantly fewer Sh2d2a−/− T cells were 
expressing IFNγ (Fig. 5C). Taken together, the effect of TSAd on IS-formation and T cell differentiation includes 
a positive effect on amount of IFNγ-in antigen stimulated CD4+ T cells.

Discussion
Polarisation of signalling molecules in the triggered T cell towards the APC is crucial for normal activation and 
function of T cells. Here we have shown that the Lck-adapter TSAd is required in the early phases in the T cell’s 
interaction with APC. Absence of TSAd results in altered differentiation and proliferation of activated T cells in vitro.

In this study, we mainly used imaging flow cytometry, which allows for the rapid and unbiased analysis of 
large numbers of Id-specific T:APC conjugates. Though the resolution of IFC is inferior to confocal microscopy, 
the method permits quantitative high throughput analysis of Id-specific T:APC conjugates, without encountering 
issues of photo-bleaching and observer bias in identifying Id-specific T:APC conjugates associated with confocal 
microscopy.

A key feature of TSAd is that it is rapidly induced upon activation of the T cells. Resting T cells display low 
levels, while recently activated T cells express high levels of TSAd. In T cells primed via inflammatory cAMP 
inducing signals, TSAd protein expression may be induced already 15 minutes after initial TCR triggering of 
primary resting T cells37. Here we show that expression of TSAd is stably maintained over several cell divisions, 
and that absence of TSAd results in reduced proliferation and a significant skewing towards effector T cell phe-
notype. This support the notion that TSAd also regulates T cells after the initiation of TCR stimulation. Although 
reduced proliferation of Sh2d2a−/− T cells in response to TCR-triggered activation was initially reported15, a 
significant difference in short term anti-CD3/anti-CD28 stimulated T cell proliferation has not consistently been 
observed19. Our present data strongly indicates that TSAd may impact the T cell phenotype upon long term or 
chronic immune challenges.

The main finding of this study is that TSAd regulates polarization of key molecules, including actin and mem-
bers of the PAR3 complex, to the IS in T cells during early APC interactions. This results in altered MTOC 

Figure 3. Polarization of γ-tubulin towards IS in CD4+ T cells upon engagement of TCR. (A) Sample images 
show absence (−) and presence (+) of γ-tubulin oriented towards IS in Id-specific T cells conjugated to Id 
positive F9 cells, displaying polarized F-actin and Id-specific TCR. (B) Histogram shows γ-tubulin polarization 
ratio in Id-specific T:APC conjugates displaying F-actin and Id-specific TCR polarization to the synapse, using 
T cells from either Sh2d2a+/+ or Sh2d2a−/− mice, after 30 minutes incubation. The stippled line indicates the 
threshold value of 1.5. Conjugates with polarization ratio >1.5 were defined as having γ-tubulin polarized to IS. 
Data are from one experiment. Statistical significance was assessed using Mann-Whitney test. (C) Graph shows 
frequency of Id-specific T:APC conjugates displaying γ-tubulin polarization to the synapse. (D) Graph shows 
median γ-tubulin polarization ratios towards synapse in the presence of Id positive F9 cells. Data in C and D 
represent median values (+95% CI) of three independent experiments, n > 50 gated events in each experiment. 
Statistical significance was assessed using paired student’s t-test.
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polarisation, as well as IFNγ expression. Secretion of IFNγ at the IS is dependent on actin remodelling36. 
Intracellular vesicles associated to the GTPases Rab3d and Rab19 traffic IFNγ for secretion at the IS35. Whether 
these GTPases are also affected by the presence of TSAd remains to be studied.

Figure 4. Sh2d2a influences the kinetics of CD4+ T cell polarization towards the APC upon TCR-engagement. 
(A,C,E,G and I) Line charts show the frequency of (B) polarized F-actin (IS-positive conjugates), (C) Id-specific 
TCR (maturing IS-positive conjugates), (D) PKCξ, G) PAR3 and I) γ-tubulin (within maturing IS-positive 
conjugates) in Id-specific TCR T:APC conjugates displaying polarization in T cells towards the APC. (B,D,F,H 
and J) Line charts show the corresponding median polarization ratios towards the IS of Id-specific TCR T cells 
displaying polarization of F-actin, Id-specific TCR, PKCξ, PAR3 or γ-tubulin respectively. Data represents the 
median +− range of three separate experiments, n > 50 gated events in each experiment. Significance was 
determined by two-way ANOVA and Sidak’s multiple comparison test.
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Altered polarization of T cells towards the APC may represent a possible molecular mechanism for the 
improved resistance of Sh2d2a−/− Id-specific TCR transgenic mice towards experimental myeloma that we pre-
viously observed19. IFNγ is a major effector cytokine produced by CD4+ T cells, which can induce tumor-killing 
macrophages24,25. Elimination of the MHC negative plasmacytoma MOPC315 involves indirect recognition by 
CD4+ T cells of tumor antigen presented by infiltrating macrophages25,38,39, followed by differentiation of cytotoxic 
macrophages through direct contact with the T cells39,40. Our data suggest that altered cytoskeletal and polarisation 
dynamics in TSAd deficient CD4+ T cells during APC interactions could provide reduced secretion of IFNγ at the 
IS. It is thus possible that the improved tumor rejection in TSAd deficient Id-specific TCR transgenic T cells19 is 
caused by diffuse instead of polarized secretion of IFNγ during CD4+ T cell interactions with APC. In conjunction 
with a more slowly dividing effector T cells population, this may lead to improved and persistent recruitment of 
cytotoxic macrophages and increased tumor killing24,38,40,41. Whether recruitment of cytotoxic macrophages and 
bystander killing of the plasmacytoma cells is affected by lack of TSAd need to be explored39,40.

Our present data show that TSAd modulates early polarisation of the cytoskeleton as well as MTOC 
re-arrangement in T cells, however the molecular mechanism for how TSAd affects polarity of T cells remains 
to be determined. TSAd is an adapter for both Lck and Itk and promotes phosphorylation of Itk by Lck18 and 

Figure 5. Sh2d2a affects IFNγ in Id-specific TCR CD4+ T cells. (A) Sample images show absence (−) and 
presence (+) of IFNγ in TCR-Id CD4+ T cells conjugated to Id-positive APC, and displaying polarized F-actin 
and Id-specific TCR. Images showing expression of IFNγ accumulated to the T cell synapse. (B) Histograms 
show IFNγ staining of T cells with F-actin and TCR polarisation towards the synapse when conjugated to APC 
for 30 and 720 minutes respectively. (C) Line charts showing kinetics of IFNγ polarisation to synapse in T cell 
conjugates upon Id presentation. Data represents the average of 3 separate experiments, n > 50 gated events in 
each experiment. Significance was determined by two-way ANOVA and Sidak’s multiple comparison test. Mean 
+/− SD.
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phosphorylation of Lck Tyr192 by Itk14. T cells expressing Lck Phe192 displayed reduced ability to form conju-
gates with antigen presenting cells14. Lck is required for actin polarisation and MTOC reorientation upon TCR 
engagement42.

Cdc4243,44 is a key GTPase for establishing cell polarity45,46. Lck and Itk mediated signalling upon TCR stim-
ulation is required for Cdc42-WASP controlled actin polarisation towards the IS44. TSAd also promotes recruit-
ment of Lck and SLP-76 to Nck47. SLP-76 and Nck coordinates WASP recruitment to Cdc4243. Cdc42 controls 
polarity of cells through activation of multiple polarity pathways, including the PAR3 polarity complex48.

It is likely that the alterations in actin and polarity complex polarization in the Sh2d2a−/− T cells are mecha-
nistically linked to the overall reduced MTOC polarisation observed in the same cells. Though the mechanism for 
MTOC reorientation in T cells remains unclear, it appears to involve motor protein activity and polarity complex 
interactions49,50. It was recently proposed that Arp2/3 mediated actin nucleation tethers MTOC to the nucleus, 
through the linker of nucleoskeleton and cytoskeleton (LINC) complex51. During TCR stimulation Arp2/3 is 
recruited to the plasma membrane, resulting in local depletion of Arp2/3 and release of MTOC from the nucleus, 
allowing for its reorientation towards the IS51.

Taken together, it is conceivable that the change in TCR induced polarisation dynamics observed in 
Sh2d2a−/− CD4+ T cells is ultimately linked to altered Lck signalling, and downstream Itk and Nck mediated 
cytoskeletal polarisation14,47 (depicted in Fig. 652,53). However, whether TSAd modulates downstream polarization 
events through a Cdc42-dependent mechanism remains to be determined.

Conclusion
Polarisation of T cells towards the APC and altered expression on IFNγ in conjugated T cells stimulated with 
cognate antigen is regulated by the Lck adapter TSAd. This may explain why TSAd deficiency is associated with 
increased resistance towards tumors where IFNγ dependent macrophage mediated cytotoxicity is crucial.

Materials and Methods
Ethical Statements. All experiments were performed in accordance with relevant guidelines and regu-
lations. The animals were bred under conventional conditions, regularly screened for common pathogens and 
housed in compliance with guidelines set by the Experimental Animal Board under the Ministry of Agriculture 
of Norway. All experimental protocols involving transgenic and wild type animals were approved by the National 
Committee for Animal Experiments (Oslo, Norway). Peripheral blood mononuclear cells were isolated from 

Figure 6. Proposed mechanism for TSAd modulation of T cell polarity upon TCR stimulation. Upon repeated 
TCR stimulation, TSAd is expressed and modulates the activity of Lck and Itk. Presence of TSAd affects 
recruitment of Lck and SLP-76 to Nck and promote downstream re-organization of the cytoskeleton and 
MTOC towards the IS, possibly mediated by activation of Cdc42.
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healthy, adult, anonymous blood donors. Informed consent was obtained from all blood donors. The study was 
approved by the regional ethics committee (REK no S-09325b).

Antibodies and reagents. Antibodies used were anti-human CD3ε (OKT3, American Type Culture col-
lection, Manassas, VA), anti-CD28 (clone CD28.2, BD Biosciences), and anti-TSAd-DyLight 488 (clone OTI3C7, 
Origene), anti–IL-4 (11B11, Bio X Cell), anti-IFNγ-FITC, anti-CD4-PerCP-Cy5.5 (RM4–5) and anti-CD44-FITC 
(KM201, BD), anti-CD62L-PE (MEL-14, Southern Biotech), anti-γ–tubulin (GTU-88, Sigma) and anti- 
Id-specific TCR-PE (GB11354). Polyclonal antibodies were anti-PAR3 (Cat# 07-330, Millipore), anti-PKCξ (Η 
- 1), anti-PKCθ (C-18), anti-Scrib (C-6) and anti-SAP97 (H-60, Santa Cruz). Secondary antibodies were goat 
anti-donkey, goat anti-rabbit or isotype specific anti-mouse conjugated to Alexa Fluor 488 (Thermo Fisher 
Scientific). Cytkines were IL-2, IL-12 (Peprotech). Fluorescent markers were phalloidin Alexa Fluor 647, cell 
tracker violet (CTV), SNARF, LIVE/DEAD Fixable Near-IR (all from Thermo Fisher).

Mice and Cell Lines. The Sh2d2a−/− C57BL/6 and Id-specific TCR transgenic BALB/c mice were previously 
described19. Briefly, Sh2d2a−/− mice on a mixed C57BL/6–129 background were backcrossed to C57BL/6 or 
BALB/c mice. Sh2d2−/+ BALB/c mice heterozygous for Id-specific TCR were crossed with Sh2d2a−/+ BALB/c 
mice to generate littermates both for studies of Id-specific TCR transgenic mice and normal BALB/c mice with 
or without Sh2d2a. The BALB/c MHC class II positive B cell lymphoma cell line A20 and F9 (A20 cells stably 
expressing Id+ λ2315 L chain55) were cultured in complete medium (RPMI 1640 medium supplemented with 10% 
fatal calf serum (FCS), 1 mM non-essential amino acids, 1 mM sodium pyruvate, 1 mM L-glutamine, 100 units/
ml penicillin, 100 µg/ml streptomycin (all from GIBCOBRL®, Life Technologies™) and 50 µM β-mercaptoethanol 
(Sigma)).

Purification of CD4+ T Cells. Human CD4+ T cells were isolated from PBMC using Dynabeads® CD4 
Positive Isolation Kit, (ThermoFisher). Murine CD4+ T cells were isolated from single cell suspensions of spleens 
using Dynabeads® Untouched™ Mouse CD4 Cells Kit (ThermoFisher). The composition of the recovered popu-
lation was more than 90% CD4+ T cells as analysed by flow cytometry.

In vitro CD4+ T Cell Stimulation. Human CD4+ T cells were loaded with CTV before being stimulated 
with plate bound anti-CD3 (OKT3, 5 µg/ml) and soluble anti-CD28 (CD28.2, 1 µg/ml) in complete medium con-
taining 30 U/ml IL-2 for 4 days. Cells were then stained with anti-TSAd-DyLight 488 and analysed by flow cytom-
etry. Dividing cells were identified by CTV dilution. Murine CD4+ T cells were stimulated with Dynabeads® 
Mouse T-Activator CD3/CD28 beads (ThermoFisher), bead: cell ratio = 1:1 in complete medium containing 30 
U/ml IL-2. CD3/CD28 beads were removed after 3 days in vitro and cultured in the presence of IL2 (30 U/ml) 
for another 7 days. Live cells were counted by trypan blue dye exclusion using a TC20 automated cell counter 
(Bio-Rad), and phenotyped by flow cytometry at 0, 3, 7 and 9 days in vitro. Surface staining was performed using 
CD4-PerCP-Cy5.5, CD44-FITC and CD62L-PE in FACS buffer (2% FCS, 0,1% sodium azide in PBS) at 4 °C. Cells 
were stained subsequently with LIVE/DEAD Fixable Near-IR to exclude dead cell, fixed for 10 minutes with 2% 
PFA in FACS buffer, and acquired on a FACSCantoII. Data was analysed using FlowJo version 7.6 (Tree Star Inc.), 
where live cells were gated on CD4-PerCP-Cy5.5 followed by analysis of CD44-FITC and CD62L-PE.

Th1 differentiation assay. Id-specific TCR transgenic Th1 cells were obtained as previously described27. 
Briefly, splenic CD4+ T cells were cultured with 10 μg/mL anti–IL-4, 20 ng/mL IL-12 together with irradiated 
wild type splenocytes loaded with Id peptide as APC (1:3 T cell to APC ratio). The Id-peptide comprises residues 
91–101 of the λ2315 L chain corresponding to CDR3. Mutated residues 94, 95, 96 are crucial for I-Ed-restricted 
stimulation of Id-specific TCR transgenic CD4+ T cells56,57. Live cells were counted using a TC20 automated cell 
counter as above, at 0, 2, 5, 7 and 10 days in vitro before being phenotyped as described above on day 10.

Conjugation assay. CD4+ T cells from Id-specific TCR transgenic BALB/c mice expanded for 5 days 
using CD3/CD28 beads, were rested for 48 hours in the absence of beads before being stimulated with irradiated 
(2500 rad) F9 or A20 cells. F9 cells presenting Id-peptide on MHC II strongly activates Id-specific TCR trans-
genic CD4+ T cells22. CD4+ T cells were labelled with 0,1 µM SNARF as per manufacturers instructions. The 
parental A20 cell line was used as a negative control. 1 × 106 A20 or F9 target cells were co-cultured with 0,6 × 106 
Id-specific T cells in complete medium in 96 well U-bottom plates. Cells were centrifuged at 70 × g for 1 minute 
and incubated for indicated time points at 37 °C before stimulation. All subsequent pipetting was done gently 
with wide bore 200 µl pipette tips (VWR). Cells were stained with LIVE/DEAD Fixable Near-IR before being fixed 
with 2% PFA for 10 minutes, or fixed and permeabilised for 5 minutes with Acetone at −20 °C in case of γ–tubu-
lin staining, followed by GB113-PE staining which binds Id-specific TCR (mAb; GB11354), at 10 µg/ml in FACS 
buffer for 30 minutes. Cells were then permeabilised and stained with FACS buffer containing 0,1% Saponin, 
6,25U/ml Phalloidin Alexa Fluor 647 in combination with 1 µg/ml of one of the following antibodies: PAR3, 
PKCξ, PKCθ, Scrib, SAP97 (Santa Cruz), anti-γ–tubulin (Sigma) or IFNγ-FITC (BD). Cells were then washed and 
stained when necessary with secondary antibody goat anti-donkey, goat anti-rabbit or isotype specific anti-mouse 
conjugated to Alexa Fluor 488 (Thermo Fisher Scientific) together with DAPI. Cells were washed and stored in 
PBS, 0,1% NaAzide at 4 C until run on ImageStream X.

Imagestream acquisition and analysis. Samples were acquired at 40x magnification on a four-laser, 
twelve channel, ASSIST calibrated ImageStream X (Amnis, Seattle, WA) imaging flow cytometer. 405 nm, 488 nm, 
561 nm and 658 nm laser excitations were set to avoid pixel saturation. Single stained controls were collected and 
used to generate a compensation matrix to correct for spectral crosstalk. Data was analysed using IDEAS v6.1, 
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where the T cell mask was defined based on the signal of the cell tracker SNARF. Live cells were identified by via-
bility dye exclusion, and GB113 positive cells identified Id-specific TCR transgenic T cells. The aspect ratio and 
area of the DAPI signal was used to identify images containing two cells58. Selecting images with a high SNARF 
(T cell) intensity and aspect ratio was then done to identify images containing 1 T cell58. Using the “Interface” 
masking function in IDEAS58 the T cell synapse of the T cell was defined in all the images (Fig. 2A). Marker 
polarisation towards the synapse was quantified by calculating the average fluorescent signal in the synapse masks 
as a ratio to the average fluorescent signal of the whole T cell. To adjust for cell-to-cell variation in the size of the 
synapse mask, the signals were normalised against the area of the respective masks. A threshold ratio above 1,5 
was defined as the fluorescent marker being polarised to the IS, based on the polarisation ratio of the uniformly 
distributed cell tracker SNARF (not shown).

Statistical analysis. The data was exported and graphed using GraphPad Prism 6 (GraphPad Software, 
Inc.). To assess statistical significance, a two-tailed Student’s t-test was applied to compare two normally distrib-
uted datasets while two-way analysis of variance was applied to datasets with multiple time points. A significance 
level of 0,05 was used.
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