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Rhythmogenesis evolves as a 
consequence of long-term plasticity 
of inhibitory synapses
Sarit Soloduchin1,2 & Maoz Shamir  1,2,3

Brain rhythms are widely believed to reflect numerous cognitive processes. Changes in rhythmicity 
have been associated with pathological states. However, the mechanism underlying these rhythms 
remains unknown. Here, we present a theoretical analysis of the evolvement of rhythm generating 
capabilities in neuronal circuits. We tested the hypothesis that brain rhythms can be acquired via an 
intrinsic unsupervised learning process of activity dependent plasticity. Specifically, we focused on spike 
timing dependent plasticity (STDP) of inhibitory synapses. We detail how rhythmicity can develop via 
STDP under certain conditions that serve as a natural prediction of the hypothesis. We show how global 
features of the STDP rule govern and stabilize the resultant rhythmic activity. Finally, we demonstrate 
how rhythmicity is retained even in the face of synaptic variability. This study suggests a role for 
inhibitory plasticity that is beyond homeostatic processes.

Rhythmic activity has been reported to be related to a range of cognitive processes including the encoding of 
external stimuli, attention, learning and consolidation of memory1–5. In certain cases, changes in rhythmicity 
have been associated with pathological states6–8. Numerous theoretical studies have investigated various mecha-
nisms that may produce these rhythmic behaviors. All these mechanisms assume specific parameter ranges, such 
as the mean synaptic strength between different neuronal populations. Deviations from the assumed parameter 
range results in drastic changes to rhythmic activity. However, the underlying mechanism that allows the synaptic 
weights, for example, to evolve into a state of rhythmic activity, and then to choose and stabilize a specific rhythm 
still remains enigmatic. What also remains unclear is whether this mechanism can be based on activity dependent 
plasticity9,10.

Here we consider a specific type of activity dependent plasticity known as spike timing dependent plasticity 
(STDP). STDP can be thought of as an extension of Hebb’s rule11 to the temporal domain that takes the effect of 
the causal relationship between pre- and post-synaptic firing on the potentiation and depression of the synapse 
into account. STDP has been identified in various systems in the brain, and a rich repertoire of causal relations 
has been described12–22.

Considerable theoretical efforts have been devoted to investigating the possible computational implications 
of STDP23–41. It was shown that Hebbian STDP of excitatory synapses can give rise to the emergence of response 
selectivity at the level of the post-synaptic neuron by inducing competition between correlated subgroups of input 
neurons24,25,30. For example, in the visual system, modeling studies have shown how spatial correlations together 
with STDP can develop response selectivity in the form of ocular dominance and directional selectivity24,27,42–46. 
On the other hand, Hebbian STDP of inhibitory synapses may provide a homeostatic mechanism that can balance 
the excitatory and inhibitory inputs to the cell17,35,39,47,48.

Oscillatory activity may have a strong effect on STDP as oscillations cause neurons to fire repeatedly with dis-
tinct spike timing relations. In the context of development, oscillations and repeated spatiotemporal patterns of 
activity may play an important role in shaping emergent neuronal connectivity maps49,50. The effect and possible 
computational role of rhythmic activity on STDP has been addressed in several studies51–60. However, in all of 
these studies the rhythmic activity was either an inherent property of the neuron or inherited via feed-forward 
connections from inputs that were already oscillating.
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Can STDP contribute to the development of temporal structure in the neuronal response? In a recent work it 
was shown that STDP can contribute to synchronization in a network of interneurons oscillating in the gamma 
frequency61. It was further shown that STDP can facilitate the propagation of synchronous activity62. A numerical 
study simulating a large scale detailed thalamocortical model argued that oscillations may emerge with STDP63. 
However, the principles that underlie the emergence of oscillations with STDP remain unclear.

Here we investigated whether rhythmic behavior can emerge via a process of STDP, and if so – under what 
conditions, and how the features of the STDP rule govern the resultant rhythmic activity? We addressed these 
fundamental questions in a modelling study. We chose to study STDP dynamics using the framework of a simpli-
fied toy-model of two competing inhibitory populations with reciprocal inhibition. The choice of the toy-model 
was made primarily to enable complete analytical parsing. Nevertheless, it is important to note that this type of 
architecture has been widely used to model winner-takes-all computation and decision making64–69, has been 
observed in various brain regions70–72, and was recently suggested to implement a latency code readout mech-
anism for fast decisions73. Short term plasticity was also incorporated into our model in the form of firing rate 
adaptation in a manner that is similar to that of74,75 to enable a richer dynamical structure for the neuronal 
responses76–78. As we are interested in obtaining as complete analytical understanding we primarily focus on the 
most compact model description of reciprocal inhibition with the smallest number of parameters.

Below, we first define the dynamical model for the neuronal responses and analyze it for fixed synaptic 
weights. This analysis provides the phase diagram of the system, which depicts the different possible dynamical 
states of the network as a function of the synaptic weights. Next, we introduce STDP. STDP induces a flow along 
the phase diagram of the system, by allowing the synaptic weights themselves to evolve according to the plasticity 
rule in an activity dependent manner. This flow is then analyzed in the limit of slow learning. We show that under 
a broad range of parameters STDP can generate and stabilize oscillatory activity in the brain, and, that this oscil-
latory activity can be governed by global features of the STDP rule. Finally, we summarize our results and discuss 
possible outcomes and extensions to the simplified model studied here.

Results
The neuronal response model. We explored STDP dynamics in a model of two neuronal populations with 
reciprocal inhibition. The spiking activity of individual neurons in each population was modelled as an inhomo-
geneous Poisson process with a mean firing rate that obey the following dynamics:
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where Ni is the number of neurons in population i = 1, 2, rix is the firing rate of neuron x in population i that 
receives external excitatory input Ii. For simplicity we take I1 = I2 ≡ I. Throughout this paper, the function g(x) will 
be taken to be a threshold linear function of its input, = =+⌊ ⌋g x x x( )  for x > 0 and 0 otherwise (see also79). The 
term aix represents the adaptation variable of neuron x in population i, and parameter A denotes the adaptation 
strength. Jix,jy ≥ 0 is the strength of the inhibitory coupling from neuron y in population j to neuron x in popula-
tion i.

Parameter τm is the membrane time constant and τa is the time constant of the adaptation. It is assumed that 
adaptation is a slower process than the neural response to its input, τa > τm. Thus, the neuronal firing rate follows 
changes in its input with a time scale of τm and then adapts its rate in response to a constant input with a time scale 
of τa by decreasing its firing rate by a factor of 1 + A. We further assume, for simplicity, that the populations are 
relatively homogeneous. Thus, we omit the sub-indices x and y from Eqs (1–4). ri represents the mean activity in 
population i, and Jij the mean synaptic weight from a pre-synaptic neuron in population j to a post-synaptic neu-
ron in population i, see Eqs (21–24) in Methods. In the limit of slow adaptation, τ τ≡ →/ 0m a , a complete ana-
lytical solution is possible; see the phase diagram section and the limit cycle calculations in Methods. Unless 
noted otherwise the results are given in the → 0  limit and time is measured in units of the adaptation time 
constant, τa.

The phase diagram. Figure 1A depicts the phase diagram of the model in the plane of J12 and J21. If the 
inhibition from population 1 to population 2, J21, is sufficiently strong relative to the adaptation, J21 > 1 + A, there 
exists a fixed point solution that we term Rival 1, in which population 1 fully suppresses population 2 (r2 = 0). 
Similarly, the Rival 2 solution, in which population 2 fully suppresses population 1, exists for J12 > 1 + A. The Rival 
states are stable wherever they exist and may also co-exist (this bi-stable solution is denoted by B on the phase 
diagram); see the fixed points of the dynamics section in Methods.

For weak reciprocal inhibition, J21 < 1 + A and J12 < 1 + A, there is a solution in which both populations are 
active which we term the Fusion state. However, the Fusion state loses its stability for sufficiently strong inhibition, 

≡ > +Ĵ J J 121 12 . Consequently, there is a region in the phase diagram in which there is no stable fixed point 
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Figure 1. Neuronal dynamics. (A) The phase diagram. The regions of different types of solutions for the 
neuronal dynamics are depicted in the (quarter of the) plane of (non-negative) J21 and J12. (B). The limit cycle 
solution. The firing rate of populations 1 and 2 are plotted in black and blue, respectively, as a function of time 
(measured in units of τa) in the anti-phase oscillatory solution with T1 = 1.2 and T2 = 0.8, yielding J21 ≈ 2.36 and 
J12 ≈ 1.87 (see Eq. (43)). In this specific example we used I = 2, A = 2, the solid lines show the solution for 
 = .0 01 and the dashed depict the solution in the limit of → 0 . (C) The oscillation period along the diagonal. 
The oscillation period on the diagonal is shown as a function of the reciprocal inhibition strength for different 
values of the adaptation strength, A = 0.25, 0.5, 1, 1.5 from left to right. Solid lines show the analytical relation of 
Eq. (44) in the  → 0 limit. The circles depict the = .0 01  case. (D) The cross-correlation function. The 
neuronal cross-correlations Γ12 (green and black) and Γ21 (blue) are plotted as a function of the time difference, 
Δ (measured in units of the adaptation time constant τa). The black line depicts the correlations in the  → 0 
limit, whereas the green and blue lines show the = .0 01  case. Parameters were identical to B. For the  = .0 01 
case the correlations were evaluated from the numerical solution for the dynamics. (E) The ‘mean cross-
correlation’ function. The mean correlation, Γ+, in the limit of  → 0, (see subsection Calculation of the cross-
correlation function in Methods) is plotted as a function of Δ for T = 2 and different values of the T1 = T[0.1, 
0.2, … 0.9] shown by color. Note that the plots for T1 = x and T1 = T − x overlap. (F) The ‘difference cross-
correlation’. The difference in the cross-correlation, Γ−, in the limit of → 0 , is plotted as a function of Δ for 
T = 2 and different values of the T1 = T × {0.1, 0.2, … 0.9} shown by color from yellow (T1 = 0.1T) to blue 
(T1 = 0.9T). In E and F A = 2 and I = 2 were used.
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solution. In this region the system relaxes to a limit cycle (i.e., a periodic oscillatory solution, denoted by L.C. on 
the phase diagram) of anti-phase oscillation, Fig. 1B. In this case, the limit cycle solution has two phases. During 
phase 1, population 1 is dominant and active, r1 > 0, whereas population 2 is quiescent, r2 = 0. However, this state 
is not stable. Due to the adaptation, the activity of population 1 will decrease until population 2 is released from 
its inhibition and will further suppress population 1. During phase 2, population 2 is dominant and population 1 
is quiescent. In the limit of slow adaptation,  → 0, a complete solution for the limit cycle can be derived; see the 
limit cycle solution section in Methods.

We denote by Ti the dominance time of population i, and by T = T1 + T2 the period of the oscillations; see 
Fig. 1B. Along the diagonal of the phase diagram, = = ˆJ J J12 21 , the dominance times are equal, T1 = T2 = T/2, and 
the oscillation period monotonically increases from zero on the boundary of the stable Fusion solution, =Ĵ 1, to 
infinity on the boundary of the Rival solutions, = = = +Ĵ J J A112 21 , Fig. 1C. The dominance time of popula-
tion 1, T1, diverges to infinity on the boundary of Rival 1 state, = ∞→ + Tlim J A(1 ) 121

, and similarly T2, diverges on 
the boundary of Rival 2 state; see Eqs (40 and 43) in the limit cycle solution section in Methods. Thus, the basic 
features of the oscillatory solution can be understood from the geometry of the phase diagram.

The correlation function. One key factor that shapes STDP dynamics is the pre-post cross-correlation 
function. Because neuronal activities follow independent inhomogeneous Poisson processes statistics, the 
cross-correlation of different neurons is given by the product of their mean firing rates. Specifically, we are be 
interested in the temporal average of these correlations (see below). For a periodic solution we define

∫Γ Δ ≡ + Δ .
dt
T

r t r t( ) ( ) ( ) (5)ij
T

i j
0

Figure 1D shows the temporal average cross-correlation, Γij(Δ), for finite  (green and blue) and in the limit of 
 → 0 in black. Note that the main difference is the slight deviation in the oscillation period due to finite , which 
is more important at low T. A detailed derivation of the cross-correlation functions appears in Methods. To ana-
lyze the STDP dynamics it is convenient to use the following quantities:

Γ Δ =
Γ Δ + Γ Δ

+( ) ( ) ( )
2 (6)

21 12

Γ Δ = Γ Δ − Γ Δ−( ) ( ) ( ), (7)21 12

as shown in Fig. 1E,F, respectively, as a function of the time difference, Δ, for T = 2 and different values of T1 (dif-
ferentiated by color). In general, Γ±(Δ) are periodic functions of the time difference, Δ, with a period of T. Γ+(Δ) 
is a positive even function of the time difference, Δ, that is symmetric with respect to T/2, whereas Γ−(Δ) is an 
odd function of Δ that is anti-symmetric with respect to T/2. Importantly, on the diagonal of the phase diagram, 
from symmetry, one obtains that Γ−(Δ) = 0.

The STDP rule. The above analysis was carried out for fixed values of the synaptic weights, assuming that the 
time scales in which the synaptic weights change are much longer than the characteristic times of the neuronal 
population dynamics, τm and τa (see e.g.24,29,32,36). Next we consider the effect of STDP. We assume that initially 
the synaptic weights are relatively weak (i.e., near the origin of the phase diagram in the Fusion state) and examine 
how activity dependent plasticity shapes its evolution. Hence, the STDP dynamics can be thought of as a flow on 
the phase diagram. We are interested in understanding how the features of the STDP rule shape this flow. In par-
ticular, we aim to elucidate when this flow leads the system into the limit cycle region. Following Luz and Shamir36 
we write the STDP rule as the sum of two processes, potentiation and depression,

λ αΔ = Δ − Δ+ −J K t K t( ( ) ( )) (8)

where ΔJ is the synaptic weight difference associated with pre and post spikes with a time difference of 
Δt = tpost − tpre. The functions K±(t) are the temporal kernels for the potentiation (+) and depression (−) of 
the STDP rule, respectively, and α is the relative strength of the depression. Parameter λ is the learning rate. We 
assume that the learning process occurs on a slower time scale than the adaptation. Specifically, here we focus on 
the family of temporally a-symmetric exponential learning rules:

τ
= Θ ±τ

±
±

±K t e Ht( ) 1 ( )
(9)

Ht/

where Θ(x) is the Heaviside step function, and τ± denote the characteristic time scales of the potentiation (+) and 
depression (−) branches of the rule. The parameter H = ±1 governs the nature of the learning rule, with H = 1 for 
a “Hebbian” rule (i.e., potentiating at the causal branch, when the post fires after pre, Δt > 0), and H = −1 for the 
“Anti-Hebbian” STDP rule. Below we analyze the mean field approximation in the limit of λ → 0.

STDP dynamics in the limit of slow learning. Deriving the dynamic equations. Changes to the syn-
aptic weights following the plasticity rule of Eq. (8) in short time intervals occur as a result of either a pre or 
post-synaptic spike during this interval. Thus, we obtain
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where ρ δ= ∑ −t t t( ) ( )l lpost/pre
post/pre  is the spike train of the post/pre neuron written as a sum of delta function 

at the neuron’s spike times t{ }l l
post/pre . In the limit of slow learning, λ → 0, the right hand side of Eq. (10) can be 

replaced by its temporal mean, yielding (see also24,29,32,36),

∫λ α= Γ − ′ ′ − ′ ′.
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In regions of the phase diagram where a stable fixed point solution exists, i.e., = ⁎r t r( )i i , the correlation func-
tion is given by the product of the time independent means, Γ = ⁎ ⁎t r r( ) 1 2 , and one obtains that = J J12 21. As the 
firing rates are non-negative and the temporal kernels of the potentiation and depression, K±, have an integral of 
one, the sign of J  is determined by 1 − α. As a corollary, the synaptic weights will flow towards the region of the 
limit cycle solution from initial conditions close to the origin in the phase diagram if α < 1. This result holds for 
any choice of temporal structure for the STDP rule. In particular it is independent of the Hebbianity (the value of 
H) of the STDP rule. Note that a similar condition (α < 1) was assumed to be the biologically relevant choice for 
inhibitory plasticity in35. Thus, initial conditions of weak synaptic coefficients (Jij close to the origin) will flow 
towards the region of the limit cycle solution and will enter it near the diagonal, J21 = J12.

Order parameters of the STDP dynamics. In the region of the limit cycle the STDP dynamics do not necessarily 
flow in parallel to the identity line, but rather depend on the specific limit cycle solution and on the temporal 
structure of the STDP rule. It is convenient to formulate the STDP dynamics in terms of the mean and relative 
synaptic weights,

≡
+

+J
J J

2 (12)
21 12

≡ −−J J J (13)21 12

Using the above definitions, and averaging and subtracting Eq. (11) yields

∫λ α= ± Γ ′ ′ − ′ ′.±
−∞

∞

± + −
J t t K t K t dt( ) ( )[ ( ) ( )] (14)

For Γ± see Eqs (6 and 7) and Fig. 1E,F.
On the diagonal, J12 = J21, due to the symmetry of the limit cycle solution Γ12(t) = Γ21(t), and as a result =−

J 0. 
The mean correlation, Γ+, on the other hand, is a positive even function of time with a period of T. Near the 
boundary of stable Fusion, the oscillation frequency diverges, T → 0. In this limit (for  → 0) the limit cycle solu-
tion for the neuronal responses will approach a square wave solution (with 50% duty cycle on J12 = J21) transition-
ing between 0 and 2I/(2 + A) in anti-phase. The mean correlation function, Γ+(Δ), will approach a triangular 
wave starting at 0 for Δ = 0 and peaking at 2I2/(2 + A)2 for Δ = T/2. Consequently, for T → 0, the integral on the 
right hand side of Eq. (14) will be dominated by the DC component of Γ+, yielding λ= α

+
−

+
J t I( )

A
2 1

(2 )2  in this 
limit. Hence, the same condition that allows the STDP dynamics to enter the limit cycle region from the Fusion 
region will also cause it flow in the positive J+ direction after entering the Limit cycle region.

STDP dynamics along the diagonal. Equation (14) provides two non-linear equations for J+ and for J− that are 
coupled in a non trivial manner via the dependence of the correlations on the synaptic weights. However, on the 
diagonal of the phase diagram the situation is simplified: since =−

J 0 the problem is reduced to a one dimen-
sional flow. To analyze the dynamics of J+ on the diagonal it is convenient to write it as the sum of two terms:

λ
α= −+ + +

  J J J1
(15),pot ,dep

∫= Γ+
−∞

∞

+ + −
J t K t dt( ) ( ) (16),pot/dep /

Figure 2A,B show +
J ,pot and +

J ,dep, respectively, on the diagonal as a function of the oscillation period, T (note 
that T is a function of Ĵ , see e.g. Fig. 1C), for different values of A (differentiated by color). As can be seen from the 
figure, +

J ,pot/dep decreases monotonically from the value of I2/(2 + A)2 at T = 0 to 0 as T → ∞ at J12 = J21 = 1 + A (at 
the crossing to the bi-stable region). Due to the symmetry of the mean cross-correlation function, Γ+(t) = Γ+(−t), 
+
J ,pot, +

J ,dep and +
J  are independent of the Hebbianity of the STDP rule, H. Thus, the results of Fig. 2 hold for both 

Hebbian and Anti-Hebbian plasticity rules. Moreover, +
J ,pot and +

J ,dep only differ by the time constant of K±. 
Figure 2C shows +

J ,pot as a function of the oscillation period, T, for different values of τ+ (depicted in color). All 
the curves decrease monotonically to zero, albeit with a different time scale; consequently, if τ+ < τ− then 

≤+ +
 J J,pot ,dep and there is equality only at T = 0 (on the boundary of stable Fusion).
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The dynamics of J+ along the diagonal are determined by the weighted sum of both +
J ,pot and α− +

J ,dep. +
J  will 

be positive for α < 1 for small T - near the crossing from the Fusion region. For τ+ < τ− and 1 > α > αc(τ+, τ−) 
(see Methods), +

J  will change its sign at T*; thus, the fixed point (note =−
J 0 on the diagonal) at T* will be stable 

along the J+ direction. This scenario is illustrated in Fig. 2D that shows +
J  on the diagonal as a function of T (for 

Figure 2. The dynamics of J+ along the diagonal. (A) The potentiation term, +
J ,pot, of the mean synaptic 

weights, J+, Eq. (16), is shown as a function of the oscillation period along the diagonal for different values of 
A = 1/4, 1/2, 3/4, 1, 3/2, … 4 (from top at low A values to bottom). (B) The depression term, +

J ,dep, of the mean 
synaptic weights, J+, Eq. (16), is shown as a function of the oscillation period along the diagonal for different 
values of the adaptation strength, A (as in A). (C) The effect of the STDP time constant. The potentiation term, 
+
J ,pot, is shown as a function of the oscillation period along the diagonal for different values of τ+ = 1/4, 1/5, … 
5, by different colors from blue (low τ+) to red. Here A = 2 was used. (D) The J+ dynamics along the diagonal. 
The value of +

J  is shown as a function of the oscillation period along the diagonal for different values of A using 
the same values and color code as in A, using α = 0.9. (E) The effect of the relative strength of depression. The 
value of +

J  is plotted as a function of the oscillation period along the diagonal for different values of α = 0.5, 
0.55, … 1 from top (α = 0.5) to bottom (with A = 4). (F) Oscillation period at the STDP fixed point. The 
‘learned’ oscillation period, T*, is shown as a function of α for different values of τ− differentiated by color. The 
vertical dashed lines depict the value of αc, see calculation of αc section in Methods. In all panels I = 2 was used, 
and λ = 1 was taken in D and E, for purposes of illustration. Unless otherwise stated, τ+ = 0.5 and τ− = 1 used. 
All units of time were measured in units of τa.
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different values of A, depicted by color). Interestingly, for this choice of exponential kernels for the STDP rule, the 
fixed point does not depend on the adaptation strength, A. The oscillation period at the fixed point, T*, is zero for 
α = 1 and diverges as α approaches a critical value αc(τ+, τ−), Fig. 2E,F, see subsection Calculation of αc in 
Methods. For fixed α ≤ 1 and τ+, T* is minimal for τ− → ∞, increases monotonically as τ− decreases and will 
diverge for a critical value τ−,c < τ+ such that αc(τ+, τ−) = α. For τ− < τ−,c (and α ≥ 1) there will be no fixed point 
along the diagonal and the STDP dynamics along the diagonal will flow outside of the limit cycle region.

STDP dynamics away from the diagonal. The stability of the STDP fixed point requires stability in the J− direc-
tion as well. On the diagonal =−

J 0. A small perturbation in the direction of J− will affect J− dynamics via the 
cross-correlation term Γ−(Δ), Eq. (14). The cross-correlations depend on the synaptic weight via the dominance 
times, T1 and T2. Hence, for a small perturbation around the diagonal, ΔJ− = J−, one obtains
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The geometry of the phase diagram (Fig. 1A) reveals that increasing (decreasing) J− results in advancing 
towards the Rival 1 (Rival 2) region, and consequently increasing T1 (T2) and (decreasing) T− = T1 − T2; hence, 
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As above, it is convenient to define
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Similar to +
J ,pot/dep, +M ,pot/dep is also written in the form of the integral of the product of two variables; namely, 

the learning rule and a term that depends on the cross-correlations. However, M+,pot/dep is not necessarily positive, 
as Γ−(Δ) and similarly Γ−

−

d
dT

 are not necessarily positive. This is illustrated in Fig. 3A,B that show Mpot and Mdep, 
respectively, along the diagonal as a function of T for different values of A (depicted by color) for Hebbian STDP, 
H = 1. Moreover, Γ−(Δ) and similarly Γ Δ−

−

d
dT

( )  are odd functions of Δ. Consequently, −

−

dJ

dT
,pot  and −

−

dJ

dT
,dep  in Fig. 3A,B 

have different signs.
The value of M = Mpot − αMdep along the diagonal is depicted as a function of the oscillation period, T, for 

different values of A (differentiated by color) and α (shown by gray level) in Fig. 3C,D, respectively. Here, M is 
positive, and as a result, the STDP fixed point along the diagonal will be stable with respect to fluctuations in the 
J− direction for Hebbian plasticity.

Finally, as Γ− and similarly Γ−

−

d
dT

 are odd functions of time, switching from the Hebbian plasticity rule, H = 1, to 
Anti-Hebbian, H = −1, will result in a change of the sign of Mpot, Mdep and of M. Consequently, a fixed point (on 
the diagonal) that is stable in the J− direction for Hebbian plasticity will be unstable for Anti-Hebbian plasticity 
and vice versa. Figure 4 shows the flow induced by the STDP on the phase diagram for the (A) Hebbian and (B) 
Anti-Hebbian learning rules. As can be seen, the Anti-Hebbian learning rule is unable to converge to a state that 
allows oscillatory activity. In contrast, the Hebbian STDP generates symmetric (T1 = T2) anti-phase oscillatory 
activity in which the oscillation period is determined and controlled by the relative strength of the depression, α. 
This specific learning rule provides robustness with respect to the strength of adaptation, A. Fluctuations in A do 
not affect the period of the oscillation.

Discussion
We examined whether rhythmic activity can emerge via an unsupervised learning process of STDP. Our main 
result is that under a wide range of parameters, rhythmicity can develop via STDP. Specifically, we found that to 
develop the capacity for rhythmic activity, the STDP rule must obey the following conditions (i) a bias towards 
potentiation, α < 1, will lead the system into the oscillatory region of the phase diagram, (ii) a longer character-
istic time for depression than for potentiation, τ− > τ+, will enable the existence of a fixed point on the diagonal 
that can be governed by the exact value of α, and (iii) the stability of the fixed point in the orthogonal direction is 
governed by the ‘Hebbianity’ of the plasticity rule.

Using the framework of a simplified toy-model, Magnasco and colleagues studied the computational impli-
cations of neuronal plasticity in recurrent networks80. It was claimed that Anti-Hebbian plasticity rules drive the 
network into a state of near criticality. This raises the question of why we did not find traces of criticality in our 
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model. The explanation has to do with the differences between our models. The most significant is the temporal 
structure of the learning rule, which together with the neuronal cross-correlations is the driving force of STDP 
dynamics. In their work, Magnasco and colleagues used an instantaneous plasticity rule. Consequently, only 
correlations at a zero time difference, which are inherently symmetric, contributed to their learning dynamics. As 
a result, only the symmetric part of their synaptic connectivity pattern was affected by the dynamics. In contrast, 
in our model both J+ and J−, which denote the symmetric and anti-symmetric parts of the connectivity pattern -  
respectively, evolve with time. When one allows for a non-trivial STDP rule, much richer dynamical behaviors 
can develop60. Nevertheless, it is important to emphasize we do not claim that that Hebbian but not Anti-Hebbian 
plasticity will induce rhythmogenesis. We found that due to inherent symmetry if the Hebbian STDP fails to yield 
rhythmogenesis then the Anti-Hebbian can, and vice-versa.

Control of rhythmic activity. STDP may also provide a mechanism for selecting and stabilizing oscil-
lations; for example, the oscillation frequency can be governed and manipulated by the relative strength of the 
depression, α, or changes in the time constants of the STDP rule, τ±, see Fig. 2F. Disruption of the STDP rule may 
result in changes to the learned oscillation frequency.

Simplifying assumptions. The analysis of STDP dynamics in recurrent networks is challenging. To facili-
tate the analysis we used the framework of a simplified model for the neuronal responses and made several sim-
plifying assumptions. We assumed a separation of three time scales τ τ λ−

 m a
1. The separation of the 

neuronal time constant from that of the adaptation enabled us to obtain an analytic expression for the temporal 
correlations that drive the STDP dynamics. The assumption that long term synaptic plasticity occurs on a longer 
time scale allowed us to consider STDP dynamics as a flow on the phase diagram. Numerous studies have 

Figure 3. Stability in the J− direction along the diagonal. (A) The value of Mpot is shown as a function of T along 
the diagonal of the phase diagram in the Limit cycle region for different values of A = 1/4, 1/2, 3/4, 1, 3/2, … 4 
(from top at low A values to bottom). Here τ+ = 0.5 was used. All units of time were measured in units of τa.  
(B) The value of Mdep is shown as a function of T for different values of the adaptation strength, A (as in (A)). 
Here τ− = 1 was used. (C) J− dynamics along the diagonal. The value of M is shown as a function of the oscillation 
period along the diagonal for different values of A (same values and color code as in A), using α = 0.9. (D). The 
effect of the relative strength of depression. The value of M is plotted as a function of the oscillation period along 
the diagonal for different values of α = 0.5, 0.55, … 1 from bottom (dark, α = 0) to top (light, α = 1), using A = 2.
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employed phase diagram description to depict the possible dynamical states of the network as a function of vari-
ous parameters. Our approach to STDP dynamics adds another layer to this description.

Figure 5 shows numerical solutions for the STDP dynamics. The vector field depicts our analytic solution to 
the STDP dynamics using exact expressions for the cross-correlations (see calculation of the cross-correlation 
function in Methods) in the limit of  = 0. The red, green and blue traces show the results of numerically simu-
lating the STDP dynamic with a neuronal model with a small but finite  = .0 001. As can be seen from the figure, 
the numerical results with  = .0 001 closely adhere to the analytically calculated flow and converge to the same 
fixed point. The dashed black line depicts the numerical results of simulating the model with = .0 2 . Taking 
 = .0 2 affects the temporal pattern of the oscillations, Fig. 5D (compare with Fig. 5C for = .0 001 ); mainly no 
population is ever fully suppressed. This affects the cross-correlation function, which in turn will modify the flow 
along the phase diagram. As a result, the STDP dynamics will converge to a different fixed point. Nevertheless, the 
STDP dynamics still converges to a state of anti-phase oscillations, Fig. 5C. Thus, although quantitatively the 
results are different, similar qualitative behavior is obtained. The limit of small  enabled us to obtain complete 
analytical expressions for the cross-correlations.

The interplay between short and long term plasticity processes deserves consideration. Oscillations would not 
be possible in this model without short term plasticity; here, adaptation. Thus, short term plasticity plays a major 
role in shaping the temporal structure of the neuronal cross-correlations, Γij(t) that drive the STDP dynamics, 
which in turn, may or may not converge to a state that allows this oscillatory behavior. It is interesting to note that 
short term plasticity, specifically the value of A, affects and shapes the phase diagram. Decreasing the value of A 
to zero, for example, will shrink the region of oscillatory activity to zero and rhythmic activity will no longer be 
possible.

The reflection of the flow on the phase diagram with respect to the diagonal when reflecting the STDP rule 
with respect to time stems from the inherent symmetry of the cross-correlation function which drives the dynam-
ics (Γij(Δ) = Γji(−Δ)); hence, it is general and holds regardless of the choice of model. Certain other assumptions 
can easily be relaxed. For example, we assumed symmetry between the two competing populations. However, 
using the (threshold) linearity of our model one can easily rescale the neuronal responses to allow for different 
inputs and adaptation strengths. On the other hand, the independence of the fixed point, T*, on the adaptation 
strength, A, is specific to this model and for the choice of an exponentially decaying STDP rule.

Choice of network architecture. A central assumption in this study was the choice of (a reciprocal inhibi-
tion) architecture. Because it is not possible to analyze a system with an undefined architecture some choice had 
to be made. The specific choice of architecture was made to obtain a model that could be fully analyzed. However, 
the choice of architecture (including the short-term-plasticity mechanism) shapes the phase diagram, allows for 
the different regions of dynamical solutions (fixed points, In/Out of/Anti -phase oscillations, etc.) and determines 
the cross-correlations. Additionally, under certain conditions, propagation delays may also have a major effect on 
the computational outcome of the STDP dynamics81. For example, The dotted line in Fig. 5A shows the numerical 
results of simulating the STDP dynamics in a neuronal model that also incorporates within population inhibition, 
see section neuronal dynamics with local inhibition term in Methods. The STDP dynamics with local inhibition 
follows a different flow on the phase diagram and converges to a different point. Nevertheless, the STDP dynamics 
converges to a state of anti-phase oscillations, Fig. 5E. Incorporating a local inhibition term will not only modify 
the flow on the phase diagram, but will also change the phase diagram itself. Consequently, the effect of the net-
work architecture on STDP dynamics should not be underestimated. Because this effect is highly non-linear, one 

Figure 4. The flow on the phase diagram. The direction of the dynamic flow; i.e., the normalized vector  J J( , )21 12 , 
is shown in the Limit cycle region of the phase diagram for (A). Hebbian plasticity, H = 1 in Eq. (9), and (B). 
Anti-Hebbian plasticity, H = −1. The parameters used here were: A = 2, τ+ = 0.5 and τ− = 1.
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cannot generalize these results to other architectures in a straightforward manner. Nevertheless, the approach 
delineated here; namely, studying the induced flow on the phase diagram of the system, can be applied to other 
models in the limit of a slow learning rate.

Robustness to synaptic variability. Yet another central simplifying assumption we made throughout our 
analysis was that the population-mean firing rates and the mean synaptic weights were representative of single 
neuron firing rates and single synaptic weights. This allowed us to explore a model with reduced dimensionality 
(the phase diagram was analyzed in 2 dimensions instead of 2N1N2 dimensions) and only to study the dynamics 
of the global order parameters such as the effective (or mean) couplings between the two populations. However, 
it is not at all obvious that the mean synaptic weight is indeed a good representative of the synaptic weight dis-
tribution, since for instance, the neuronal populations may break down into sub-clusters. Figure 5A shows that 
even when individual synapses are free to potentiate and depress independently, the mean weights follow the 

Figure 5. Numerical simulation of STDP dynamics. We solved the STDP dynamics numerically, Eq. (11), with 
N1 = N2 = 10, α = 0.9, τ+ = 0.5 and τ− = 1. The cross-correlation functions were evaluated numerically using the 
separation of time scales. For each update step of the synaptic weights, the cross-correlations were evaluated by 
numerically solving the 2(N1 + N2) dynamics of the neuronal firing rates, Eqs (1–4), with fixed values for the 
synaptic weights with I = 2, A = 2 and = .0 001 . (A) Trajectories of the order parameters, = ∑J Jij N N x y ix jy

1
, ,

1 2
, 

for five simulations are plotted on the phase diagram and the flow chart. The red, green and blue traces depict 
the learning dynamics of the same model with = .0 001  from different initial conditions (marked by +). The 
dashed black curve depicts the learning dynamics of the order parameters with  = .0 2. The dotted black curve 
depicts the learning dynamics of the order parameters for a model with a local inhibition term = .J 0 5loc , and 
 = .0 2. The vector field shows the STDP flow for  = 0 calculated using the analytic expressions for the 
correlations, subsection Calculation of the cross-correlation function in Methods. (B) Synaptic weight 
distribution for the three examples with = .0 001  in A (red, green and blue), differentiated by color. (C) 
Neuronal dynamics at the STDP fixed point for the slow adaptation case, = .0 001 . The firing rates of the N1 
population 1 neurons (red traces) and N2 population 2 neurons (blue traces) in arbitrary units are shown as a 
function of time. Since the firing rates of different neurons from the same population overlapped, we shifted 
them vertically for purposes of visualization. For the three different initial conditions (with  = .0 001) 
illustrated in A the oscillation period was T = 1.433, T = 1.432, and T = 1.436, and all units of time are measured 
in units of τa. (D) Neuronal dynamics with = .0 2  at the STDP fixed point. The firing rates of the N1 population 
1 neurons (red traces) and N2 population 2 neurons (blue traces) in arbitrary units are shown as a function of 
time. The firing rates of different neurons were shifted vertically for purposes of visualization. The oscillation 
period was T = 2.165 in units of τa. (E) Neuronal dynamics with local inhibition, Jloc = 0.5, and = .0 2  at the 
STDP fixed point. The firing rates of the N1 population 1 neurons (red traces) and N2 population 2 neurons (blue 
traces) in arbitrary units are shown as a function of time, see subsection Neuronal dynamics with local 
inhibition term in Methods. The firing rates of different neurons were shifted vertically for purposes of 
visualization. The oscillation period was T = 2.17 in units of τa.
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predicted flow on the phase diagram. Moreover, the mean synaptic weights remain representative of the individ-
ual weights that are distributed around them, Fig. 5B. Nevertheless, the distribution around the mean weights 
is not trivial. Consequently, different neurons may receive different levels of inhibition and miss-tuning of the 
oscillation frequency might occur. Figure 5C shows that the firing rates of different neurons (vertically shifted) in 
the two populations (differentiated by color) are identical in spite of the synaptic weights distribution. Moreover, 
even though synaptic weight distribution is different in the three examples shown (differentiated by color), the 
oscillation period is almost identical. Thus, functionality, in terms of obtaining a specific oscillation frequency, 
is retained even in the face of synaptic variability. What is the source of this remarkable outcome? We believe 
that this results from the fact that the STDP dynamics (e.g. Eq. (11)) only depend on the synaptic weights via the 
cross-correlations, which in turn, are determined by the oscillation period and dominance times. Thus, the fixed 
point of the STDP dynamics itself is determined by the oscillation period due to the activity dependence of the 
plasticity rule. On the other hand, to obtain this rhythmic activity it was also essential to have an architecture with 
two distinct inhibitory populations.

Methods
Phase diagram and limit cycle calculations. The fixed points of the dynamics. From Eqs (1–4) we 
obtain the dynamics of the mean firing rates in each population

 = − + − − + ⌊ ⌋r r I J r a (21)1 1 1 12 2 1

= − +a a Ar (22)1 1 1

= − + − − + ⌊ ⌋r r I J r a (23)2 2 2 21 1 2

= − +a a Ar (24)2 2 2

We also rescaled time and hereafter measure time in units of the adaptation time constant. We distinguish two 
types of fixed points: Rival states, in which one population fully suppresses the other, and Fusion, in which both 
populations are active.

The Rival states. The Rival-1 solution assumes >⁎r 01  and =⁎r 02 , yielding = +⁎r I A/(1 )1 , = +⁎a IA A/(1 )1  
and = =⁎ ⁎a r 02 2 . The existence condition for this solution is that the net input to population 2, I − J21r1 − a2 is 
non-positive, at the fixed point, J21 ≥ 1 + A. This solution is always stable where it exists.

The Fusion state. The Fusion solution assumes >⁎r 01  and >⁎r 02 , yielding
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where =Ĵ J J12 21. The existence of the Fusion solution requires the inputs of both populations to be non-negative. 
For < −Ĵ A(1 )

2 2 the existence condition requires J12 ≤ 1 + A and J21 ≤ 1 + A (bottom left square in the phase 
diagram, Fig. 1A, where no Rival solution exists). By contrast, for > −Ĵ A(1 )

2 2 the existence condition requires 
J12 ≥ 1 + A and J21 ≥ 1 + A (the region in the phase diagram where both Rival solutions exist). However, the Fusion 
state is not always stable. By performing standard stability analysis around the Fusion fixed point we expand the 
dynamics around the fixed point to a leading order in the fluctuations
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where δ ≡ − ⁎x x x , yielding the four eigenvalues for the stability matrix:

λ = − + ± + − +±   



ˆ ˆ ˆJ J A J2 (1 ) (1 ) 4 (1 ) (28),
1 2 1 2 1

1 2   

The sum of the pair of eigenvalues λ+ ±,1 2 is − − + <Ĵ (1 ) 0  and their product is  + + >ˆA J(1 ) 01 ; hence, 
these eigenvalues are always stable. On the other hand, for the pair of eigenvalues λ− ±,1 2 the sum is + − +Ĵ (1 ), 
which is negative if and only if inhibition is sufficiently weak, < +Ĵ 1  (in that case their product will also be 
positive, assuming  is small). Thus, the Fusion state loses its stability when reciprocal inhibition becomes suffi-
ciently strong, > +Ĵ 1 .

The limit cycle solution. In the region of the phase diagram where no stable fixed point exists the network 
dynamics relaxes to anti-phase oscillations. Below we provide a detailed solution for the limit cycle in the limit of 
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→ 0 . The limit cycle is solved using the anti-phase oscillations ansatz. First the neuronal dynamics is solved for 
each phase, where the dynamics are linear. This provides a piecewise solution with several parameters to be deter-
mined. Then we apply two sets of constraints: periodicity and transition.

Assuming the anti-phase oscillations ansatz we separate the cycle into two phases. During phase-1 population 
1 is dominant and fully suppresses population 2, for times t ∈ (0, T1). In the limit of slow adaptation, → 0 , 
dynamics during phase-1 are given by:

= − ∈r I a t T( (0, )) (29)1 1 1

= − + +a A a AI(1 ) (30)1 1

=r 0 (31)2

= −a a (32)2 2

where we measure time in units of τa. Eqs (29–32) can be easily solved, yielding

= +
+

− ∈− + − +a t a e IA
A

e t T( ) (0)
1

(1 ), ( (0, ))
(33)

A t A t
1 1

[1 ] [1 ]
1

= −a t a e( ) (0) (34)t
2 2

Similarly, during phase-2, when population 2 is dominant and fully suppresses population 1, = ′ + ∈t t T1  
T T T( , )1 1 2+ , we obtain

′ + = ′ ∈− ′a t T a T e t T( ) ( ) , ( (0, )) (35)t
1 1 1 1 2

′ + = +
+
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(36)

A t A t
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Continuity of the adaptation variables, ai, dictates that, for example, the initial conditions of Eq. (36), a2(T1), 
will be given from Eq. (34) by = −a T a e( ) (0) T

2 1 2
1. We now need to determine four parameters: a1(0), a2(0), T1 and 

T2. These parameters are determined by two sets of constraints. One is periodicity, namely
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The second set of constraints is given by the transition conditions. Specifically, the transition time from phase-
1 to phase-2 at T1 is not arbitrary; rather, T1 is a special point in time in which population 2 is released from being 
fully suppressed, such that the net input to population 2 changes its sign from negative to positive; thus,

= − −I J r T a T0 ( ) ( ) (41)21 1 1 2 1

= − −I J r a0 (0) (0) (42)12 2 1

which provides implicit equations for the dominance times, T1 and T2,
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Using Eq. (43), and taking the limit of T1 → ∞, we obtain J21 → 1 + A. Thus, the dominance time of population 
i, Ti, diverges on the boundary of Rival-i. Taking the limit of T1, T2 → 0 such that T1/T2 = β, yields → β

β
+ +

+ +
J A

A21
1 (1 )

1
 

and from symmetry → β
β

+ +
+ +

J A
A12

1 1/ (1 )
1 1/

, which obeys J12J21 → 1; hence, the limit of the zero oscillation period is 
obtained on the boundary of stable Fusion (note that these calculations were done for → 0 ).
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On the diagonal, = ≡ ˆJ J J12 21 , dominance times are equal, T1 = T2 = T/2,

=
−

−
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+

Ĵ
F T T

F T T e
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1
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Consequently, the oscillation period, T, increases monotonically along the diagonal of the phase-diagram 
from zero at the transition to Fusion ( =Ĵ 1) to infinity at the transition to the Rival states ( = +Ĵ A1 ).

Calculation of the cross-correlation function. Calculation of the (temporally averaged) cross- 
correlation function, Eq. (5), is done using the analytical solution for the neuronal responses in the limit of slow 
adaptation, → 0 . These correlations arise from co-fluctuation of the firing rates of the neurons and affect the 
STDP dynamics via their overlap with the STDP rule; thus, the relevant timescales are determined by the tempo-
ral structure of the STDP rule, Eq. (9). When the system relaxes to a fixed point solution, = ⁎r t r( )i i  (i = 1, 2), the 
cross-correlations are constant in time,

Γ = ⁎ ⁎t r r( ) (45)ij i j

Thus, correlations will be zero in the Rival states; hence, there will be no STDP. In the Fusion state the 
cross-correlations will be symmetric, Γ12(t) = Γ21(t). As a result, the STDP dynamics for J12 and J21 will be identi-
cal and the flow will be in the uniform direction, parallel to the diagonal line.

At the Limit cycle we use the analytical solution, Eqs (33–40), to calculate the cross-correlations in a straight-
forward manner. For Δ ∈ T T[0, min { , }]1 2  we obtain
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For Δ > min{T1, T2}, assuming without loss of generality that T1 ≥ T2
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Along the diagonal, on the edge of the stable Fusion state region, T → 0, the cross-correlation will resemble a 
triangular chainsaw function (in the → 0  limit) with period T and peak 2I2/(2 + A)2. Consequently, as T goes to 
zero, the overlap between the cross-correlation function and the STDP rule will be governed by the DC compo-
nent, yielding
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The above expressions for the cross-correlations were given in terms of the dominance times, {Ti} instead of 
the effective couplings Jij. The translation to the synaptic weights from the dominance times is possible by Eq. 
(43). However, because we were interested in studying the ability to learn and stabilize a specific oscillatory activ-
ity, it was more convenient to think about the dynamics in terms of the dominance times. Similarly, to consider 
stability with respect to the J− direction we utilized the derivative of Γ− = Γ21 − Γ12 with respect to T− = T1 − T2. 
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Calculation of αc. On the diagonal T1 = T2 = T/2, in the limit of slow oscillations, T → ∞, one obtains
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Using Eq. (63) yields
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Hence, if α is less than a critical value αc = N(τ+)/N(τ−), then +
J  will always be positive (along the diagonal). 

On the other hand, if α is larger than αc then +
J  will be negative for sufficiently large T, and a fixed point will exist 

if α < 1.

Neuronal dynamics with a local inhibition term. In Fig. 5 we also show results of simulating the STDP 
dynamics in a model that includes a local, within population, inhibition. To this end we replace Eqs (1–4) with

∑ ∑τ = − +
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