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Numerical and Experimental 
Investigation of the Hemodynamic 
Performance of Bifurcated Stent 
Grafts with Various Torsion Angles
Ming Liu1, Anqiang Sun1,2 & Xiaoyan Deng1,2

The “crossed limbs” strategy for bifurcated stent grafts (BSGs) is widely employed when abdominal 
aortic aneurysm (AAA) patients have unfavorable neck or highly splayed iliac arteries. Helical flow is 
regarded as a typical flow pattern within the human arterial system and is believed to have the positive 
physiological effects of inhibiting thrombosis formation and atherosclerosis. The “crossed limbs” 
strategy may induce helical flow and improve the stent graft outcome. To verify the performance of this 
strategy by considering hemodynamics, we constructed a series of idealized BSGs with various torsion 
angles and evaluated the hemodynamic performance, including the helical strength, time-averaged 
wall shear stress (TAWSS), oscillatory shear index, relative resident time (RRT), and displacement force. 
Our numerical results indicate that an increased torsion angle enhances the helicity strength at the iliac 
outlets. However, with increasing torsion angle, the TAWSS in the iliac graft decreases and the RRT 
increases. In addition, our numerical simulations and in vitro experiments reveal that the displacement 
force increases gradually with increasing torsion angle. In summary, the “crossed limbs” strategy may 
have benefits for AAA treatment in terms of helical flow, but because of the unfavorable hemodynamic 
performance verified by analyzing the hemodynamic indicators, the risk of stent graft migration 
increases with increasing torsion angle. Therefore, the “crossed limbs” strategy should be carefully 
employed in surgical AAA treatment.

During endovascular aneurysm repair (EVAR), the insertion of a bifurcated stent graft (BSG) into an abdomi-
nal aortic aneurysm (AAA) is more difficult and time-consuming when the patient has severe aneurysm neck 
angulation or highly splayed iliac arteries1,2. To address this problem, BSGs with intentionally “crossed limbs” 
are regularly employed3–5. With this deployment strategy, the cannulation time due to adverse anatomy, as well 
as the occurrence rate of complications, can be substantially reduced4–6. Stent graft thrombosis and migration 
are regarded as two typical complications of EVAR1,7. Stent graft thrombosis can occur as a result of stent graft 
thrombo-emboli and can lead to graft limb occlusion and lower-extremity ischemia. Migration is believed to be 
a long-developing process, which leads to endoleak, pressurization within the aneurysm sac, and AAA rupture.

Studies have revealed that helical flow is widely observed in the human arterial system8,9. Several researchers 
have investigated the beneficial effects of helical blood flow. Morbiducci et al. suggested that helical flow could be 
an optimal flow form within the human arterial system for efficient perfusion10. Morbiducci et al. also quantita-
tively evaluated the helical phenomenon in aortic flow and demonstrated that it could inhibit excessive energy 
dissipation and ensure flow stability11. Gallo et al. suggested that helical flow suppresses flow separation within 
the carotid bifurcation, thus preventing atheroprone hemodynamics12. This helical flow has been demonstrated 
to have the important physiological functions of inhibiting atherosclerosis and thrombosis formation by affecting 
the transport of materials such as atherogenic lipids and oxygen8,13, thereby reducing platelet adhesion on the 
arterial wall14,15. Interestingly, several researchers have reported that the “crossed limbs” strategy may gener-
ate helical flow within the limb parts of BSGs3,5. Shek et al. investigated the effects of “crossed limbs” based on 
patient-specific models and found that helical flow could be induced by using this strategy6. We believe that if 
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helical flow can indeed be created by using the “crossed limbs” strategy for BSGs, it will be highly advantageous 
for AAA repair due to the resulting reduction of the risk of graft limb occlusion induced by thrombosis formation 
within the stent graft. The migration behavior would also be influenced by this “crossed limbs” strategy.

Although the “crossed limbs” strategy has often been used in clinical practice, its performance with respect 
to hemodynamics has not been verified thus far. Because the long-term outcomes of stent graft repair for AAAs 
largely depend on hemodynamics performance16–19, we believe that it is necessary to study this issue further. 
Several investigations of the hemodynamic effects on the “crossed limbs” strategy have been conducted by per-
forming computational simulations based on patient-specific models; however, the hemodynamic feature varies 
from individual to individual3,6. The common features of the “crossed limbs” strategy can be captured by using 
idealized models in which one geometric parameter is changed while the others are kept constant. BSG migration 
remains a difficult issue, and studies including computational simulations and in vitro experiments have been 
conducted to evaluate the displacement force and threshold forces causing stent graft migration18,20. However, 
in vitro experiments have remained necessary to verify the consequences of using the “crossed limbs” strategy 
in cases of migration risk. Therefore, in this study, we evaluated the hemodynamic performance of the “crossed 
limbs” strategy, including the flow pattern, helical strength, time-averaged wall shear stress (TAWSS), oscillatory 
shear index (OSI), and relative resident time (RRT). In addition, by conducting in vitro experiments, we analyzed 
the effects of the “crossed limbs” strategy on stent migration, which usually causes graft device failure, thus requir-
ing re-intervention.

Methods
Geometry. Five idealized BSG models with diverse torsion angles denoting the flow domain created by the 
“crossed limbs” EVAR technique were generated by SolidWorks (Solid Works Corp, Concord, MA) based on the 
BSG parameters adopted in the literature18,19. As depicted in Fig. 1, the torsion angle of the iliac artery graft is 
defined as the angle between the projection line OA on the basal surface and the symmetry plane P. OA is the line 
that connects the center point A of the left iliac graft outlet surface and the midpoint O of the bilateral iliac graft 
outlets, while P is the plane that traverses the initial bifurcation part of the bilateral iliac artery grafts. Specifically, 
the torsion angles of the five models were set to 0°, 45°, 90°, 135°, and 180°. The stent graft with a 0° torsion angle 
corresponds to a direct BSG, while that with a 180° torsion angle corresponds to a completely crossed BSG. All 
five models shared the same BSG trunk body. The total length L1 along the axis of the stent graft was 154.64 mm, 
including the stent graft trunk length L2 of 71 mm, and the side length L3 was 82 mm. The trunk diameter R1 was 
17 mm, while the iliac graft diameter R2 was 10 mm.

Governing equations. The simulations were performed based on the three-dimensional incompressible 
Navier-Stokes equation, together with the continuity equation:

ρ ν ν ν τ∂→ ∂ + → ⋅ ∇ → = −∇ + ∇t p(( / ) ( ) ) (1)

Figure 1. Five ideal BSGs with different torsion angles. The red arrow indicates the flow direction.



www.nature.com/scientificreports/

3SciEntific REPORTS |  (2018) 8:12625  | DOI:10.1038/s41598-018-31015-2

0 (2)ν∇ ⋅ → =

where ν→ is the fluid velocity vector, p is the pressure, ρ is the density of blood (1050 kg/m3), and τ is the stress 
tensor

˙τ η γ= D2 ( ) (3)

Here, D is the deformation tensor and γ

 is the shear rate. The blood viscosity η is a function of the shear rate, and 

the Carreau model can be used to incorporate the non-Newtonian characteristics of blood flow21:

η γ η η η λγ= + − +∞ ∞
−
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where the infinite shear rate viscosity η∞ is 3.45 × 10−3 Pa · s, the zero shear rate η0 is 5.6 × 10−2 Pa · s, n = 0.3568, 
and the relaxation time constant λ is 3.313 s.

Boundary conditions and meshing. In each case, a steady flow simulation was performed firstly; then, 
the steady flow solution was saved as the initial condition for the pulsatile simulations. An average velocity profile 
with an axial velocity of 0.04 m/s and a constant backpressure of 13,300 Pa was used at the inlet and outlets for 
the steady simulations. As shown in Fig. 2, for the pulsatile simulations, a time-dependent flat velocity waveform 
was imposed on the aorta inlet, while a pressure waveform was assigned at the bilateral outlets. As previously 
reported by Figuroa et al., the velocity flow data at the supraceliac level were measured by cine phase-contrast 
magnetic resonance imaging, and the pressure data were measured immediately after scanning22. The BSG wall 
was regarded as rigid and no-slip.

To ensure that the solutions of our simulations were mesh-independent, a total of four mesh sizes were 
obtained for validation (see Table 1). The conditions for mesh independence were defined as the differences of the 
area-weighted wall shear stress (WSS) of the iliac graft luminal surface and the velocity of the left outlet being less 
than 1% between two successive simulations under steady flow (see Table 1). For simplicity, the refined grids were 
directly used to simulate the pulsatile flow without any changes. As depicted in Table 1, when the number of cells 
in the mesh is greater than 1 × 106, the differences in WSS and velocity can be ignored. The mesh size ranged from 
0.05 mm to 0.6 mm, and the final mesh volume was about 1.7 × 106 cells for each model.

Numerical schemes. The Navier-Stokes and continuity equations were solved by using ANSYS Fluent CFD 
(ANSYS Inc., Canonsburg, PA). During the calculation process, a total of 200 steps were performed for each cycle, 
and the time step was set to 0.005 s. A pressure-based solver was employed for the spatial discretization of the 
momentum. The threshold value for velocity and continuity residual detection was set to 1.0 × 10−5. To maintain 
the periodicity of the solutions, five pulsatile cycles were performed in total. The final solutions of the fifth cycle 
were extracted and compared in the analysis. MATLAB software was employed for the data analysis, and Tecplot 
software was used to display the hemodynamic indicators.

Definitions of hemodynamic indicators. Helicity can be used to assess whether or not the velocity and 
vorticity vectors in a local region are aligned. Based on this information, the rotation direction of the helicity 

Figure 2. Imposed inlet velocity and outlet pressure waveforms.

Mesh cells Mesh nodes Outlet velocity difference (%) WSS difference (%)

964,256 267,528

1,222,572 338,837 0.03% 0.05%

1,468,624 396,745 0.02% 0.05%

1,752,664 462,861 0.01% 0.02%

Table 1. Mesh independence study results.
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structures is indicated by the helicity sign23. In the present study, the helicity density Hd was employed to charac-
terize the helical flow induced by the BSGs with different torsion angles and is defined as12,24

ν ν ν ω= → ⋅ ∇ × → = → ⋅ .H ( ) (5)d

To evaluate the hemodynamic characteristics during the cardiac cycle quantitatively, hemodynamic indicators 
including the TAWSS, OSI, and RRT were defined and calculated based on the solutions of the pulsatile simula-
tions. The TAWSS was used to measure the mean WSS throughout a cardiac cycle and was determined as follows:

∫= ⋅ .TAWSS
T

t dtwss s1 ( , ) (6)
T

0

In this formula, T is the cycle period, WSS is the instantaneous wall shear stress vector, and the position on the 
stent graft wall is represented by s.

During one pulsatile cycle, the direction of the WSS varies instantaneously, and the definition of the OSI was 
used to elaborate this situation25:
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The particles flowing in the blood may stagnate, leading to low and oscillatory shear stress on the graft wall. To 
assess the resident time of the flowing particles, the RRT index can be used26, which is quantified as

∫
=

⋅
.

WSS
RRT

t dts

1

( , ) (8)T
T1

0

The area-averaged values of the hemodynamic indicators were evaluated for quantitative comparison, using 
the following equation27:
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Here, n is the number of faces, φi is the area-averaged variable value on face i, and Ai is the area of face i.
The displacement force acting on the stent graft can be divided into two parts: the force acting on the stent 

graft wall normally induced by blood pressure and the force acting on the graft wall tangentially that is induced by 
the WSS. By summing these force components, the displacement forces could be calculated. Numerical simula-
tions and in vitro experiments have been widely adopted as two efficient methods of evaluating the displacement 
force, which can cause stent graft migration. Considerable research involving computational simulations has 
revealed that the displacement force is influenced by multiple factors, including the hemodynamics within the 
AAA and structural characteristics of the stent graft18,28. The stent graft displacement forces measured in in vitro 
experiments can be used as reference values for computational simulations. Therefore, an in vitro experiment was 
performed to investigate the effects of the “crossed limbs” strategy on the displacement force, as described in the 
“In Vitro Experiments” section.

Results
Figure 3 shows the steady-state velocity streamlines in all five cases; these streamlines are colored based on the 
velocity magnitude. The velocity streamline is higher within the iliac graft than in the trunk graft and twists along 
the iliac artery graft passageway. Two asymmetric helices are evident within the surface of the left iliac graft outlet. 
The left- and right-handed helical flow are equal in Cases 1–3, while in Cases 4 and 5, the left-handed helical flow 
is slightly greater than the right-handed flow.

The helical structure developed within the stent graft can be observed by displaying the helicity iso-surface. 
The helicity iso-surfaces corresponding to −3 m/s2 and 3 m/s2 at the peak systole (t = 0.1 s) are depicted in Fig. 4. 
In each case, the most remarkable hemodynamic feature is the distinct counter-rotating helical flow structure 
along the iliac graft. Moreover, as is clear from Fig. 4, with increasing torsion angle, the helical structures within 
the iliac artery grafts become more obvious.

Furthermore, as depicted in Fig. 5, the magnitude of the absolute helicity during the systole period is clearly 
higher than it is in the rest of the cardiac cycle. The absolute helicity variations in the left outlet exhibit almost no 
differences between the BSGs with torsion angles of 0° (Case 1), 45° (Case 2), and 90° (Case 3). When the torsion 
angle is 135° (Case 4), the variation of the absolute helicity increases, and when the torsion angle is 180° (Case 5), 
the left iliac outlet has the highest absolute helicity.

The TAWSS contours for both cases are depicted in Fig. 6. A relatively high TAWSS area can be observed in 
the bifurcated region of the BSG. In addition, the TAWSS in the iliac grafts is substantially decreased in Case 5 
compared with the other cases. For analysis, the area-averaged TAWSSs on the iliac grafts for both cases were 
extracted and are presented as a histogram. The area-averaged TAWSS for the non-crossed stent graft (Case 1) is 
about 0.13 Pa. With increasing torsion angle, the area-averaged TAWSS decreases to almost half for Case 2 and 
stays nearly the same (0.13 Pa) in Cases 2–4; finally, for the totally crossed BSG (Case 5), it drops to 0.11 Pa.

As depicted in Fig. 7, the bifurcated regions of the BSGs have relatively low OSI areas. The strip areas of high 
OSI along the iliac grafts are relatively large in Case 5 compared with the other cases. The area-averaged OSIs in 
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the iliac grafts in both cases were extracted and compared using a bar graph. Our results indicate that the OSI first 
decreases with increasing torsion angle, then starts to increase when the torsion angle reaches 135°.

Moreover, as shown in Fig. 8, the RRT distribution along the trunk of the BSG is similar in both cases. While 
the ribbon areas of relatively high RRT along the outer surfaces of iliac grafts are evident in Case 4, they are even 
more obvious in Case 5. The area-averaged weighted RRTs in the iliac grafts in both cases were extracted and 

Figure 3. Steady-state flow patterns for all five cases. (a) Streamlines colored to indicate velocity magnitude; (b) 
helicity contours of the left outlet; (c) surface streamlines within the left outlet.

Figure 4. Helicity iso-surfaces for all five cases at the peak systole (t = 0.1 s). The helical structures with right-
handed and left-handed rotation appear in red and blue, respectively.



www.nature.com/scientificreports/

6SciEntific REPORTS |  (2018) 8:12625  | DOI:10.1038/s41598-018-31015-2

compared using the histogram shown in Fig. 8. The area-averaged mean RRT increases from 6 Pa−1 to 15 Pa−1 as 
the torsion angle increases from 0° to 180°. In contrast, in Cases 2–4, the area-averaged mean RRT stays nearly 
the same and is higher than in Case 1, but lower than in Case 5. Examining the OSI and RRT together, it is clear 
that high RRT regions always correspond to high OSI regions.

As is evident from Fig. 9, the displacement force variations agree with the pressure waveform trends. The 
displacement force reaches its maximum when the pressure at the outlet reaches its peak value in the cardiac 
period. In case 1, the maximum displacement force reaches about 1.5 N when the torsion angle is 0° (Case 1), and 
it increases to 3 N in Case 5 when the torsion angle increases to 180°.

In Vitro Experiments. To evaluate the migration risk when the “crossed limbs” strategy is employed, we designed 
an experiment to measure the displacement force. As shown in Fig. 10, a perfusion system was built to provide a steady 
flow perfusion pressure within the BSG. The blood analog fluid used to mimic blood was prepared by mixing 33.3% 
by volume of glycerol with water at room temperature. The density and dynamic viscosity of this blood analog fluid 
remained about 1.05 g/cm3 and 0.0033 Pa · s, respectively, which are approximately equal to the corresponding values 
for blood. To imitate blood perfusion of the AAA, the blood analog fluid was then perfused in the fluid loop by a roller 
pump. Silicone tubes were connected to transport the blood analog fluid. Peripheral resistance was achieved by using 
the pinch valves connecting the water- and air-filled containers. To obtain a precise pressure within the stent graft, the 
water levels in the containers and pinch value adjustments needed to be controlled precisely.

Figure 5. Variations of absolute helicity at the left outlet for all five cases.

Figure 6. TAWSS contours based on pulsatile flow computations. The histogram shows the area-averaged mean 
TAWSSs along the iliac artery grafts for all five cases.
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A commercial BSG was used to perform the in vitro experiments. The diameter of the proximal entrance was 
26 mm, and the diameter of the iliac part was 15 mm. The total length was 180 mm when the length of the iliac 
graft was 140 mm. The proximal part of the BSG was fastened to the strain gauge load cell with connectors. To 

Figure 7. OSI contours based on pulsatile flow computations. The histogram shows the area-averaged mean 
OSIs along the iliac artery grafts for all five cases.

Figure 8. RRT contours based on pulsatile flow computations. The histogram shows the area-averaged mean 
RRTs along the iliac artery grafts for all the five cases.
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ensure that the displacement force would be transferred to the load cell at the extreme, the stent graft was secured 
and deployed at the outer face of the load cell. Both ends of the stent graft were connected to the silicon tube using 
soft rubber tubes with highly elasticity that would not influence the displacement force measurements. The load 
cell measurements ranged from 0 N to 10 N; in addition, calibration was conducted before measurement. To mon-
itor the perfusion pressure of the stent graft, a pressure transducer was deployed in the fluid loop; in addition, a 
force monitor was used to display and record the force. In particular, three perfusion pressure levels of 60, 80, and 
100 mmHg were adopted to measure the displacement forces corresponding to torsion angles of 0°, 45°, 90°, 135°, 
and 180°. Before each test, it was necessary to confirm zero leveling of the BSG and to perform in situ calibration 
of the perfusion pressure. All of the measurements were performed when the flow was steady.

As shown in Table 2, the mean displacement force was evaluated in each case. The results of our in vitro 
experiments indicate that the displacement force increases with increasing pressure in both cases. The mean 

Figure 9. Displacement force variations for all the five cases.

Figure 10. Schematic of the perfusion model and two BSG deployment strategies.
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displacement force gradually increases as the torsion angle increased from 0° to 180° for each perfusion pressure 
level. The displacement force of the stent graft with 180° torsion is between 0.17 N and 0.26 N, higher than that in 
the case of 0° torsion. The displacement forces obtained in the simulations and in vitro experiments indicate that 
the trend of the displacement force is the same with increasing perfusion pressure and increasing torsion angle. 
Specifically, the displacement force increases with increasing torsion angle as well as with increasing perfusion 
pressure.

Discussion
The deployment of “crossed limbs” for AAA treatment has been widely accepted in cases of unfavorable aneurysm 
neck angulation or AAAs with widely splayed common iliac arteries5,6. In our study, we constructed a series of 
models for the “crossed limbs” surgery strategy with different torsion angles and evaluated their hemodynamic 
characteristics by analyzing the results of numerical simulations and in vitro experiments.

Our results reveal that the “crossed limbs” approach induces double helical blood flows at both outlets of the 
limb graft. In the study by Shek et al.3,6, only one of the outlets was found to have a double helical flow, while the 
flow at the other outlet had the structure of single helical flow. The main differences between our results and theirs 
are due to the use of different models. The models we used were symmetrical, enabling the determination of com-
mon features of this specific strategy, whereas theirs were idealized stent graft models based on patient-specific 
medical data, which could provide personalized features. Nevertheless, based on the results of our study and 
those obtained by Shek et al.3,6, it can be concluded that the “crossed limbs” strategy can induce helical flows in a 
graft whether or not the model is symmetrical. In addition, our findings demonstrate that the larger the torsion 
angles of the limbs, the stronger the helical flow. Therefore, based on the results of our study and the study by 
Shek et al.3,6 we believe that the “crossed limbs” strategy can be beneficial for AAA treatment in terms of helical 
flow because, as mentioned earlier, helical flow may protect the arteries by suppressing the accumulation of ath-
erogenic low-density lipoproteins within the arterial wall8, thus enhancing the O2 supply to the arterial wall29 and 
reducing platelet/monocytes adhesion14,15. Furthermore, because the intensity of the helical flow produced by the 
“crossed limbs” strategy increases with increasing torsion angle and a 180° torsion angle can produce the strongest 
helical flow, we suggest that the largest possible torsion angle could be employed during surgery.

However, although the “crossed limbs” strategy produces helical flow at both stent graft outlets, which could 
be advantageous, our results also show that other flow parameters could worsen. For instance, the TAWSS in the 
stent graft was lower that in the direct stent graft configuration (Case 1), and the RRT increased with increasing 
torsion angle. In particular, for the 180° torsion angle case (Case 5), the changes in the TAWSS and RRT were 
sharp compared with those in Case 1. Meanwhile, the OSI first decreased with increasing torsion angle, then 
started to increase when the torsion angle reached 135°. This phenomenon can be ascribed to the appearance 
of ribbon areas with relatively low TAWSSs and high RRTs along the distal parts of the stent graft in Case 5. It 
has been widely accepted that a low WSS is usually associated with blood flow stagnation and thrombus for-
mation30,31, and a high OSI and RRT, which are derived from the WSS, lead to thrombosis by stimulating plate-
let aggregation, thus activating platelets and increasing the residence time of procoagulant microparticles32–34. 
Therefore, the ribbon areas appearing along the distal parts of stent grafts may be prone to thrombus formation 
and need to be paid more attention when employing the “crossed limbs” strategy.

In clinical practice, stent graft migration is a general post-operative complication caused by the hemodynamic 
loads acting on the stent graft. Our results indicate that the displacement force variation follows the trend of the 
pressure waveform, which is consistent with the results of previous studies18,19. Li et al. demonstrated that several 
factors could affect the migration behavior, such as the iliac bifurcation angle and perfusion pressure within 
the stent graft18,28. The results of both numerical and in vitro experiments revealed that the displacement force 
increases as the perfusion pressure increases, indicating that the pressure influences the risk of stent graft migra-
tion. Furthermore, the displacement force increases with increasing bilateral iliac graft torsion angle. Therefore, 
our results indicate that the stent graft torsion angle also regulates graft migration. Rahmani et al. conducted in 
vitro experiments to evaluate the pullout forces of various stent grafts, which are the threshold forces required for 
displacement20. Their results revealed that the pullout force decreases with increasing off-axis angulation. By con-
sidering the decrease of the pullout force and the increase of the migration force acting on the stent graft due to 
the increased torsion angle, the risk of BSG migration certainly increases if the “crossed limbs” strategy is adopted 
to treat AAAs. Previous researchers have reported that the dislodgement forces that endografts can withstand 
before migration range from 6.5 N to 26.5 N35. Meanwhile, the maximum displacement force measured in the 
simulations in the present study was about 3 N, which is much lower than the actual force required for stent graft 
migration. Therefore, changing the torsion angle in the “crossed limbs” strategy may not induce BSG migration in 
the short term. However, as migration is a gradual process, the risk of migration still needs to be paid much more 
attention in the long term when the “crossed limbs” strategy is employed.

It is important to note that our study was limited in that, for simplicity, we used idealized geometric models 
for the “crossed limbs” strategy of AAA repair. Previously reported BSG parameters were used as references for 

Torsion angle 0° 45° 90° 135° 180°

60 mmHg 1.47 1.52 1.55 1.59 1.64

80 mmHg 1.63 1.65 1.69 1.72 1.77

100 mmHg 1.92 1.96 2.02 2.11 2.18

Table 2. Displacement forces (N) corresponding to various torsion angles and perfusion pressures.
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the idealized stent graft generated in our study; thus, the common hemodynamic features present when dif-
ferent deployment strategies are utilized could be obtained18,19. Another limitation is that the stent graft wall 
was regarded as rigid. However, since graft deformation under blood pressure was not apparent, this assump-
tion is still valid. The numerical results obtained in previous studies17,19 support the validity of this assumption. 
Morbiducci et al. concluded that the hemodynamics in the aorta, including disturbed shear and bulk flow struc-
tures, may be misleading when an idealized velocity profile is imposed as the inlet conditions10. Youssefi et al. also 
demonstrated that the hemodynamic evolution in the aorta becomes inaccurate when idealized inflow velocity 
profiles are used36. Therefore, the imposition of idealized flat inlet conditions could be another limitation of the 
present study. However, as the blood flow within the human arteries could not be fully developed and a flat veloc-
ity was imposed in all of the models for comparison among the configurations with different torsion angles, the 
conclusions derived from our results would not be influenced. It should also be mentioned that it was difficult to 
replicate the pulsatile pressure conditions in the in vitro experiments. Therefore, we set three pressure levels in 
the pulsatile pressure waveform to clarify the influences of the torsion angle and perfusion pressure on the dis-
placement forces. In a pilot study, these simplifications may affect the accuracy of the numerical results; however, 
they may not influence the primary conclusions regarding the hemodynamic performance of the “crossed limbs” 
strategy.

Conclusions
This study revealed that the “crossed limbs” strategy can be beneficial for AAA repair with respect to helical flow. 
However, unfavorable hemodynamic performance was observed by evaluating the typical hemodynamic param-
eters, including the TAWSS, OSI, and RRT. In addition, the risk of stent graft migration is increased, which was 
verified by performing numerical simulations and in vitro experiments. Therefore, one should use caution when 
performing the “crossed limbs” strategy during surgery. Our results are preliminary findings, and more research 
is necessary to achieve a better understanding of the “crossed limbs” strategy in clinical practice.
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