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Deep soil water storage varies 
with vegetation type and rainfall 
amount in the Loess Plateau of 
China
Ruixue Cao1, Xiaoxu Jia1,2, Laiming Huang1,2, Yuanjun Zhu3, Lianhai Wu   4 & Ming’an Shao1,2,3

Soil-water storage in a deep soil layer (SWSD), defined as the layer where soil water is not sensitive 
to daily evapotranspiration and regular rainfall events, functions as a soil reservoir in China’s Loess 
Plateau (LP). We investigated spatial variations and factors that influence the SWSD in the 100–500 cm 
layers across the entire plateau. SWSD generally decreased from southeast to northwest following 
precipitation gradient, with a mean value of 587 mm. The spatial variation in the SWSD in grassland 
was the highest, followed by protection forests, production forests and cropland. Variation in the 
>550 mm rainfall zone was much lower than that in the <550 mm zone. The significant influencing 
variables explained 22.3–65.2% of the spatial variation in SWSD. The joint effect of local and climatic 
variables accounted for most of the explained spatial variation of SWSD for each vegetation type and 
the <450 mm rainfall zone. Spatial variation of SWSD, however, was dominantly controlled by the local 
variables in the 450–550 and the >550 mm rainfall zones. Therefore, regional models of SWSD for a 
specific vegetation need to incorporate climatic, soil and topographic variables, while for a rainfall zone, 
land use should not be ignored.

Soil water is an important component of global terrestrial ecosystems, so investigation of the magnitude and 
distribution of soil water is essential for understanding processes and patterns of hydrological and ecological 
systems as well as for water resources and agricultural management systems1–5. Surface water and water in the top 
soil layer (its depth varies) is a direct water resource for vegetation growth, which is greatly influenced by rainfall 
infiltration and evapotranspiration. Water in deep soil layers, which is defined as the layer where soil water is not 
sensitive to daily evapotranspiration and regular rainfall events6, however, usually functions as a soil reservoir. 
Soil-water storage in a deep soil layer (SWSD) is critical for the sustainability of terrestrial ecosystems in the water 
scarce arid or semi-arid regions and those with seasonal water shortages. For example, deep roots can reach a 
depth of almost 20 m within a rotation cycle of 5–7 years in Eucalyptus planted forests in south-eastern Brazil, 
giving access to large water stocks5. In the semi-arid Loess Plateau (LP) of China, 40 ± 30% of fruit tissue water 
of apple trees was reported to come from depths between 4 and 9 m, highlighting the importance of less mobile 
water in deep soil layers for plant growth7. Furthermore, deep soil water has close links with pollutant transport8, 
groundwater recharge9 and biogeochemical cycling10, especially in regions with thick soil layers. In recent years, 
numerous studies have provided estimates of surface soil water at various scales across the globe11–15. However, 
there are few reports addressing SWSD. Information on the horizontal and vertical distributions and variability 
of SWSD and its driving variables will not only improve the evaluation of sustainable land management, but also 
will help to develop site-specific vegetation restoration strategies and water budgets.

The LP of China is located in an arid and semiarid area. It is well-known for having the severest soil erosion 
and the deepest thickness of loess deposition in the world. A large-scale vegetation restoration program has 
been extensively initiated by the central government for reducing soil erosion in the LP since 1999. Shallow soil 
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water resource in the region is incredibly scarce due to low precipitation, high evapotranspiration demand and 
deep groundwater level, which is not sufficient to meet the growth needs of planted vegetation. Thus, SWSD 
becomes an important water resource for plant growth and ecosystem health16. However, the introduction of 
exotic plant species (e.g. alfalfa, caragana, black locust and Chinese pine) and improper management practices 
(e.g. high-density planting) have resulted in excessive losses of deep soil water due to high water consumption, 
consequently causing the formation of a dried soil layer (DSL) in the soil profile4,17–19. The formation of DSLs 
would prevent water interchanges among precipitation, soil water and the groundwater, negatively affecting 
the water cycle and further endangering ecosystem health and sustainability. Moreover, DSL can greatly reduce 
the regulation capability of a “soil reservoir” to supply water to deeper soil layers20. Therefore, the health of the 
restored ecosystems is being challenged. Despite recent research reports on variations in soil water in the LP, most 
studies mainly concentrated on shallow soil layers or small scales16,21–23, the regional scale spatial distribution of 
SWSD based on ground-truth observations remain essentially lacking due to difficulties in sampling collection 
and cost, cannot clearly reveal the sustainability needs for vegetation restoration.

Soil water in deep soil layers is a result of long-term biophysical processes that are controlled by multiple 
factors, such as vegetation traits, patterns of soil type, climatic conditions, topographic features and landscape 
management practices14,24,25. In recent years, many studies have been conducted on the variations in deep soil 
water content and its influencing factors in the LP6,19,23. For example, deep soil water variations are mainly driven 
by the type of vegetation at a hillslope23, and by both vegetation and topography at a small catchment16. Deep soil 
water variations at the regional scale are determined by combined effects of climate, soil, topography and vege-
tation26. The degree of spatial variability in soil water and dominant factors to affect the variations thus depend 
on the research scale27,28. To date, many researches on deep soil water variations has focused on slope and small 
catchment scales, which tend to be too small in spatial extent to incorporate all environmental factors because 
soil types and climatic characteristics are usually homogeneous at one slope or small catchment6,29. It is therefore 
necessary to assess the mechanistic details of deep soil water variations at the regional scale to guide regional 
policies. However, impacts of soil, climate, vegetation and topography on SWSD under different vegetation types 
or rainfall amounts at the regional scale are still poorly understood.

Previously the upper boundary of the layer in the LP was considered as 0.8 m because regular rainfall events 
and daily evapotranspiration during the sampling time period influenced the soil water no deeper than 0.8 m6. 
In this study, we consider 1.0 m as the upper boundary of the deep soil layer because precipitation infiltration is 
mostly limited to the 0–1.0 m soil layer in the LP in both normal and wet years4,21. Therefore, we analyzed volu-
metric soil water contents measured in-situ at various soil depths down to 5 m at 328 sites across the LP and tried: 
1) to quantify SWSD horizontal and vertical variations, 2) to explore the factors that control the spatial variations 
of SWSD under different vegetation types and rainfall zones, and 3) to develop options for water management and 
the sustainability of vegetation recovery for the LP.

Results
Basic characteristics of SWSD.  The K-S test indicated that SWSD followed normal distribution. The 
mean, SD and CV of the SWSD at various soil depths are presented in Table 1. Mean SWSD generally decreased 
with increasing depth down to 260 cm and kept almost a constant below 260 cm. In general, the value of CV grad-
ually increased with increasing depth to 100–380 cm and then slightly decreased.

SWSD vertical distribution under various vegetation types and rainfall amounts.  The three 
rainfall zones had different SWSD (Fig. 1). The >550 mm rainfall zone had the highest SWSD of 785 mm, and 
the <450 mm rainfall zone had the lowest SWSD of 397 mm. The mean SWSD was 601 mm in the 450–550 mm 
rainfall zone. Moreover, SWSD in the cropland area was significantly higher than that in the grassland and forests 
(Fig. 1). No significant difference in SWSD was detected between protection forests and production forests. In 
general, the mean SWSD of different vegetation covers can be organized as follows: cropland > production forests 
≈ protection forests > grassland.

Average vertical SWSD distribution varied with the rainfall zone (Fig. 2). Average SWSD in the 450–550 mm 
rainfall zone generally decreased with increasing depth to 260 cm, and then almost a constant below the depth. 
SWSD in the other two rainfall zones, however, remained relatively constant throughout the soil profile. The 
profile variation of SWSD under different rainfall zones displayed different characteristics. The variation in 
the >550 mm rainfall zone was clearly less than the other two rainfall zones, and was relatively stable as depth 
increased. At the depths of 100–220 cm, the variation in the 450–550 mm rainfall zone was less than that in the 
<450 mm rainfall zone, while kept almost similar below 220 cm.

SWSD in cropland generally increased with soil depth whilst it was relatively stable in production forests 
(Fig. 3). However, SWSD in both grassland and protection forests slightly decreased with soil depth to 260 cm, 
and then remained stable. The variation of SWSD under different vegetation types displayed different characteris-
tics as well. The vertical variations in cropland, production forests and protection forests generally increased with 
soil depth, while was relatively stable except in the 100–140 cm layer for grassland. In general, variations of dif-
ferent vegetation covers were ordered as follows: grassland > protection forests > production forests > cropland.

Spatial distribution of deep soil water resource across the LP.  SWSD exhibited an obvious spatial 
heterogeneity (Fig. 4). It generally decreased from southeast to northwest, following the decreasing gradient of 
precipitation, with a mean of 587 mm. Besides, SWRs in the 100–500 cm soil layer were 4.5 × 1010, 8.2 × 1010 
and 8.3 × 1010 m3 in the <450 mm, 450–500 mm and >550 mm rainfall zone, respectively, with approximately 
2.1 × 1011 m3 in total in the entire LP (Fig. 5).
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Impacts of variables on SWSD under different vegetation types.  Overall, most of the spatial 
variation in SWSD under different vegetation types was captured by the explanatory variables reflecting local 
conditions followed by the climatic factors (Table 2). While the spatial variation in SWSD explained by local 
(R2 = 50.0%) and climatic variables (R2 = 48.7%) was approximately equal for grassland. The forward selection 
of explanatory variables revealed that SWSD was positively related to mean annual precipitation (MAP) and clay 
content (Clay) under each vegetation type, while negatively related to precipitation seasonal distribution (PSD) 
except for grassland. PSD showed no significant relation to SWSD in grassland. The SWSD in grassland showed 
significant positive relations to field capacity (FC) and vegetation cover (VC). For the protection forests and 
production forests, local variables, slope gradient (SG) and plant density (PD), significantly negatively related 
to SWSD. Besides, SWSD had a significant positive relation to diameter at breast height (DBH) and plant height 
(PH) for protection forests.

Figure 1.  Differences in soil water storage in the 100–500 cm profile among three rainfall zones (a) and four 
vegetation types (b). In each boxplot, the lower boundary of the box shows the 25th percentile and the upper 
boundary shows the 75th percentile. The asterisks extend from the boxes to the highest and lowest values, and 
the lines across the boxes indicate the median. The means of boxplots with different lowercase letters differ 
significantly at the 0.05 significance level (LSD test); CL, GL, PTF and PDF refer to cropland, grassland, 
protection forests and production forests, respectively.

Depth (cm) Mean (mm) SDa (mm) Minimum (mm) Maximum (mm) CVb (%) Sc K K-S

100–120 31.68 13.12 8.27 71.70 41.42 0.42 −0.45 N (1.50)

120–140 31.09 13.75 8.88 69.72 44.24 0.48 −0.54 N (1.57)

140–160 30.44 13.82 8.88 70.93 45.39 0.53 −0.50 N (1.56)

160–180 29.92 13.55 8.27 71.14 45.29 0.54 −0.52 N (1.78)

180–200 29.34 13.63 9.28 72.76 46.46 0.65 −0.26 N (1.64)

200–220 29.00 13.50 9.08 67.51 46.56 0.57 −0.57 N (1.82)

220–240 28.60 13.26 9.08 65.38 46.36 0.66 −0.41 N (1.78)

240–260 27.63 12.68 9.08 69.03 45.90 0.66 −0.41 N (1.93)

260–280 27.80 12.83 9.69 69.74 46.14 0.70 −0.36 N (1.84)

280–300 28.48 13.65 9.28 67.92 47.94 0.69 −0.49 N (2.19)

300–320 28.92 14.06 9.69 68.02 48.62 0.70 −0.49 N (2.19)

320–340 29.06 14.29 9.28 70.53 49.17 0.79 −0.31 N (2.56)

340–360 29.09 14.55 9.08 70.73 50.03 0.81 −0.27 N (2.32)

360–380 28.93 14.54 9.08 74.47 50.26 0.86 −0.06 N (2.35)

380–400 29.19 14.49 8.27 79.60 49.63 0.83 −0.11 N (2.18)

400–420 29.21 14.50 9.49 71.43 49.63 0.83 −0.20 N (2.26)

420–440 29.42 14.62 10.30 70.12 49.69 0.83 −0.22 N (2.18)

440–460 29.61 14.56 9.89 71.54 49.18 0.83 −0.16 N (2.33)

460–480 29.77 14.53 9.89 71.71 48.81 0.80 −0.24 N (2.21)

480–500 30.06 14.60 9.49 71.34 48.57 0.74 −0.39 N (2.02)

Table 1.  Summary statistics of SWSD at various depths at the sampling sites (328 in total) across the Loess 
Plateau. aSD refers to the standard deviation; bCV refers to the coefficient of variation; cS, K, and K-S refer to 
the skewness, kurtosis, and Kolmogorov-Semirnov test values, respectively; N refers to the normal distribution 
(significance level is 0.05, Kolmogorov-Semirnov value is in parentheses).
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Impacts of variables on SWSD under different rainfall zones.  Similarly, most of the spatial variation 
in SWSD data under different rainfall zones was captured by the explanatory variables reflecting local conditions 
followed by the climatic factors except for the <450 mm rainfall zone (Table 3). The spatial variation in SWSD 
in the <450 mm rainfall zone captured by local (R2 = 18.3%) and climatic (R2 = 18.2%) variables was equal. The 
forward selection of explanatory variables revealed that SWSD was positively related to MAP under each rainfall 
zone, while negatively related to PSD except for the <450 mm rainfall zone. PSD showed a significant positive 
relation to SWSD in the <450 mm rainfall zone. The local variables, saturated soil water content (SSWC) and 
land use (LU), significantly negatively related to SWSD. Besides, SG had a significant negative, while Clay had a 
significant positive relation to SWSD in both 450–550 and >550 mm rainfall zones.

Figure 2.  Vertical distribution of soil water storage in the 100–500 cm soil layer and coefficient of variation for 
different rainfall zones. The error bars indicate the standard deviation.

Figure 3.  Vertical distribution of soil water storage in the 100–500 soil layer and coefficient of variation for 
different vegetation types. CL, GL, PTF and PDF refer to cropland, grassland, protection forests and production 
forests, respectively. The error bars indicate the standard deviation.
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Across the entire LP, 51.0 and 41.9% spatial variation was captured by local and climatic variables, respectively 
(Table 3). For the total dataset, SWSD was positively correlated with MAP and Clay, while negatively correlated 
with elevation (Elev), SG, SSWC, LU and PSD (Table 3 and Fig. 6). All the above results suggested that both the 
climatic and local variables were responsible for the spatial variations of SWSD across the LP. We thus explored 
the relative importance of these two groups of variables using variation partitioning.

Relative contribution of climatic versus local variables.  Decomposing the explained variation in 
SWSD datasets into variation components showed clear differences between local and climatic groups (Table 4). 
In general, most of the explained spatial variation in the SWSD of grassland, protection forests and production 

Figure 4.  Measured soil water storage in the 100–500 cm soil layer at the sampling sites (328 in total) and its 
regional spatial distribution.

Figure 5.  Soil water resource in the 100–500 cm soil layer in different rainfall zones and the entire LP region. 
Number at the right-hand side of the bars represents the area of each rainfall zone and the entire LP region.
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forests was related to the joint effect of local and climatic variables. The largest pure component was accounted 
for by local variables. For cropland, however, pure local variables accounted for 22.0% of the explained spatial 
variation, which is much higher than that of the joint effect (19.4%). The amount of spatial variation captured by 

Local variables Climatic variables

Vegetation type Variable P R2 Variable P R2

Cropland
FCa 0.001 (+) 41.5 MAP 0.003 (+)

21.8
Clay 0.001 (+) PSD 0.049 (−)

Grassland

FC 0.004 (+) 50.0 MAP 0.001 (+)

48.7Clay 0.001 (+) MAT 0.002 (+)

VC 0.001 (+)

Protection forests

SG 0.002 (−) 39.4 MAP 0.001 (+)

23.3

Clay 0.001 (+) PSD 0.001 (−)

PD 0.005 (−)

DBH 0.048 (+)

PH 0.001 (+)

Production forests

Elev 0.034 (−) 57.3 MAP 0.001 (+)

46.8

SG 0.004 (−) PSD 0.046 (−)

SSWC 0.023 (−)

Clay 0.001 (+)

PD 0.042 (−)

Table 2.  Importance of the explanatory variables in the RDA model for SWSD under different vegetation 
types based on the forward selection analysis and the Monte Carlo permutation test. The amount of explained 
variation (R2, equivalent to the sum of all canonical eigenvalues, in %) is given for each model. Directions 
of association (+ or −) and P-levels for significant variables (P < 0.05) are shown. aFC, Elev, VC, PD, PH, 
SG, BD, SSWC, LU, MAP, PSD and MAT refer to field capacity, elevation, vegetation coverage, plant density, 
plant height, slope gradient, bulk density, saturated soil water content, land use, mean annual precipitation, 
precipitation seasonal distribution, and mean annual temperature, respectively. Note that 1, 2, 3 and 4 was 
assigned for CL, PDF, PTF and GL for the RDA analysis, respectively, following a decreasing order of mean 
SWSD under each land use in the data analysis.

Rainfall zone

Local variables Climatic variables

Variable P R2 Variable P R2

<450 mm

BDa 0.001 (+) 18.3 MAP 0.001 (+)

18.2SSWC 0.001 (−) PSD 0.004 (+)

LU 0.046 (−)

450–550 mm

SG 0.001 (−) 31.3 MAP 0.001 (+)

11.9
SSWC 0.001 (−) PSD 0.013 (−)

Clay 0.001 (+)

LU 0.006 (−)

>550 mm

SG 0.031 (−) 46.2 MAP 0.002 (+)

14.0
SSWC 0.001 (−) PSD 0.001 (−)

Clay 0.001 (+)

LU 0.001 (−)

The entire LP

Elev 0.001 (−) 51.0 MAP 0.001 (+)

41.9

SG 0.001 (−) PSD 0.032 (−)

SSWC 0.001 (−)

Clay 0.001 (+)

LU 0.001 (−)

Table 3.  Importance of the explanatory variables in the RDA models for SWSD across the entire Loess Plateau 
and in different rainfall zones based on the forward selection analysis and the Monte Carlo permutation test. 
The amount of explained variation (R2, equivalent to the sum of all canonical eigenvalues, in %) is given for each 
model. Directions of association (+ or −) and P-levels for significant variables (P < 0.05) are shown. aBD, FC, 
SG, SSWC, LU, MAP and PSD refer to bulk density, field capacity, slope gradient, saturated soil water content, 
land use, mean annual precipitation, precipitation seasonal distribution, respectively. Note that 1, 2, 3 and 4 
was assigned for CL, PDF, PTF and GL for the RDA analysis, respectively, following a decreasing order of mean 
SWSD under each land use in the data analysis.
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the two sets of statistically significant explanatory variables was highest for production forests (65.2%), followed 
by grassland, cropland and protection forests.

Most of the explained spatial variation in the SWSD in the 450–550 and >550 mm rainfall zones was related 
to the pure effect of local variables. In the <450 mm rainfall zone, however, the joint effect accounted for the most 
of the explained spatial variation. The amount of spatial variation captured by the two sets of significant variables 
was highest for the >550 mm rainfall zone (48.3%), followed by the 450–550 mm (33.3%) and the <450 mm rain-
fall zone (22.3%). The variation partitioning of the total dataset (59.6%) resulted in relatively larger amounts of 
explained spatial variation than for any of the rainfall zones or vegetation types except for the production forests. 
Besides, most of the explained spatial variation in SWSD of the total dataset was related to the joint effect of local 
and climatic variables, followed by the pure effect of local and climatic variables.

Discussion
Spatial variation characteristics of SWSD across the LP.  The spatial variation in the SWSD across 
the LP varied with the soil depth. The value of CV for SWSD ranged from 40 to 50%, indicating a high degree 
of SWSD spatial variation in the various soil horizons. This finding was consistent with previous studies that 
regional soil water content in the deep soil layer in the LP was highly variable22,25,26. Greater spatial variability in 
SWSD was found in deeper soils (Table 1). Although deep soil layer was less influenced by rainfall infiltration 
and evaporation, the existence of deep root vegetation and human management measures may alter vertical soil 
water distribution patterns, increasing their difference with native grasses and crops and eventually resulting in 
more complex variations30,31. In contrast, the study of Liu et al.22 showed that regional spatial variation in shallow 
soil water was relatively higher than deep soil water due to greater changes in the precipitation, temperature and 
aeration. This inconsistency may be partly due to the layout of the experiments and the differences in topography, 
vegetation, climatic condition and/or spatial scale. They focused solely on Caragana Korshinskii plantation across 
a smaller range of topography among sampling sites22.

SWSD generally increased following the increase in precipitation from northwest to southeast (Fig. 4). The 
degree of SWSD spatial variation was different for different rainfall amounts (Fig. 2). The >550 mm rainfall zone 
had the lowest spatial variations in SWSD in the entire profile. This is likely due to the lowest spatial variations in 
soil properties, vegetation coverage, PSD and MAP in the >550 mm rainfall zone. The relatively high amount of 
rainfall may also weaken the influencing effects of soil, plant and topography on spatial variations of SWSD. At 

Figure 6.  The relationship between soil water storage in the 100–500 cm soil layer and mean annual 
precipitation, clay content and slope gradient across the entire LP (328 in total).

Pure effects Shared effects Total variation 
explained (%)L C L ∩ C

Vegetation type

Cropland 22.0 (0.001) 2.4 (ns) 19.4 43.8

Grassland 10.7 (0.008) 9.4 (0.010) 39.2 59.3

Protection forests 18.1 (0.001) 2.0 (ns) 21.3 41.4

Production forests 18.3 (0.001) 7.8 (0.001) 39.1 65.2

Rainfall zone

<450 mm 4.1 (0.014) 4.0 (0.016) 14.2 22.3

450–550 mm 21.4 (0.002) 2.0 (ns) 9.9 33.3

>550 mm 34.3 (0.001) 2.1 (ns) 11.9 48.3

The entire LP 17.8 (0.001) 8.7 (0.005) 33.1 59.6

Table 4.  Variation partitioning (equivalent to the sum of all canonical eigenvalues, in %) between the pure 
and joint effects of local (L) and climatic (C) groups of explanatory variables explaining SWSD under different 
vegetation types and rainfall zones. P-levels for pure components as determined by Monte Carlo permutation 
tests (999 unrestricted permutations) are given in brackets (ns = not significant).
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the depth of 100–220 cm, the spatial variation in the 450–550 mm rainfall zone was less than that in the <450 mm 
rainfall zone. The SWSD in the 220–500 cm layer, however, had similar spatial variation in both two zones. This 
may be ascribed to the higher spatial variations in PSD and MAP in the <450 mm rainfall zone than the 450–
550 mm zone. The influence of climatic variables on the spatial variation of SWSD, however, was limited to the 
upper 220 cm layer due to a low amount of rainfall in the arid zone. These results implied that SWSD may be more 
complex in the arid than in the semi-arid zone25.

The SWSD spatial variation characteristics also varied with vegetation type. Soils in cropland had significantly 
higher SWSD than those in either grassland or forests. SWSD in grassland was lower than that in either forest, 
which could be due to lower soil water holding capacity and annual precipitation. Most of grassland sites in our 
study were located in the northwest area of the plateau with low Clay, FC and MAP. Besides, lower SWSD in grass-
land was also partly due to high water consumption by Medicago sativa and Astragalus adsurgens that dominate 
parts of the grassland. SWSD in production forests was relatively higher than that in protection forests, indicating 
that agricultural measures (e.g. gathering rainwater for irrigation or manure fertilization) may result in higher 
SWSD by increasing water infiltration and decrease its variation.

SWSD in both forests was significantly lower than that in cropland, although soil water holding capacity as 
well as annual precipitation was comparative among the three vegetation types. This indicates that soil desiccation 
occurred for the introduced vegetation, of which degree varies with tree species and management practices. This 
observation is consistent with previous studies that significant differences in desiccation traits existed among dif-
ferent introduced vegetations4,6. The occurrence of soil desiccation may also contribute to higher spatial variation 
in SWSD in both forests than that in cropland.

Effects of explanatory variables on SWSD.  The joint effect on SWSD spatial variation plays an impor-
tant role in any vegetation types but the pure effect of the local variables in both cropland and protection forests 
is almost equivalent to the joint effect (Table 4). These results suggested that regional spatial variations in SWSD 
for a specific vegetation are the combined result of topographic, soil, plant and climatic factors. High spatial 
variations in rainfall and temperature can cover the influencing effects of other factors on soil water variations 
at the regional scale4,26,32. It is thus necessary to assess the effects of various factors on SWSD spatial variation 
across the entire plateau as well as the region’s three rainfall zones. In the 450–550 mm and the >550 mm rainfall 
zone, however, the pure local variables contributed much more of the explained variation than the pure climatic 
variables and the joint components, probably indicating that local variables (soil-, plant-, and topography-related 
site characteristics) determined the spatial distribution of SWSD in a specific rainfall zone due to low spatial 
variations in rainfall and temperature.

The effects of significant variables determined by the forward selection on SWSD were similar for different 
vegetation types or rainfall zones. SWSD was positively related to MAP and Clay and negatively related to SG. The 
local variable, Clay, is essential for improving water-holding capacity, available soil water, and the release of water 
by gradient suction33. Additionally, our result was consistent with previous findings that SG and soil water content 
had a negative relationship in the semi-arid regions29,34. This relationship may be a consequence of higher runoff, 
higher rates of evaporation and lower infiltration on steeper slopes. Levels of radiation are also higher on steep 
hillsides because of lower plant coverage. Nevertheless, the landforms vary greatly in the LP, comprising large flat 
surfaces, ridges, basins, hills and various gullies. Thus, the local variable SG as a crucial determinant for SWSD 
variation in the LP should not be ignored at a regional scale.

Climatic factors that affect SWSD are mainly determined by differences in rainfall infiltration and solar radi-
ation. Precipitation is the only source of soil water in slope lands due to the deep groundwater levels; it’s unsur-
prising that MAP played a significant role in SWSD. SWSD was negatively related to PSD except for grassland or 
in the <450 mm zone, suggesting that more even PSD favored higher SWSD. Because of complex terrain, sparse 
vegetation and loose soils in the LP, infrequent but more extreme rainfall events could intensify soil and water 
erosion in the region. This increases water loss via overland flow, lower precipitation water infiltration into deep 
soil layers and thus reduces SWSD. In addition, climate change can alter rain patterns, so PSD can remarkably 
affect plant growth in semi-arid regions, which would influence the distribution of soil water35. In the <450 mm 
rainfall zone, however, SWSD was positively related to PSD, implying that more concentrated precipitation dis-
tribution pattern favors higher SWSD. Concentrated PSD could let precipitation water infiltrate into deeper soil 
layers, lower the water loss by soil evaporation since the land surface is relatively flat and soil texture much coarser 
compared to the central part of the plateau, and hence, increase SWSD.

The result of significant effects of land use on SWSD spatial variation (Table 3) was in agreement with pre-
vious findings36 because of root systems. Exotic species with deep root systems introduced at the selected sites 
in forests in this study could consume more deep soil water than those in cropland and grassland. For example, 
vertical distribution of roots for R. psdudoacacia and C. korshinskii can reach up to >7 m in the northern LP19. 
The conversion of agricultural land to forests had led to a significant decline in soil moisture in the 0–500 cm 
profile due to enhanced evapotranspiration19. In addition, the differences in botanic composition, plant density, 
canopy interception, litter-layer buffering, as well as soil water retention properties in different land use types 
would also result in the difference in soil water conditions6,36,37. Vegetation cover showed a significant positive 
correlation with SWSD in grassland and both forests, probably because high vegetation cover can reduce surface 
runoff, which may help retain more rainfall for infiltration into deep soil layers. These factors can also reduce soil 
evaporation, which may decrease deep soil water consumption38. All the above results suggested that the regional 
spatial variations of SWSD are dependent on many factors and their interactions. Regional models of SWSD for 
a specific vegetation type need to incorporate climatic, soil and topographic variables, while for a specific rainfall 
zone, except for the above variables, land use should not be ignored.
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Implications for vegetation recovery and water management.  A balance between soil water supply 
and water use by plants is crucial to maintain the sustainability of ecosystem health and services, particularly 
in the LP region. However, the introduction of exotic plant species and improper management strategies, i.e. 
high-density planting, that had intensified deep soil water depletion in the region, causing imbalanced water 
budget and eventually leading to the formation of a dried soil layer, which in turn threatened ecosystem health 
due to degeneration of the vegetation4,17–19. It is well spotted so called “small old trees” that grow only ca 20% 
of their normal height in the region, which indicated soil water consumption by plants has exceeded soil water 
carrying capacity for vegetation. Thus, optimal plant coverage or biomass for the non-native tree or shrub species 
should be considered based on soil water resource conditions for guidance in vegetation recovery operations in 
the LP39. Soil water resource stored in the 100–500 cm soil layer reaches up to 2.1 × 1011 m3 across the LP, indi-
cating a giant “soil reservoir”. It is equivalent to an, on average, 21.9-mm thin layer of water covering China’s land 
surfaces—plays a significant role in the water cycle and ecosystem function. Based on the spatial distribution of 
soil water resource, forests and shrubs could be rationally arranged in the south and southeast parts of the LP, 
while natural grassland may be a better choice in northwest. Furthermore, tree density can significantly negatively 
influence SWSD (Table 2). Thus, thinning was required in denser forests to maintain a balance between soil water 
availability and water consumption. Moreover, land use type showed significant correlations with SWSD in this 
study (Table 3). The conversion of improper artificial forests or shrubs to grasslands may be an effective measure 
to remove the dried soil layer due to decreased evapotranspiration. Slope gradient can also significantly influence 
SWSD: steeper slopes had lower SWSD than that of gentle slopes. Thus, plants with high water consumption can 
be arranged at gentle slopes, while native grass or low-water-consuming shrubs can be arranged at steep slopes.

Conclusions
At regional scale, SWSD generally increased from northwest to southeast, following the increasing gradient of 
annual precipitation. SWSD vertical variation varied with soil depth and higher spatial variations occurred at 
340–380 cm but the spatial variations in the >550 mm rainfall zone were far lower than those in the 450–550 mm 
and the <450 mm rainfall zone. SWSD also changed with vegetation types. The highest spatial variation in SWSD 
was detected in grassland, followed by protection forests, production forests and then cropland. Variation parti-
tioning indicated that the joint effect of local and climatic variables determined the spatial variation of SWSD for 
each vegetation type. SWSD, however, was dominantly controlled by the local variables in the 450–550 and the 
>550 mm rainfall zone but the joint effect in the <450 mm rainfall zone. Soil water resource stored in the 100–
500 cm soil layer is a giant soil reservoir in the region. Any future vegetation restoration measures should consider 
the reservoir to support sustainable soil conservation without compromising future water demand in the region.

Materials and Methods
Study area.  This study was conducted across the Chinese LP (Fig. 7), covering a total area of approximately 
37 × 104 km2. The region lies in the arid and semi-arid continental monsoon temperate zones. The mean annual 
temperature ranges from 3.6 to 14.3 °C, and mean annual precipitation ranges from 150 mm in the northwest 
to 800 mm in the southeast, most (55–78%) of which occurs from June to September (1953–2013 data from 64 
weather stations). The region has the most continuous loess in horizontal and vertical space. The soils are mainly 
derived from loess and are sandy in texture in the northwest and more clayey in the southeast. The region has vast 

Figure 7.  Map depicting the location of the Loess Plateau in China (left) and an expanded map of the plateau 
(right) showing the distributions of 59, 106, 114 and 49 sample sites for cropland (CL), grassland (GL), 
protection forests (PTF) and production forests (PDF), respectively, and the spatial distribution of mean annual 
precipitation. The maps were created using ArcGIS 10.0 (Environmental Systems Resource Institute; www.esri.
com).

http://www.esri.com
http://www.esri.com
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loess geomorphic landforms, such as “Yuan” (large flat surfaces with little or no erosion), ridges, basins, hills and 
various gullies40. From southeast to northwest, the land use type generally changes from cropland to forestland 
and then to grassland. The cropland is often cultivated with winter wheat, maize, soybean, potato and millet. The 
native vegetation in the study area consists of sparse grasses that are dominated by species such as Stipa bungeana 
Trin. Artemisia capillaries, Heteropappus altaicus (Willd), Taraxacum mongolicum, Lespedeza davurica, Artemisia 
scoparia, Salsola ruthenica, Deyeuxia langsdorffii, Cleistogenes squarrosa, Setaria viridis, Poa sphondylodes Trin. In 
order to control soil and water erosion and to restore ecosystems, an extensive ecological rehabilitation program 
(the “Grain-for-Green”) was initiated by the Chinese government in 1999. Non-native species, such as black 
locust (Robinia pseudoacacia L.), Chinese pine (Pinus tabuliformis Carr.), poplar (Populus L.), Platycladus orien-
talis, Firmiana platanifolia, Korshinskii peashrub (Caragana korshinskii Kom.), apple (Malus pumila Mill.), apri-
cot (Armeniaca sibirica L.), jujube (Ziziphus jujuba Mill.) sea buckthorn (Hippophae rhamnoides L.) and alfalfa 
(Medicago sativa) have been introduced.

Sampling location and soil water storage.  To accurately determine SWSD spatial variations in the 
region, we devised an intensive soil sampling strategy. Adjacent sampling sites were approximately 40 km apart. 
However, for better representation of areas with complex landscape and geomorphology, we reduced the sam-
pling distance by half to include at least one additional selected site represented the main land use, soil type and 
topography within the range of sight. In order to easily access the sampling sites (>500 × 500 m2 each), road 
transportation systems in the study area were considered. However, all the sampling areas were at least 200 m 
away from roads to reduce the road effect on the samplings. A total of 328 sampling sites were determined across 
the LP (Fig. 7) and their locations were marked using a GPS receiver (5 m precision in the horizontal direction).

The land use type was recorded for each site. Vegetation types in this study were divided into: the cropland, the 
grassland, the protection forests and the production forests. The dominant species at the sampling sites is shown 
in Table S1. The landscape is a typical plateau topography that is relatively flat for the grassland sites, a typical 
loess hilly-gully in the central LP for the protection and production forests. There are 59, 106, 114 and 49 sites for 
the vegetation types accordingly. To evaluate the correlation between SWSD and land use type (LU), typical ordi-
nal categorical variables were used41. Note that the land use was represented by four numerically coded ordinal 
variables following a decreasing order of SWSD: 1 = cropland, 2 = production forest, 3 = protection forest and 
4 = grassland.

Between June and October 2013, all the sampling sites were visited for sample collection. The latitude, lon-
gitude and elevation (Elev) were determined with a Garmin GPS receiver (version eTrex 30), and slope gradient 
(SG, °) and aspect (SA, °) were measured using a geological compass for each site. At each site, 11 soil cores were 
collected using a soil auger (5 cm in diameter) from 0- to 10-, 10- to 20-, 20- to 40-, 40- to 60-, 60- to 80-, 80- to 
100-, 100- to 150-, 150- to 200-, 200- to 300-, 300- to 400- and 400- to 500-cm soil layers for determining soil 
physical properties. Then one aluminum neutron access tube (520 cm in length) was installed. Another 40 cm 
deep intact soil core was taken for determining saturated soil hydraulic conductivity (Ks), saturated soil water 
content (SSWC), field capacity (FC) and bulk density (BD).

From May to July 2014, volumetric soil water content at each soil layer was measured with a calibrated neutron 
probe (CNC 503DR Hydroprobe; Beijing Super Power Company, China) at each site. The SWSD (mm) of the ith 
site at the 100–500 cm soil depth at 20 cm intervals, SWSDi(100–500cm), was calculated from the θik (%, v/v) data (k 
refers to different soil depths, cm) by the following equation23:

θ θ θ θ θ θ= × + + + … + + +−SWSD 200 [ ] (1)i i i i i i i(100 500cm) (120) (140) (160) (460) (480) (500)

Data for SWSD from 328 sampling sites were used to compare performance of three interpolation techniques: 
ordinary kriging, inverse distance weighting, and universal kriging42. Results indicate that ordinary kriging can be 
expected to produce overall better estimations than the other two methods (Table S2). Therefore, the SWSD data-
set from the 328 sampling sites was interpolated via the ordinary kriging method4,42,43 at 1 km2 resolution (pixel) 
to create a continuous data surface of SWSD. The overall goodness of interpolation was also tested by means of 
cross-validation, using two statistics in particular: the mean standardized error (MSE) and the root-mean-square 
standardized (RMSS). The MSE (0.002) and the RMSS (0.964) for the SWSD were approx. 0 and 1, respectively, 
indicating that the estimated map of SWSD from ordinary kriging was reliable26. SWSD in each pixel was then 
extracted from the data surface using ArcGIS 10.0 (Environmental Systems Resource Institute, www.esri.com). 
Deep soil water resource (SWR, m3) at the 100–500 cm soil depth in a pixel can be calculated by the following 
equation:

= ×−SWR 1000 SWSD (2)(100 500 cm)

The total of soil water resource at the 100–500 cm soil depth across the plateau was thus quantified by summing 
the SWR(100–500cm) of each pixel.

Soil physical properties.  The soil samples collected in 2013 were taken to the laboratory, air-dried and 
passed through a 1-mm mesh. The particle composition of the samples was measured by laser diffraction using 
a Mastersizer 2000 (Malvern Instruments, Malvern, England). Ks was determined using the constant-head 
method44. Soil water content at FC was estimated using the soil water retention curve45. Then BD was determined 
from volume-dry mass relationship for each core sample.

Plant characteristics.  Vegetation characteristics at each sampling site were carefully assessed in 2014. At the 
forest sites, three 10 × 10 m2 quadrants were established and mean plant density (PD, plants ha−1) was calculated 
by counting individual trees in each quadrant. Plant height (PH, m) and diameter at breast height (DBH, cm, 

http://www.esri.com


www.nature.com/scientificreports/

1 1SCIENtIfIC REPOrtS |  (2018) 8:12346  | DOI:10.1038/s41598-018-30850-7

mean of at least five trees in each of the three quadrants) were measured with a measuring tape. At the grassland 
sites, three 1 × 1 m2 quadrants were established after grass species identification. Vegetation cover (VC, %) was 
visually estimated using gridded quadrant frame.

Climate data interpolation.  Mean annual precipitation (MAP), precipitation seasonal distribution (PSD, 
defined as the coefficient of variation for the monthly precipitation from May to September)46, mean annual tem-
perature (MAT), and aridity (ratio of pan evaporation to precipitation) from 1951 to 2013 were obtained from 
64 evenly distributed weather stations across the LP. We interpolated the station-specific data using the ordinary 
kriging method (at 100 × 100 m2 resolution) to create a continuous data surface of the climatic variables. The 
same method as the SWSD dataset to extract the climatic elements for each pixel. The LP was divided into three 
main rainfall zones based on MAP: the <450 mm, the 450–550 mm and the >550 mm rainfall zone, allowing us 
to compare the dominant factors on SWSD variation.

Quantifying the relationships between the factors and SWSD.  The variables (a total of 18 variables) 
potentially related to SWSD were comprehensively considered to explore their influence on the spatial variations of 
SWSD. These measured variables were divided into two groups: climatic variables (MAP, PSD, MAT and Aridity) and 
local variables (Elev, SG, SA, Ks, BD, SSWC, FC, Clay, LU, NDVI, PD, VC, DBH and PH) for each vegetation type or 
each rainfall zone. Local variables reflect the topography, soil and vegetation characteristics of each sampling point.

Ordination techniques are based on either a linear response model or a unimodal response model. Detrended 
correspondence analysis (DCA), a multivariate statistical technique was used to determine whether the linear or uni-
modal model should be used47. DCA allows the length of the gradients of each variable affecting SWSD to be calculated. 
Because all the gradient lengths were <3.0 in the study, the spatial variations of SWSD exhibited linear responses to the 
environmental variables. The possible relationships between SWSD and the environmental variables were examined 
by a redundancy analysis (RDA). All 18 measured variables were divided into two groups: climatic variables and local 
variables. A partial redundancy analysis (pRDA) was then used to determine their relative contribution of each group 
to SWSD variation48. For data analysis, the potential factors were subsequently standardized to zero mean and unit var-
iance to remove the different scales of measurement. Statistical significance was assessed using forward selection with 
associated Monte Carlo permutation tests (999 unrestricted permutations) to determine key variables.

Statistical analyses.  A set of statistical parameters, including mean, standard deviation, minimum, max-
imum, coefficient of variation, kurtosis, skewness, was used to analyze soil-water storage for each soil layer. 
One-way ANOVA and least significant difference (LSD) were used to assess the effect of vegetation type and 
rainfall zone on SWSD. All the statistical analyses were performed by SPSS 15.0. The DCA, RDA and pRDA were 
performed using the program CANOCO 4.5 (ter Braak and Smilauer 2002). Maps of sampling sites and SWSD 
distribution were produced using GIS software (ArcGis 9.2).
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