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Investigation of the anti-TB 
potential of selected propolis 
constituents using a molecular 
docking approach
Mohammad Tuhin Ali1, Natalia Blicharska2,5, Jamil A. Shilpi  3 & Veronique Seidel  4

Human tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading bacterial killer disease 
worldwide and new anti-TB drugs are urgently needed. Natural remedies have long played an important 
role in medicine and continue to provide some inspiring templates for drug design. Propolis, a substance 
naturally-produced by bees upon collection of plant resins, is used in folk medicine for its beneficial 
anti-TB activity. In this study, we used a molecular docking approach to investigate the interactions 
between selected propolis constituents and four ‘druggable’ proteins involved in vital physiological 
functions in M. tuberculosis, namely MtPanK, MtDprE1, MtPknB and MtKasA. The docking score for 
ligands towards each protein was calculated to estimate the binding free energy, with the best docking 
score (lowest energy value) indicating the highest predicted ligand/protein affinity. Specific interactions 
were also explored to understand the nature of intermolecular bonds between the most active ligands 
and the protein binding site residues. The lignan (+)-sesamin displayed the best docking score towards 
MtDprE1 (−10.7 kcal/mol) while the prenylated flavonoid isonymphaeol D docked strongly with 
MtKasA (−9.7 kcal/mol). Both compounds showed docking scores superior to the control inhibitors and 
represent potentially interesting scaffolds for further in vitro biological evaluation and anti-TB drug 
design.

Human tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of deaths worldwide from 
a single infectious agent. In 2016, it was estimated that 10.4 million people developed active TB disease and that 
this resulted in 1.7 million deaths. TB rates are particularly high in developing countries where, with HIV/AIDS 
and malaria, it creates a huge burden on healthcare systems. Treating TB is a long process that involves complex 
drug regimens, with adverse effects and interactions, and is associated with poor patient compliance. This has led 
to the evolution of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR) strains. The treatment of 
MDR-TB requires expensive drugs and XDR-TB is often incurable. The rise in resistant TB over the past decade is 
now a worldwide emergency1. Although drug development efforts have intensified in recent years, with two new 
anti-TB drugs (bedaquiline and delamanid) licensed and a few others currently undergoing clinical evaluations, 
the current drug development pipeline is still insufficient to address such a global health challenge. There remains 
an urgent need to discover and develop new anti-TB drugs, particularly to target drug-resistant and dormant 
strains of M. tuberculosis as well as providing a more effective and shorter duration of treatment2.

Natural remedies, sourced from plants, microbes and animal products, have for centuries played an impor-
tant role in medicine. They represent a unique pool of highly-diverse chemicals that have evolved to specifically 
interact with biological targets and that continue to provide some new and inspiring templates for pharmaceutical 
drug design3. In recent years, there has been a renewed interest in the investigation of natural sources for the 
identification of novel antitubercular agents4–8. Propolis, also known as bee glue, is a natural substance produced 
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by honeybees mainly upon collection of plant secretions, such as resins and sticky exudates on leaf buds and plant 
wounds. The word propolis is derived from Greek, in which pro means “at the entrance to” and polis means “com-
munity” or “city”. Bees use propolis as a construction and repair material to seal gaps, smooth out internal walls 
in their hives and as an antiseptic coating to generally protect from external contamination. Propolis has a highly 
variable chemical composition depending on the geographical location from where it is collected. For instance, 
propolis from temperate regions of the world is rich in phenolic compounds derived from poplar tree exudates 
whereas bees in tropical countries have different plant sources at their disposal resulting in propolis types rich 
in other phytochemicals such as prenylated flavonoids and benzophenones, lignans, terpenoids and phenolic 
lipids9–13. Propolis has a long history of use as a folk remedy to treat a variety of ailments14. Numerous scientific 
studies have been carried out to investigate its medicinal properties, including anti-inflammatory15, immunostim-
ulant16, anti-oxidant17, antitumour18, neuroprotective19 and antimicrobial activity12,20,21. Interestingly, propolis has 
been used as an ingredient in traditional cures for tuberculosis22–25. Previous in vitro studies have demonstrated 
that extracts of propolis could inhibit the growth of M. tuberculosis as well as synergise the effect of established 
antitubercular drugs such as isoniazid, rifampicin and streptomycin26,27. It has also been observed that propo-
lis inhibited the development of TB by lowering necrosis formation in granulomas of M. tuberculosis-infected 
animals28.

Several enzymes involved in vital physiological functions in M. tuberculosis have been identified as novel 
attractive molecular targets for anti-TB drug development29–32. Here, we used a guided docking approach with 
AutoDock Vina to predict the interactions between selected propolis constituents and four of these essential 
mycobacterial enzymes, namely pantothenate kinase (MtPanK, type 1)33, decaprenylphosphoryl-β-D-ribose 
2′-epimerase 1 (MtDprE1)34, protein kinase B (MtPknB)35 and β-ketoacyl acyl carrier protein synthase I 
(MtKasA)36. Molecular docking is a popular tool used in the virtual screening of small molecules (ligands) against 
proteins (targets) and several studies have successfully used AutoDock Vina to investigate the interactions of 
natural products against specific protein targets, including mycobacterial enzymes37–41. The docking of propolis 
constituents towards MtPanK, MtDprE1, MtPknB and MtKasA, however, has never been reported.

Results
The propolis constituents investigated in this study represent some structurally diverse compounds that we 
grouped into four main categories, namely flavonoids, terpenoids, simple phenolics and miscellaneous substances 
including a pterocarpan, a phenylethanoid derivative, five stilbenes and four lignans. Known molecules, that had 
been reported previously in the literature as inhibitors of the target enzymes and for which the nature and role 
of the binding site residues were known from their available complexes with the proteins, were used as controls. 
In order to validate the docking conditions prior to virtually screening the propolis constituents, each control 
inhibitor was retrieved from its co-crystallised complex and re-docked using the AutoDock Vina software against 
the relevant target. Then, a docking score for each propolis compound was calculated to estimate its binding free 
energy towards MtPanK, MtDprE1, MtPknB and MtKasA (Table S1). The docking score values obtained for 
compounds within each phytochemical class were compared to the scores of the control inhibitors for each target 
in order to select molecules with the lowest energy values that ranked higher than the chosen control inhibitors 
against the target proteins. We observed that none of the propolis constituents exhibited scores that ranked better 
than the controls neither against MtPanK nor MtPknB. Instead, only docking to MtKasA and MtDprE1 gave use-
ful scores. Thus, the prenylated flavanones isonymphaeol D, isonymphaeol C and isonymphaeol B showed strong 
docking scores towards MtKasA (−9.7, −9.6 and −9.5 kcal/mol, respectively) superior to the control inhibitor 
thiolactomycin (−7.9 kcal/mol). The Ki of isonymphaeol D for MtKasA was estimated at 0.07 μM (control was 
1.62 μM). Isonymphaeol D also showed a strong predicted binding towards MtDprE1 (−10.1 kcal/mol) com-
pared with the control inhibitor 0T4 (−9.2 kcal/mol). Among the terpenoids, we observed that the oleanane-type 
triterpene β-amyrin acetate showed some affinity for MtDprE1 (−9.9 kcal/mol) and ranked better than 0T4 
(−9.2 kcal/mol). In the simple phenolics group, (+)-chicoric acid exhibited a strong binding score (−9.5 kcal/
mol) for MtKasA compared with thiolactomycin (−7.9 kcal/mol). The stilbene 5-((E)-3,5-dihydroxystyryl)-3-
((E)-3,7-dimethylocta-2,6-dien-1-yl) benzene-1,2-diol showed a docking score against MtKasA (-9.4 kcal/mol) 
that also ranked better than thiolactomycin while the lignan (+)-sesamin docked strongly to MtDprE1 with a 
score (−10.7 kcal/mol) and predicted Ki (0.01 μM) better than 0T4 (−9.2 kcal/mol and Ki of 0.18 μM) (Table 1).

Specific interactions were further explored to understand the nature of the intermolecular bonds formed 
between selected compounds and the binding site residues for the four studied enzymes (Table S2). The binding 
poses obtained for the best binding ligands isonymphaeol D and (+)-sesamin were visually inspected and are 
depicted in Figs 1 and 2, respectively. We observed that isonymphaeol D showed some key molecular interactions 
with the key residues Pro280, Phe402 and His311 of MtKasA (Fig. 1) and (+)-sesamin interacted with the key 
residues Cys387, Ser59 and Gly117 of MtDprE1 (Fig. 2). The best score towards MtPanK was observed for the 
flavonoid pinobanksin-3-(E)-caffeate (−10.0 kcal/mol) but protein-ligand interactions were not investigated for 
this compound as this ranked lower than the score obtained for the control inhibitor ZVT (−10.9 kcal/mol). The 
highest affinity towards MtPknB was observed for the flavonoids pachypodol and pinobanksin-3-(E)-caffeate 
(−9.1 kcal/mol) but again this ranked lower than the score obtained for the control inhibitor mitoxantrone 
(−10.8 kcal/mol) and was not investigated any further.

Discussion
In this study, we investigated the anti-TB potential of a range of propolis compounds using a guided molecular 
docking approach with a view to characterise their affinity towards the four mycobacterial enzymes, MtPanK, 
MtDprE1, MtPknB and MtKasA. The rationale for the selection of these particular proteins was that these are 
key enzymes required for M. tuberculosis to grow and survive within the eukaryotic host. They are also involved 
in a variety of essential mycobacterial pathways such as cell wall biogenesis, cofactor biosynthesis and signal 
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transduction. They are absent in mammalian cells, which makes them highly selective and attractive ‘druggable’ 
targets for mycobacterial diseases, and they represent some newly-validated emerging targets against which no 
marketed drug is currently available33–36. Pantothenate kinase type I from M. tuberculosis (MtPanK) is an enzyme 
that catalyses the first step in the biosynthesis of the cofactor Coenzyme A (CoA) by converting pantothenate 
(vitamin B5) to 4′-phosphopantothenate33. Serine/threonine protein kinases, such as protein kinase B (MtPknB), 
which is implicated in the regulation of mycobacterial cell morphology, play an important role in signal trans-
duction pathways and allow M. tuberculosis to grow and survive successfully within the host35,42. As the mycobac-
terial cell wall is a complex structure comprising layers of peptidoglycan, arabinogalactan, lipoarabinomannan 
and some mycolic acids, two key protein targets in the M. tuberculosis cell wall biosynthesis, β-ketoacyl acyl 
carrier protein synthase I (MtKasA) and decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 (MtDprE1), were also 
included in this study34,36. The presence of mycolic acids is a unique feature of the mycobacterial cell wall. These 
very-long chain fatty acids, which have been linked with the ability of mycobacteria to survive in the host and 
to resist many antibiotics, are produced through the activity of a range of fatty acid synthases (FAS). MtKasA is 
one of the enzymes of the mycobacterial type II FAS pathway, which is only found in bacteria36. A closer look 
at the interactions between isonymphaeol D and MtKasA reveals that the prenylated tail of this flavonoid binds 
to the hydrophobic pocket of MtKasA that contains Pro280 and Phe402. Furthermore, a strong hydrogen bond 
(contact distance 2.77 Å) was observed between the C-4′ phenolic oxygen of isonymphaeol D and a nitrogen of 
the His311 residue at the active site, in close similarity to what has been previously described as the mode of bind-
ing of the TLM control36. The mycobacterial cell wall enzyme decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 
(MtDprE1) participates in the biosynthesis of two fundamental mycobacterial cell wall components, namely ara-
binogalactan and lipoarabinomannan43. The Cys387 in the active site of MtDprE1 has been identified as a critical 
residue for the binding, through a covalent bond, of the control inhibitor 0T4 (also called CT325)34. In the case 
of (+)-sesamin, the interactions observed were not via covalent bonds but involved a π-sulfur interaction with 
Cys387, and strong hydrogen bonds between oxygens of the methylenedioxy and the tetrahydrofuran moieties 
and Ser59 and Gly117 (contact distances 3.08 and 2.94 Å, respectively).

Previous studies have reported on the anti-TB activity of some of the propolis constituents investigated here, 
including acacetin, apigenin, quercetin, pinostrobin, pinocembrin, naringenin, liquiritigenin, genistein, cycloar-
tenol, β-amyrin acetate, pimaric acid, methyl caffeate, p-coumaric acid, methyl coumarate, cinnamic acid, medi-
carpin, resveratrol and sesamin44–61. Among the selected compounds showing the best docking scores, only 
β-amyrin acetate and sesamin have previously displayed moderate activity against M. tuberculosis H37Rv with 
minimum inhibitory concentration (MIC) values of 100 and 50 μg/mL (213 and 141 μM), respectively53,61. To the 
best of our knowledge, there have been no published reports on the antitubercular activity of isonymphaeol D. 
For the control inhibitors, experimental data revealed MIC values > 64 μg/mL (equivalent to >150 μM) for ZVT 
and 62.5 μM for thiolactomycin against M. tuberculosis H37Rv33,62. The activity of mitoxantrone (MIX) against M. 
tuberculosis H37Rv, M. smegmatis mc2 155 and M. aurum A+ found MIC values in the range 25–400 μM35 while 
the activity of 0T4 was reported in terms of IC50 values of 10.4 and 4.6 μg/mL against M. smegmatis and M. bovis 
BCG, respectively34. In addition to this, enzymatic studies further revealed that the control compounds ZVT and 
MIX inhibited MtPanK and MtPknB with IC50 values of 1.13 μM and 0.8 μM, respectively33,35.

The purpose of molecular docking is to use scoring algorithms to estimate the likelihood that a given com-
pound will bind to a protein target. We have identified the lignan (+)-sesamin and the prenylated flavonoid 
isonymphaeol D from propolis as being the best predicted binding ligands for MtDprE1 and MtKasA, respec-
tively. Interestingly, isonymphaeol D displayed a strong predicted binding towards both enzymes, which suggests 
that it is a particularly promising agent as it has been demonstrated that the odds of successfully discovering 
active compounds using structure-based virtual screening methodologies are greater when a single compound 
can target multiple proteins63. Both (+)-sesamin and isonymphaeol D showed docking scores ranking higher 
than those obtained for the known control inhibitors of the target proteins and had predicted activities at the 
target sites lower than 0.1 μM. There was, however, a lack of correlation between the strong predicted affinity 
of (+)-sesamin for MtDprE1 (score of −10.7 kcal/mol and Ki of 0.01 μM) and its observed (moderate) activity 

MtDprE1 MtKasA

Docking score Ki Docking score Ki

Control inhibitor, 0T4 −9.2 0.18

Control inhibitor, thiolactomycin −7.9 1.62

Isonymphaeol-C −9.5 0.11 −9.6 0.09

Isonymphaeol D −10.1 0.04 −9.7 0.07

Isonymphaeol B −9.5 0.11 −9.5 0.11

β-Amyrin acetate −9.9 0.05 −2 >1.104

(+)-Chicoric acid −9.1 0.21 −9.5 0.11

5-((E)-3,5-dihydroxystyryl)-3-((E)-3,7-dimethylocta-2,6-dien-1-yl) benzene-1,2-diol −9.2 0.18 −9.4 0.13

(+)-Sesamin −10.7 0.01 −8.7 0.42

Table 1. Predicted binding affinity (docking scores in kcal/mol) and inhibition constant (Ki in μM) of selected 
propolis constituents and re-docked control inhibitors against MtDprE1 and MtKasAa. aCompounds within 
each phytochemical class showing the lowest energy values and ranking better than any of the given control 
inhibitors are highlighted in bold.
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on whole bacterial cells (MIC of 141 μM). It has been previously reported that a direct correspondence between  
in silico molecular docking results and in vitro biological parameters cannot always be established. This can be 
due to the fact that some compounds are not able to go through the complex mycobacterial cell wall, or the char-
acteristics of the binding site where inhibition takes place is different in vivo64. Isonymphaeol D and (+)-sesamin 
may not be used as such clinically. However, as most bioactive natural products, they represent some potentially 
interesting “hits”65 that can be further structurally optimised for the design of new anti-TB drugs and they war-
rant further in vitro biological evaluation.

Methods
Ligand selection. The ligands selected for this study were 78 well-characterised phytochemicals previously 
isolated from Algerian66–69, Egyptian70–73, Tunisian74, Libyan75, Congolese76, Ghanaian77, Kenyan78 and Nigerian79 
propolis. All chemical structures were retrieved from the PubChem compound database (NCBI) (http://www.
pubchem.ncbi.nlm.nih.gov).

Ligand and protein preparation. Each ligand structure was drawn using ChemOffice v.15.1 and geom-
etry optimised using MM2 energy minimisation80. All rotatable bonds present on the ligands were treated as 

Figure 1. Molecular interactions between isonymphaeol D and MtKasA. Docked pose of isonymphaeol D in 
the MtKasA binding site (a), interactions between isonymphaeol D and MtKasA showing key hydrogen-bonds 
(green dashed lines), hydrophobic bonds (dark pink dashed lines) and respective amino acid residues (b), 2D 
plot of interactions between isonymphaeol D and key residues of MtKasA (c) generated by BIOVIA Discovery 
Studio visualizer.

http://www.pubchem.ncbi.nlm.nih.gov
http://www.pubchem.ncbi.nlm.nih.gov
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non-rotatable. This allowed us to perform rigid docking and minimise standard errors (typically of 2.85 kcal/mol) 
likely due to ligands with many active rotatable bonds81. The Gasteiger charge calculation method was used and 
partial charges were added to the ligand atoms prior to docking82. The crystal structures of MtPanK type 1 (PDB 
ID: 4BFT), MtDprE1 (PDB ID: 4FF6), MtPknB (PDB ID: 2FUM) and MtKasA (PDB ID: 2WGE) were retrieved 
from the RCSB Protein Data Bank (PDB) database (http://www.pdb.org). The structures of the ligand inhibitors 
2-chloro-N-[1-(5-{[2-(4-fluorophenoxy)ethyl] sulfanyl}-4-methyl-4h-1,2,4-triazol-3-Yl) ethyl]benzamide (ZVT) 
for MtPanK, 3-(hydroxyamino)-N-[(1r)-1-phenylethyl]-5- (trifluoromethyl)benzamide (0T4) for MtDprE1, 
mitoxantrone (MIX) for MtPknB and thiolactomycin (TLM) for MtKasA were retrieved from their correspond-
ing PDB entries (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.
html). Each protein was used as a rigid structure and all water molecules and hetero-atoms were removed using 
BIOVIA Discovery Studio Visualizer v.4.5 (Accelrys).

Identification of binding site residues. Previous studies were used to identify the nature and the role 
of the binding site residues for MtPanK type 133, MtDprE134, MtPknB35 and MtKasA36. Specific amino acids 
involved in ligand/protein interactions were also confirmed following the analyses of the PDB crystal structures 
available for each target protein in complex with either natural substrates or control inhibitors (Table S3).

Figure 2. Molecular interactions between (+)-sesamin and MtDprE1. Docked pose of (+)-sesamin in the 
MtDprE1 binding site (a), interactions between (+)-sesamin and MtDprE1 showing key hydrogen-bonds 
(green dashed lines), hydrophobic bonds (dark pink dashed lines) and respective amino acid residues (b), 2D 
plot of interactions between (+)-sesamin and key residues of MtDprE1 (c) generated by BIOVIA Discovery 
Studio visualizer.

http://www.pdb.org
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
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Grid box preparation and docking. All file conversions required for the docking study were performed 
using the open source chemical toolbox Open Babel v. 2.3.283. Grid box parameters (Table 2) were set in such 
a way so as to allow for a suitably-sized cavity space large enough to accommodate each compound within the 
binding site of each protein and were determined using AutoDock Tools v. 1.5.6rc384. Molecular docking calcula-
tions for all compounds with each of the proteins were performed using AutoDock Vina v. 1.1.281. To validate the 
accuracy of the docking and to allow a comparison between docking scores, all co-crystallised inhibitory ligands 
were re-docked into the corresponding protein structures. Different orientations of the ligands were searched and 
ranked based on their energy scores. Our docking protocol was able to produce a similar docking pose for each 
control ligand with respect to its biological conformation in the co-crystallised protein-ligand complex. We fur-
ther visually inspected all binding poses for a given ligand and only poses with the lowest value of RMSD (simply 
root-mean-square deviation) (threshold < 1.00 Å) were considered to gain a higher accuracy of docking. The 
Lamarckian Genetic Algorithm was used during the docking process to explore the best conformational space for 
each ligand with a population size of 150 individuals. The maximum numbers of generation and evaluation were 
set at 27,000 and 2,500,000, respectively. All other parameters were set as default. As the active binding sites and 
some control inhibitors for our four selected mycobacterial enzymes have been well-characterised in previous 
studies33–36, we decided to use a guided docking approach to increase docking efficiency37 by sampling each ligand 
conformation (including re-docking of the control inhibitors) in each protein binding site and then ranking these 
conformations using a scoring function to predict the best protein-ligand binding affinities (calculated as the pre-
dicted binding free energies ΔGbind in kcal/mol) (Table S1). The lowest binding free energy (i.e. best score of the 
docking pose with the least root mean square deviation) indicated the highest predicted ligand/protein affinity. 
The Auto Dock Vina docking scores of these selected propolis constituents which ranked higher than a control 
inhibitor were further used to calculate the predicted inhibition constants (Ki values) of selected compounds 
against a given target (Table 1)85. Specific intermolecular interactions with the targets (Table S2 & Figs 1–2) were 
further visualised using BIOVIA Discovery Studio Visualizer v.4.5 (Accelrys).
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