
1SCIentIFIC REPORts |  (2018) 8:12938  | DOI:10.1038/s41598-018-29964-9

www.nature.com/scientificreports

Core community structure recovery 
and phase transition detection in 
temporally evolving networks
Wei Bao1 & George Michailidis2

Community detection in time series networks represents a timely and significant research topic due to 
its applications in a broad range of scientific fields, including biology, social sciences and engineering. 
In this work, we introduce methodology to address this problem, based on a decomposition of the 
network adjacency matrices into low-rank components that capture the community structure and 
sparse & dense noise perturbation components. It is further assumed that the low-rank structure 
exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects 
and identifies. The latter is achieved by averaging the low-rank component over time windows, which in 
turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify 
the phase transition epochs. The methodology is illustrated on both synthetic networks generated by 
various network formation models, as well as the Kuramoto model of coupled oscillators and on real 
data reflecting the US Senate’s voting record from 1979–2014. In the latter application, we identify that 
party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with 
the political science literature on the subject.

There has been a lot of work across different scientific communities including computer science, applied physics, 
statistics and the social sciences in developing methods for the analysis of network data1. The impetus for these 
developments has been the availability of new data in biology (e.g. protein-protein interactions, product-substrate 
relationships amongst compounds, or ecological communities of commensal, symbiotic and pathogenic micro-
organisms), friendship relationships in social media platforms such as Facebook, Instagram and Twitter, trans-
actional data between consumers or business organizations, just to name a few2–6. Such data capture interactions 
between a set of entities (e.g. biomolecules, physical persons, companies) giving rise to a network structure.

A wide range of topics can be studied on networks, including constructing representations, effective visualiza-
tion of their structure, descriptive analysis of their characteristics, study of network formation models and their 
behavior and study of dynamically evolving phenomena (like epidemics or information diffusion) on networks1,7. 
A topic that has recently attracted a lot of interest is that of identifying community structure in observed net-
works, as well as developing network formation models that exhibit such structure. A community on a network is 
heuristically defined as a set of nodes exhibiting high degree of interconnectivity in comparison to other nodes in 
the network. Its importance stems from the fact that it represents a defining characteristic of real world networks; 
for example, sets of close friends give rise to such communities in social networks, or sets of closely interact-
ing biomolecules (functional pathways) in biological networks. A large number of fast and efficient algorithms 
have been proposed in the literature to identify such communities in networks, including minimum cut based 
graph partitioning, hierarchical clustering, k-means based clustering and spectral clustering (for a comprehensive 
review, see8 and references therein). Another class of algorithms is based on maximization of a quality function 
known as “modularity”.

〈Footnote: It is a function defined as9:
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where A is the adjacency matrix, gi stands for the community to which node i belongs, = ∑k Ai j ij, = ∑m A2 ij ij 
and δ(gi, gj) = 1 if gi = gj and 0 otherwise. A higher modularity value indicates a better partition for the network 
under consideration〉.

Over possible partitions of the network; given the computational complexity of this optimization problem 
various greedy variants, as well as algorithms based on simulated annealing and spectral optimization10–13 have 
been developed. Finally, on the network formation models front exhibiting community structure, the stochastic 
block model (SBM) and its variants (e.g. degree corrected SBM) have been the objects of intensive study14–16.

However, most of the focus to date has been on static networks, where a single snapshot is available. In many 
applications, one has access to a sequence of network snapshots evolving over time. It is then of great interest to 
identify communities in such dynamically evolving networks and also investigate whether their structure remains 
fixed or exhibits changes over time. There has been some recent work on this subject. For example17 developed a 
generalized modularity quality function that reflects the temporal dynamics of a sequence of networks, while18 
introduced the concept of common communities and proposed a method to detect them in a sequence of net-
works by optimizing an objective function based on a node-wise membership matrix. Further19, developed a 
robust community detection algorithm for this problem, by optimizing a quality function (e.g. modularity) 
based on null statistical models assumed to generate the network data; examples of such models include the 
Newman-Girvan one and correlation/similarity ones9,19,20.

However, an issue not adequately explored in the literature is the identification of time epochs where sig-
nificant changes (phase transitions) occur in the network structure and also the community structure between 
them. Some previous work includes18 and21, the latter using an Ising model and assuming the existence of a single 
change in the network structure over time. Nevertheless, such changes are common in many applications. A 
recent example comes from the change in the connectivity patterns in networks of asset returns before, during 
and after the financial crisis of 2008 (for details see22), while another one relates to changes in brain connectiv-
ity before and after epileptic seizures23. A third example stems from changing patterns of political polarization 
amongst US legislators, which is examined later on in this study.

Our proposed modeling framework for the problem at hand assumes that given a sequence of T network 
snapshots, the community structure exhibits significant changes (phase transition) at time periods τ τ− +

={[ , ]}m m m
M

1, 
while it remains invariant within time segments τ τ+

+
−( , )m m 1 , where τ−

m  and τ+
m  represents the start and end time 

points of the m-th phase transition epoch, respectively. Possible changes during phase transitions include merging 
or division of existing communities, growth by adding members to them or their extinction altogether, while 
during stable periods the community can exhibit perturbations in its structure; either dense ones that involve a 
number of nodes in the community, but small in magnitude in the sense that the strength of the links between 
nodes changes by a small amount, or sparse ones that involve isolated nodes, but the strength of the correspond-
ing links to selected other nodes can be large in magnitude. Technically, we assume that the community structure 
can be captured by a low-rank weighted adjacency matrix, while the perturbations correspond either to the addi-
tion of small magnitude dense components or large magnitude sparse components.

Results
Model formulation and Optimization Strategy. Consider a sequence of T weighted adjacency matrices 

=A t{ ( )}t
T

1 that encaptulate the structure of a network comprising of n nodes and their corresponding edges. It is a 
symmetric matrix and the edge magnitude = …A t i j n( ), , 1, ,i j,  capture the strength of association between 
nodes i and j. In the simplest case, ∈A t( ) {0, 1}ij  indicate whether nodes i and j are connected or not.

It is assumed that A(t) can be decomposed as follows: A(t) = L(t) + S(t) + E(t), where L(t) is a low-rank matrix, 
S(t) is a sparse one with most of its elements being zero and E(t) a dense matrix with ε<E t( ) F  for some small 
ε > 0 and where ⋅ F denotes the Frobenius norm. This model captures the presence of community structure in 
networks through the low-rank component, as well as possible small sparse and/or dense perturbations as 
explained in the previous section. It is also compatible with the popular network formation model that gives rise 
to community structure, namely the Stochastic Block Model (SBM)15. Specifically, the SBM assumes an undi-
rected network on n nodes and that the nodes are partitioned into K blocks. Then, edges are formed according to 
the following stochastic mechanism. Node i is connected to node j with an edge, whose probability of occurring 
only depends on the blocks (communities) to which i and j belong to. It is commonly assumed that the probabil-
ities for edges between i and j in the same community are significantly higher than those for nodes i and j in dif-
ferent communities. The SBM has been the object of intense study in recent years14–16. It can be seen that this 
mechanism gives rise to a low-rank structure L, corrupted with noise E, thus captured by the posited model. In 
fact, the proposed model also allows for “spiky” noise in the form of the sparse matrix S and as already mentioned 
can accommodate weighted adjacency matrices as well.

In what follows, we use the time point τm to represent the m-th phase transition time period τ τ− +[ , ]m m . For a 
sequence of adjacency matrices, we make the additional assumption that the low rank structure is invariant 
between phase transition time points τm, while the perturbations are allowed to vary freely. This is consistent with 
the intuition that community structure can be slowly evolving over time, while individual edges (connections) 
between nodes can exhibit a higher degree of variability in their patterns. Hence, our modeling framework 
assumes that:

τ τ τ τ τ τ= ∈ + + = … = < < < < < = .+  L t L I t S t E t t T T( ) ( ( , )) ( ) ( ), 1, , , 0m m m m M1 0 1

Note that the problem of decomposing a matrix into low-rank and sparse/dense components has been inves-
tigated in the literature, due to its relevance in matrix completion problems24–29 that emerged from recommender 
systems, compressed sensing, system identification, anomaly detection and related applications28,30–33. Specifically, 
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the low rank recovery problem can be formulated as a rank minimization problem subject to certain constraints. 
To make the problem computationally tractable (convex), a nuclear norm.

〈Footnote: The nuclear norm of a matrix ∈ ×X RM N  of rank r is defined as the summation of all the singular 
values σ= ∑ =⁎X : i

r
i1 , where σi’s are the singular values of X and are equal to the square roots of the eigenvalues 

of XXT〉.
Was introduced in24. Subsequent work25,26 examined the following variant γ+⁎L SminL S, 1

, subject to 
exact recovery A = L + S, while a further extension was studied in27 where the objective function remained the 
same, but the constraints allowed low-rank recovery subject to sparse and also dense noise E; i.e. A = L + S + E 
with ε ε≤ >E , 0F . In the above, ⋅ 1 denotes the 1 norm for the vectorized form of its matrix argument. 
Further, in theoretical work25,27, showed that the problem is feasible and admits a correct solution if an incoher-
ence condition between L, S and E is satisfied, which intuitively requires that the matrices E and S can not exhibit 
low-rank structure.

In the presence of dense noise, the corresponding optimization problem can be formulated as

γ α+ +

. . + + =
⁎L S E

L S E A

min

s t
F1
2

with the two tuning parameters γ and α controlling the trade-off amongst the low rank, sparse and dense noise 
components.

Turning our attention to the problem at hand, we can analogously formulate the problem, while we need to 
incorporate an additional constraint that would force recovery of the same low-rank (community) component 
between phase transition epochs. The latter task can be accomplished by adding a total variation penalty encour-
aging similarity between successive time estimates of L(t), given by

∑ ∑γ α λ+ + + − −
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with the tuning parameters λ(t) controlling the degree of discrepancy between consecutive low rank components 
L(t). It is worth mentioning that the squared Frobenius norm for the total variation penalty can be replaced by 
other norms such as the 1 to achieve the same objective, and the proposed strategy below would go through with 
minor modifications.

Brief Overview of Change Point Analysis Methods. The problem has been extensively studied in the statistics 
literature for single time series data. Further, an extensive body of theoretical results -convergence rates of various 
estimators, as well as asymptotic distributions for the change point (phase transition epoch)- have been estab-
lished when a single change point is assumed (for a comprehensive review see34,35). More recently, the focus has 
shifted to developing fast procedures for identifying multiple change points in a single time series and also pro-
viding probabilistic guarantees for identifying the right number of them, as well as their locations36. In parallel, 
methods for identifying a single change point in multiple time series data emerged37 and more recently exten-
sions to high-dimensional settings appeared38 together with their extension to the case of multiple change points. 
However, a key assumption has been that the time series under consideration are independent, which implies that 
a simple least squares criterion can be used to identify at least a single change point. On the other hand, the net-
work setting considered in our study obviously violates the latter condition and hence a more complex criterion 
needs to be employed. Further, as previously mentioned, in the presence of network data streams the objective is 
not simply to identify transition epochs, but also the nodes in the network that gave rise to them.

Turning our attention to the problem formulation in 2, it can be seen that our interest is in finding the single 
core common community structure for each of the M time epochs, while at the same time detecting and identify-
ing the phase transition time points τj. Therefore, to achieve this objective, the tuning parameter λ(t) should be 
set as large as possible between phase transition time points while at phase transition time points we would like to 
set λ(t) as small as possible. Naturally, the second requirement can be achieved by directly removing the total 
variation penalty, which is equivalent to setting λ(t) = 0. While for the first requirement, since we assume a fixed 
low rank component Lm for each stable community time period, we can approximately recover the single low rank 
component for each period by simply taking the average of the individual low rank components L(t) recovered 
without the total variation penalty. Assuming that the length of the time intervals τ τ| − | ∼ <+ cT c, 1m m1  scales 
linearly with time, we would expect that the variations in the estimates of τ τ∈ +L t t( ), ( , )m m 1  cancel out and the 
average low-rank component converges to the true one that generated the weighted network adjacency matrix. 
Therefore, by considering the following relaxed version of the optimization problem above

γ α| + +

. . = + +
⁎L t S t E t

A t L t S t E t

min ( ) ( ) ( )

s t ( ) ( ) ( ) ( ) (3)
F1
2

and then averaging the low-rank component estimates between phase transition epochs. Then, the question 
becomes of how to identify those τm epochs accurately. We propose to calculate and monitor over time the thresh-
olded rank over time windows of a certain length. This rank is defined as the number of singular values exceeding 
a carefully selected threshold, which represents the effective number of communities detected. Finally, the core 
community structure Lm can be estimated by using any standard clustering technique for networks applied to the 
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average τ τ∈ +L t I t( ) ( ( , ))m m m 1 . A recommended clustering technique for this task is spectral clustering39,40 and 
the overall strategy is illustrated in the next sub-section.

To solve the problem in equation 3, we adopt an alternating splitting augmented Lagrangian method (ASALM) 
that was proposed in27 and is a variant of the widely used alternating direction method of multipliers (ADMM)41. 
The advantage of this method is that its computational complexity of each iteration of the algorithm is domi-
nated by one singular value decomposition (SVD), whose computational efficiency can be further improved by 
employing a partial SVD decomposition27,42 since only leading singular values and corresponding vectors need to 
be calculated. The augmented Lagrangian function of?? is given by:

γ α β
= + + + 〈Λ − − − 〉 + + + −       ⁎L L S E A L S E L S E A,

2 (4)F F1
2 2

where β > 0 is used to penalize violation of the constraint A = L + S + E and 〈〉 is the trace inner product which is 
defined as 〈 〉 = ∑X Y X Y, : ij ij ij. Based on ASALM, we can minimize the Lagrangian function by splitting it into 
separate parts and minimize consecutively as follows:

α β
β

γ β
β
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The Lipschitz constant β controls the number of leading singular values we need to compute at each iteration 
in the general soft singular value thresholding algorithm for low rank matrix recovery/completion, and a lot of 
related work has been devoted in the area to investigate the strategy of choosing an appropriate value to ensure 
convergence to the correct results, including dynamically updated ones and fixed ones27,42,43. Following27, for our 
purpose we choose a fixed β = 0.15N2/||A||1, where N is the size of the networks.

Therefore, incorporating results from43,44, we have the following iterative updating algorithm for iteration q

Note that the update for the dense noise component E involves a closed form formula, that for the sparse com-
ponent a soft-thresholding step, while that for the low-rank component a SVD. Finally, the update of the Lagrange 
multipliers Λ is given by another closed form formula. The stopping condition for the algorithm is given by: 

ε≤
− + −

+ +

+ +L L S S

L S 1

q q
F

q q
F

q
F

q
F

1 2 1 2

2 2
.

To employ the above algorithm, the tuning parameters α and γ need to be specified. Further, once the network 
adjacency matrices have been decomposed, the task becomes on how to identify the phase transition epochs and 
determine the number of communities and their membership. These issues are discussed next and illustrated on 
synthetic data generated according to the following mechanism.

Data Generation for Illustrative Example. We employ a statistical factor model to generate the sequence of net-
work adjacency matrices. For each of the M stable time periods, a common low rank component 

= =L t L U U( ) m m m
T  is generated for all τ τ∈ +t ( , )m m 1 , where each column uk(m) of Um satisfies that for nodes 

belonging to community k ,  ∼
. . .u m Unif r( ) ( , 1)k i

i i d
in  and for those nodes not in community k , 

∼
. . .u m Unif r( ) (0, )k i

i i d
out . It can be seen that by selecting parameters so that rin > rout, a node i belongs to commu-

nity k if uik ≥ rin. Finally, the sparse and dense noise components, at each time point t are generated according to:

•	 = •S t S t S t( ) ( ) ( )1 2 , where ∼
. . .S t Bernoulli p( ) ( )i i d

s1 , ∼ −
. . .S t Unif( ) ( 1, 1)i i d

2 .
•	 ∼ − +

. . .E t Unif r r( ) ( , )i i d , r > 0.
•	 = + +ΩA t L t S t E t( ) ( ( ) ( ) ( )) , Euclidean projection onto the space Ω = ∈ | ≤ ≤×X XR: { 0 1,N N

i j,
=X X }ij ji
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where =•X Y X Y[ ]ij ij  for ∈ ×X Y R, M N denotes element wise matrix multiplication, ps is the density of the 
sparse noise, and r is the upper bound for the magnitude of the dense noise component. For our illustrative exam-
ple, we set the following values for the control parameters for the model: rout = 0.4, rin = 0.6, ps = 0.1 and r = 0.1, 
and we generate T = 200 network snapshots, divided into M = 4 stable periods, with 11, 11, 7, and 12 densely 
connected communities respectively, and phase transition epochs occurring at times τ = 30–31, 60–65, 130–135. 
The time dependent community membership is depicted in panel (a) of Fig. 1 with community -1 representing 
the missing nodes and the detail of the network sequence is as follows: At t = 0, we set the network size as N = 900 
and there are 11 densely connected communities numbered from 0 to 10 of size 100, 100, 90, 90, 80, 80, 70, 70, 60, 
60, 50, respectively, with the remaining 50 nodes not belonging to any community and hence expected to be cap-
tured by the noise component. For pure notation purposes, we call these 50 outlying nodes, the “11th commu-
nity.” At time 31, an extra 100 nodes not exhibiting any community structure join the network and hence are 
assigned to the “11th community.” From time 61–65 the 100 nodes that joined the network at time 31 leave, while 
community 10 joins 0, 9 joins 1, and 7 and 8 join 6. From times, 131–135, the network structure reverts to the one 
being present between time periods 31–60, with the addition that community 8 disintegrates and joins the “11th 
community”, and communities 1 and 2 split into two separate communities each. This structure persists till the 
the end. It can be seen that a number of intricate changes occur to the network structure designed to showcase the 
power of the proposed methodology.

Selection of tuning parameters and decomposition. There are two parameters required in the optimization prob-
lem above; following suggestions in literature, we recommend selecting γ = N1/  for general purpose45. For α, 
extensive numerical work shows that searching over the range . + +N N N N(0 5/ 8 , 10/ 8 ) provides 
highly satisfactory results.

For our problem we sample 20 evenly spaced time points from the total T = 200 and plot the rank of the recov-
ered low rank components for these time points across different values of α. To facilitate identifying the optimal 
α we also include the plot of inconsistency/difference of the L(t) across consecutive values of α, defined as 

− +α α α+
   L t L t L t( ) ( ) / ( ) 1F Fi i i1

 with αi+1 − αi = 0.015 in our case. The results are shown in Fig. 1(b), and in 
order to recover robust L(t) components, we suggest choosing a value of α that would result in low inconsistency 
from the wide range of α values that would recover consistent rank across time points. For example, in our case, 
the wide range is α ∈ . .[0 045, 0 105] and we choose α = 0.1 to minimize the inconsistency.

With the above optimal set of parameters, the rank of the recovered L(t) across time is shown in Fig. 1(c) and 
simply by inspecting the evolution of rank across time, we can easily identify the two groups of phase transition 
time points around t = 60 and t = 130. However, this is not a very reliable method because on the one hand we did 
not capture the phase transition time points around t = 30 and on the other hand in terms of real life applications 
the rank of L(t) might not be so clean. Therefore, we develop the following strategy based on the thresholded rank 
of averaged L(t) to accurately and robustly identify phase transition time points.

Phase transition identification. The strategy of identifying phase transition epochs {τm} is as follows. First, split 
the T available time points into T  non-overlapping windows of equal length T . Then, scan over these windows 
and within each window compute for a range of values of thresholds the thresholded rank of the averaged low rank 
component, defined as the number of singular values exceeding the threshold. If a window is within a certain 
stable period, following the argument in the section of model formulation, we would expect an enhanced modu-
larity and therefore the thresholded rank would be consistent with the number of communities in the network 
across a wide range of threshold values. Therefore, if on one hand, the length of stable periods exceeds the window 
size, then we would expect a consistent thresholded rank across windows. On the other hand, if the window covers 
time points from two different stable periods having different community structures, the thresholded rank will 
exhibit volatility until it belongs to the new stable time period, wherein the thresholded rank starts to exhibit a 
stable behavior. Thus, to find the phase transition epochs, we simply choose an appropriate threshold value from 
a wide range of such values that would result in consistent thresholded rank across windows and identify the win-
dows where the thresholded rank first exhibits volatility. For illustration purposes, we choose a window of length 
7 and the wide range of threshold values is approximately ∈h [1, 6] and we choose h = 1.6 for our purpose as is 

Figure 1. (a) Left panel, design of the time dependent community structure. (b) Middle panel, illustration of 
rank and inconsistency across time based on a range of values of α. (c) Right panel, rank of L(t) recovered based 
on α = 0.1
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shown in (a) and (b) of Fig. 2. The choice of the window length is supported by some theoretical work46 and by 
extensive numerical experimentation. Of course, the accuracy level of the identification is limited by the window 
length ~ T  and to improve accuracy, around the phase transition time points obtained from above, we can zoom 
in to windows of smaller length, say ~ T , and repeat the same procedure. Naturally, the window length can be 
further reduced to obtain a desired level of resolution for identifying the phase transition epochs. The selection of 
a T  window length is dictated by the need for scalability of the procedure, in the presence of data sets involving 
a very large number of time points T.

To illustrate the idea of the window scanning strategy, we consider the results of our illustrative example as 
shown in Fig. 2. From the first level of windows of length 7 we identify the phase transition positions around 
t = 28, 56~63, 126. Then we zoom in around these time points with window length 2 and identify the phase tran-
sition time points t = 31, 61~65, 131~135 as shown in (c) and (d) of Fig. 2. Here in order to scan windows over 
the whole time series, we cast the adjacency matrices of all networks with smaller size to matrices of size Nmax, 
the maximum size of networks in the whole time range, and set entries 0 for those missing nodes. Note here we 
identified the phase transition time position t = 30 when new nodes join the network, while if we simply look at 
the time dependent rank of L(t) in Fig. 1(c) we would fail to detect this since the two regimes share the same rank 
but different community structures.

Core community structure detection. The final step involves identifying the invariant core community structures 
between phase transition epochs based on averaged L t( )m . In our example, the average misclassification rate is 
0.24% when clustering based on each individual L(t) and 0% based on averaged L t( )m . For comparison, if we 
cluster simply based on the original time series adjacency matrices A(t) corrupted with both dense and sparse 
noises, the average misclassification rate is as high as 0.89%.

Application to Synthetic Network Data. We employ the following three mechanisms to induce commu-
nity structure in the sequences of networks snapshots observed. (i) a factor model, (ii) a stochastic block model 
(SBM) and (iii) a weighted stochastic block model (WSBM)15,47. For simplicity, networks generated by the three 
models share the same time patterns on when the community structure changes. There are T = 30 network snap-
shots in total, divided in M = 3 stable time periods and all networks have size N = 1000 nodes. At t = 0, there are 
11 densely connected communities numbered from …0, , 10 of size 120, 100, 100, 100, 80, 80, 70, 70, 70, 60, 60, 
while the remaining 90 nodes do not form any community. At time t = 10 community 10 joins 0 and 9 joins 1 and 
this structure is fixed till t = 19. At time t = 20, community 7 and 8 join together with 6 and similarly this structure 
is fixed till the end.

The specifics of the network formation mechanisms are described next:

Figure 2. (a) Upper left panel, thresholded rank of windows of length 7 across time, based on different values of 
the threshold. (b) Upper right panel, thresholded rank of windows of length 7. (c) Lower left panel, thresholded 
rank by zooming-in using windows of length 2 around the first two phase transition epochs. (d) Lower right 
panel, thresholded rank of zoom-in windows of length 2 around the last phase transition epochs.
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 (i) Factor model: We fix rout = 0.4, rin = 0.6 for each L(t) and control the density ps of the sparse noise and the 
magnitude r of the dense noise, which are generated the same way as described in the illustrative example.

 (ii) SBM: Only sparse noise is introduced in this case since the entries of the adjacency matrices are binary. 
We fix the density of noise to be 0.1 and control the density of connections pc within communities for each 
L(t).

•	 Generate ∼
. . .L Bernoulli p( )in

i i d
c , and Lout = 0, where Lin stands for connections within communities and Lout 

for otherwise.
•	 Generate π∼

. . .S Categorical ( )i i d , such that P(Sij = 1) = 0.05, P(Sij = −1) = 0.05 and P(Sij = 0) = 0.9.
•	 Project to adjacency matrices: = +ΩA t L t S t( ) [ ( ) ( )] .

 (iii) WSBM: Similar to the factor model, we fix L(t) by generating them in the following way: 
∼ .
. . .L Unif (0 4, 1)in

i i d  and ∼ .
. . .L Unif (0, 0 6)out

i i d . Then, the strength of the sparse and dense noise is 
generated in the same way as before. Note if we have an adequate number of network snapshots, the 
connection strength of → = .+ .L t( ) 0 7m

1 0 4
2

 for edges belonging to communities and is larger than 
→ = .+ .L t( ) 0 3m

0 0 6
2

 for edges connecting different communities, although for any individual low-rank 
component L(t) the connection strength of some edges might not be concordant with this ranking.

For both the factor and WSBM models, we design dense and sparse noise components with various levels of 
strength controlled by r or ps as shown in Tables 1 and 2, while for the SBM model we control pc to study the per-
formance having different connection strength within communities, as given in Table 3. Applying the proposed 
methodology, we first successfully identify the phase transition time points t = 9, 19 for all the cases with optimal 
values for parameters γ,α given in the respective Tables. Subsequently, we compare the performance of commu-
nity detection based on individual low-rank components L(t), averaged ones Lm over the stable periods and the 
original adjacency matrices A(t). For the factor model, the misclassification rate based on the recovered L(t) from 

Models r γ

α (×10−2) Recovery Rate Error Rate (×10−3)

t1 t2 t3 t1 t2 t3

t1 t2 t3

A(t) L(t) L A(t) L(t) L A(t) L(t) L

Factor

0.3 0.03 4.5 4.5 4.5 1 1 1 48 11 0 48 6 0 37 3 0

0.4 0.03 3.2 2.8 2.8 1 1 1 61 24 0 41 12 0 33 6 0

0.5 0.02 3.9 3.5 3.5 1 1 1 103 192 3 63 78 0 42 36 0

WSBM

0.5 0.02 3.5 3 3 1 1 1 0 1 0 0 0 0 0 0 0

0.7 0.02 3 2.8 2.8 1 1 1 10 41 0 4 12 0 2 2 0

0.9 0.02 2.1 2.1 2.1 4/11 4/9 5/7 76 223 0 78 130 0 46 57 0

Table 1. Dense noise case for factor model and WSBM.

Models ps γ

α (×10−2) Recovery Rate Error Rate (×10−3)

t1 t2 t3 t1 t2 t3

t1 t2 t3

A(t) L(t) L A(t) L(t) L A(t) L(t) L

Factor

0.5 0.02 15 4.5 4.5 1 1 1 183 3 0 129 18 0 81 11 0

0.6 0.02 6 4.3 4.3 1 1 1 344 40 0 171 35 0 104 22 0

0.7 0.02 4.5 4 4 1 1 1 515 169 36 273 109 0 150 47 0

WSBM

0.5 0.02 3.5 3 3 1 1 1 1 1 0 1 1 0 0 0 0

0.7 0.02 3.4 3.2 3 1 1 1 19 32 0 8 10 0 2 2 0

0.9 0.02 2.1 2.1 2.1 4/11 4/9 5/7 68 174 0 65 102 0 76 55 0

Table 2. Sparse noise case for factor model and WSBM.

Models pc α

γ (×10−2) Recovery Rate Error Rate (×10−3)

t1 t2 t3 t1 t2 t3

t1 t2 t3

A(t) L(t) L A(t) L(t) L A(t) L(t) L

SBM

0.3 0.3 5.5 5 4.5 1 1 1 5 9 0 3 6 0 2 3 0

0.2 0.2 6.1 5.7 5.3 1 1 1 51 59 0 43 57 0 14 18 0

0.1 0.3 20 20 20 1 1 1 556 466 7 366 459 58 281 377 10

Table 3. Sparse noise case for SBM.
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A(t) are consistently lower than A(t), while for the SBM and WSBM models, this is not necessarily the case. 
However, for all the scenarios examined, the misclassification rate based on the averaged Lm goes to zero except 
for some extreme cases. Note that the recovery rate is defined as the proportion of densely connected communities 
recovered, while the error rate is the averaged misclassification rate across time for those recovered 
communities.

To further demonstrate the effectiveness of the proposed methodology in both identifying phase transition 
epochs and in accurately recovering core community structures, we design the following time evolving networks 
of size N = 500 based on the WSBM model. There are T = 40 network snapshots in total, with = …t 1, , 20 shar-
ing the same community structure with respective sizes 200, 150, 100, and 50. At time t = 21 community 1 of size 
200 splits into 2 of size 125 and 75 respectively, and this structure persists until T = 40. For obtaining the adja-
cency matrices, we set ∼

. . .L ubUnif(0, )out
i i d  and ∼ −

. . .L ubUnif(1 , 1)in
i i d  and control the signal strength by vary-

ing ub. Further, we incorporate various levels of dense and sparse noise by controlling r and ps. As is shown in 
Fig. 3, when the noise level increases or equivalently the signal strength decreases, small communities tend to be 
captured by either the sparse or dense noise components, and only communities of larger size can be recovered. 
However, as long as a community is detected, its members can be recovered with very high accuracy across vari-
ous levels of noise. As for phase transition epochs detection and identification, since we monitor the thresholded 
rank of averaged low rank matrices, as long as the change is driven by changes in the communities recovered by 
the proposed procedure, they can be also successfully identified. Indeed, this is the case for all the scenarios 
tested, except when ub ≥ 0.9; the latter case is depicted in Fig. 3(g) where no core community can be detected 
when ub ≥ 0.9 and thus the proposed phase transition detection procedure fails. This demonstrates the overall 
robustness of the proposed procedure, even in the presence of fairly high noise in the data.

In summary, across three network formation models and a wide range of scenarios examined, the proposed 
methodology is capable of correctly identifying phase transition epochs, accurately estimate the number of com-
munities, as well as their membership.

Figure 3. Upper row (a–c) presence of only dense noise, with ub = 0.7. Middle row (d–f) presence of both 
dense noise (r = 0.5) and varying degree of density of sparse noise with ub = 0.7. Lower row (g–i) fixed 
dense and sparse noise (r = 0.5, ps = 0.5), and varying signal strength (ub). (a) Upper left panel, number of 
communities detected versus magnitude of dense noise r. (b) Upper middle panel, accuracy level of recovery 
for each community during the first stable period, with C11 representing the community of size 200, C12 that 
with 150 nodes, C13 with 100 and C14 with 50 nodes. (c) Upper right panel, accuracy level of recovery for each 
community during the second stable period, with C21 representing the community of size 150, C22 of 125, C23 
of 100, C24 of 75 and C25 of 50 nodes, respectively. (d) Middle left panel, number of communities detected 
versus density of sparse noise ps. (e) Middle middle panel, accuracy level of recovery for each community during 
the first stable period. (f) Middle right panel, accuracy level of recovery for each community during the second 
stable period. (g) Lower left panel, number of communities detected versus signal strength ub. (h) Lower middle 
panel, accuracy level of recovery for each community during the first stable period. (i) Lower right panel, 
accuracy level of recovery for each community during the second stable period.
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Time-Evolving Synchronization Patterns in the Kuramoto Model. Next, we investigate synchro-
nization patterns on networks over time by the dynamical system of Kuramoto oscillators. This model has been 
extensively studied in the literature from various angles. In this work, we construct and study the behavior of 
resulting networks in the following two settings, also examined in19,48: time evloving community structures and 
two level hierarchical community structures. In both settings, there are N = 256 coupled phase oscillators in total 
and the phase θi(t) of the i-th oscillator evolves in time according to

∑
θ

ω κ θ θ= + − = …
d
dt

C i Nsin( ) 1, ,
(5)

i
i

j
ij j i

where ω ∼
. . . Normal (0,1)i

i i d  denotes the natural (initial) phase of the oscillators, κ = 0.25 is the coupling strength, 
and C is the support coupling matrix, such that oscillators i and j are coupled, if and only if Cij = 1. Mapping each 
oscillator to a node of a network, then the evolution of the model resorts to a time evolving network with the 
strength of connections represented by the similarities

θ θ= 〈| − |〉A t t t( ) cos[ ( ) ( )] (6)ij i j

where the angular brackets stands for the average over 40 different initial random phases.
In the first experimental setting, the total number of network snapshots is T = 280, with phase transition 

epochs occuring at times τ1 = 70, τ2 = 140 and τ3 = 210. To illustrate the structure of the resulting networks, the 
support coupling matrices and the corresponding adjacency matrices at times 40, 110, 180 and 250 are depicted 
in (a) and (b) of Fig. 4. Further, the structure of the support matrices where the communities correspond to the 
dark-colored nodes is generated as follows: for each node in community k of size Nk, there are exactly 14Nk/16 
connections with nodes inside the community, and 1 with nodes outside of it. In stable period 1 (i.e. for all t≤τ1), 
there are 16 equal size communities comprising of Nk = 16 nodes each, indexed by …0, , 15; in stable period 2 
( τ τ∈t ( , )1 2 ) communities 1, 2 and 3 merge with community 0, 5 and 6 with 4, 8 and 9 with 7, 11 with 10, and 13 
with 12; in stable period 3 ( τ τ∈t ( , )2 3 ), communities 14 and 15 merge with the enlarged community 0, commu-
nity10 with 4 and finally in the last stable period (t ≥ τ3) community 12 merges with 0, and 7 with 4. Time steps 
for synchronization for the 4 periods are τ = 0.1, 0.08, 0.05 and 0.02 respectively.

Following the strategy previously outlined for the selection of tuning parameters in the posited optimization 
problem, we identify the optimal α = 0.72, based on which the rank of recovered L(t) is depicted in Fig. 5(a). With 
the final zoomed-in windows of length 2 shown in Fig. 5(b–d) we estimate the 3 phase transition epochs as fol-
lows: τ ∈ (71, 73),1  τ2 = 141 and τ3 = 211. Note that in the presence of several small communities merging from 
stable period 1 to 2, there is some variability in the estimate of the epoch, while the other two epochs are identified 
precisely. Finally, we calculate the average of the low-rank matrices L(t) in these four stable periods and cluster 
them to extract their community structure. The community membership extracted from all 280 snapshots (by 
clustering the L(t) matrices) and by the average ones over stable periods are shown in (a) and (b) of Fig. 6. It can 
be seen that the average ones provide a much clearer identification of the members in each community.

To further investigate the cohesion of communities at different points in time, we also introduce a new metric 
coined relative polarization for a certain community k

=
∑

×
=

∑ − ∑

− ∑
= = =

=
−
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where Nk(t) is the size of community ∈ … −k K{0, , 1} at time t and A t( )ij
k( )  denotes the edge weight between 

nodes i and j in community k at time t. Intuitively speaking, the relative polarization of community k is the ratio 
between the average connection strength within community k and the average strength between all 
communities.

Figure 4. (a) Left panel, support coupling matrices for the 4 stable periods. (b) Right panel, adjacency matrices 
at times 40, 110, 180 and 250.
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The relative polarization of each community consistently increased during the first stable time period, while in 
the following stable time periods this pattern reversed, which indicates that the intracommunity synchronization 
process within each community is dominant in early stages, while in the later stable periods the inter-community 
synchronization process becomes more important.

In the second experimental setting, we investigate the synchronization process of the Kuramoto model gen-
erated network, exhibiting hierarchical structure. Specifically, each network comprises of 256 nodes (oscillators) 
evolving across T = 100 time points. The coupling strength is κ = 0.25, time step for synchronization over the 
whole time range is τ = 0.1, and the adjacency matrices are obtained based on an average over 40 different initial 
random phases. In the whole range, the community structure is fixed, and the support coupling matrices are 
designed as follows: there are 16 equally sized first level communities, and 4 equally sized second level com-
munities. For each node, there are exactly 15 connections with nodes in the first level community, 3 in second 
level (outside the first level) and 1 with nodes outside both levels. This hierarchical structure corresponds to 16 
tightly coupled communities that are also organized in 4 more loosely coupled ones. Hence, the presence of this 
hierarchical structure makes the identification of phase transition epochs, as well as the community structures a 
challenging problem.

First, we find the optimal α = 0.35, based on which the the rank of recovered L(t) is depicted in Fig. 7(a). What 
is interesting is that the dense noise component E(t) actually captures the first level community structure, as can 

Figure 5. (a) Upper left panel, time dependent rank of L(t) recovered. (b) Upper right panel, thresholded rank of 
windows of length 2 around the first phase transition epoch. (c) Lower left panel, thresholded rank of windows of 
length 2 around the second phase transition epoch. (d) Lower right panel, thresholded rank of windows of length 
2 around the third phase transition epoch.

Figure 6. (a) Left panel, community membership based on each individual L(t). (b) Middle panel, community 
membership based on averaged Lm of the 4 stable periods. (c) Right panel, relative polarization of communities 
based on Lm across time.
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be seen from the results base on window scanning of length 2 in Fig. 7(c). A first sight on 7(b), the thresholded 
rank of averaged L(t) of window length 2 might indicate a phase transition around t = 16, but a closer look will 
show that there is no community structure in the first stable period since the thresholded rank is 1. Therefore, we 
try to recover community structure based on the thresholded rank at time t ≥ 16 for both L(t) and E(t) in the 
whole time range. Not surprisingly, based on (d) and (g) of Fig. 7 neither the first level nor the second level com-
munity structure forms concretely until approximately time t = 20 when the community memberships based on 
L(t) and E(t) start to match those based on L  and E .

Application to U.S. Senate Roll Call Voting Data. A topic of great interest in the political science liter-
ature is that of polarization, as well as understanding formation of coalitions (groups) over time of members of 
legislative bodies. Selected prior work includes the work in49 that analyzed roll call data of the US Congress from 
1879 to 1987 (both for the House of Representatives and the Senate), defined a distance measure between the two 
political parties and calculated its evolution over the corresponding 90-year period. More recently17,50, examined 
roll call data from the US Senate for the period 1979 to 2012 and used a community modularity quality function 
to study the issue of polarization. Their key finding is that modularity exhibits a sharp change around early 1995, 
with members of the two parties drifting apart in their voting pattern. In an attempt to go beyond exploratory 
analysis21, developed a formal estimation framework for the presence of a single change point (phase transition) 
based on probabilistic graphical models and confirmed the main finding in17,50. Other related findings regard-
ing the time evolving community structures of legislative bodies can be found in51 based on US Senate roll call 
data and using synchronization methods, and in52 that examined legislation bill co-sponsorship networks of the 
Peruvian Congress and successfully captured the power shifts during the 2006–2011 period using time dependent 
community detection based on multilayer modularity maximization.

Before discussing the results, we briefly present the necessary data preprocessing steps undertaken. We exam-
ine all roll call votes of the US Senate from the 96th to the 113th Congress, covering the period 1979–2014. The 
nodes of the network represent a specific Senate seat for each state and we mapped the voting records of individ-
ual Senators over time to the corresponding seats, ensuring continuity of the voting record for each seat. For each 
Congress, the adjacency matrix is constructed element-wise as follows: = ∑ =A cij S k

K
ij

k1
1

( )
ij

, where Sij is the total 
number of votes that both senators i and j participated in, K is the total number of votes that particular Congress 

Figure 7. (a) Upper left panel, rank of recovered L(t) across time. (b) Upper middle panel, thresholded rank of 
windows of length 2 around the first possible phase transition epoch for L(t). (c) Upper right panel, thresholded 
rank of windows of size 2 over the whole time range for E(t). (d) Middle left panel, community membership 
based on individual L(t). (e) Middle middle panel, community membership based on averaged L  for t ≥ 16. (f) 
Middle right panel, relative polarization of communities based on L  over time. (g) Lower left panel, community 
membership based on individual E(t). (h) Lower middle panel, community membership based on averaged E  
for t ≥ 16. (i) Lower right panel, relative polarization of communities based on E  over time.
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undertook and =c 1ij
k( )  if they voted the same way and 0, otherwise. The reason we consider the time-evolving roll 

call voting record network at the Congress time-scale is that election times that occur every two years wherein 1/3 
of the Senate members are up for election represent the main external events that can induce changes in the net-
work composition, including its community structure.

Based on the strategy discussed for selection of tuning parameters, we identify the optimal α = 0.4 
γ = = .( )0 1

N
1 , based on which, we obtain the time dependent rank of L(t) and thresholded rank of the aver-

aged L(t) over windows of length 2, as shown in panels (a) and (b) of Fig. 8. Based on the above results, we con-
clude that there is a phase transition that occurs in late 1992, when Congress 102 ended its tenure and 103 started 
its. Further, the identified phase transition occurs a bit earlier (end of 1992) than the one mentioned in21,50 (end 
of 1994). Note that the time dependent rank indicates three communities before the phase transition in late 1992, 
that correspond to the core Democrat Senate members, the core Republican ones, while the third one includes 
Senators exhibiting a higher degree of bipartisanship. For the stable period after 1993, the network structure coa-
lesces to two core communities corresponding to the two parties. On the other hand, the averaged across 
Congresses community structure shows four communities before 1992, that can be categorized as the core 
Democrats, core Republicans, voting Democrat (most of the time) and voting Republican (most of the time), 
while the latter two coalesce to a weakly connected community that exhibits some degree of bipartisanship after 
1993.

To obtain further insights from this analysis, we also compute for each node i the sample standard deviation of 
its connections with the other nodes for all votes undertaken during the tenure of a Congress and call it variation, 
which represents the polarity of the node:

∑ ∑=
−





 −







= =
V t

N
A t

N
A t( ): 1

1
( ) 1 ( )

(8)
i

j

N

ij
k

N

ik
1 1

2

Hence, higher values of Vi indicate stronger agreement with the party vote, while lower values indicate a more 
bipartisan attitude for the node, since on certain votes they follow the party line and on other ones cross the aisle 
and follow with their political opponents. Hence, the community structure across all Congresses (before and 
after the phase transition point identified) are 3 communities. From panels (c) and (d) in Fig. 8, we can see clearly 
that the recovered time dependent community structure accurately coincides with the time dependent variation 
structure in terms of outliers.

Further, we plot in Fig. 9 the time dependent size and relative polarization (introduced in equation 7) for the com-
munity structure obtained based on individual low-rank matrices L(t), as well as that obtained from the two averaged 
L for the before 1992 and after 1993 periods. For community structure based on individual L(t), it can be seen that the 

Figure 8. (a) Upper left panel, rank of recovered L(t) across time. (b) Upper right panel, thresholded rank 
of windows of size 2 around the phase transition epoch. (c) Lower left panel, variation of each node across 
Congresses. (d) Lower right panel, community membership based on individual L(t) across Congresses.
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size of the non-core community (the one exhibiting a bipartisan voting record) diminishes over time, while the relative 
polarization of all the three communities becomes higher. It is also worth noting that the relative polarization of the 
third community significantly increased and approached that of the other two over time. However, this result should 
not be over-interpreted, since the size of the latter community shrunk over time (note the variation of the respective 
nodes is still small (Fig. 8(c)) because of the small community size). On the other hand, the polarization of the third 
community recovered based on L is consistently low. For the first stable period, this indicates the success in capturing 
the core communities by the first two identified in the low-rank component, while for the second stable period, it is 
because the third community includes members from both the polarized D and R parties in each network snapshot, 
which induces the same amount of inter-community links as the intra-community ones, thus leading to low polariza-
tion. This is consistent with the results shown in Fig. 4, where C3 for the second stable period captures mainly the party 
flipping seats as further elaborated on in the ensuing discussion.

To further understand the community structure, in each stable period we manually assign party affiliations to 
each node by counting the ratio of each party affiliation by the following criteria. Denoting Republican Senators 
by R and Democrats by D, we assign nodes to these labels if over 75% of the time the corresponding party affilia-
tion is R (D), otherwise we assign to a so-called mixed M party. The mixed party indicates that the corresponding 
Senate seat flips between parties over time, while the core D/R seats are stably held by one party over time. Table 4 
provides a correspondence between party affiliations (D, R, and M) and the identified communities (C1, C2, and 
C3) based on averaged L  for the two stable periods that cover Congress 96–102 and Congress 103–113, respec-
tively. For each of the two stable periods, C1 captures the core “Democratic Party” seats, C2 captures the core 
“Republican Party” seats, and C3 captures the “Outliers”, in terms of voting similarities.

It is expected that nodes in the M party should be clustered in the third community (C3), which is consistent 
with the results in Table 4. Further, for both time ranges C1 basically captures the core members of D while C2 
captures those of R. An interesting pattern that the analysis identifies is that almost all members of C3 for 
Congress 103–113 come from M, i.e. party flipping, while for Congress 96–102, more than half come from the 
two parties. This result agrees with what is shown in Fig. 9(a): namely, there are fewer outliers in Congress 103–
113 compared to the previous time range. Finally, to gain further insights of where the third non-core community 
is more predominant, as shown in Fig. 10, we translate the results and findings of our analysis by laying them out 
on the US map, using the following notation for party identification purposes, which is in agreement with recent 
historical trends in the composition of Congress: Strong D for C1, Weak D for ∩D C3, Strong R for C2, Weak R 
for ∩R C3 and Party Flip for ∩M C3. Intuitively speaking, in each stable period, Strong D(R) represents those 
seats that consistently exhibit strong alignment with the core party members in D(R) in their voting behavior 
throughout the stable time period, even though some of the seats may not be stably held by the corresponding 
party (e.g. ∩M C C1( 2)). Further, Weak D(R) indicates seats that consistently display bipartisan trends in voting 
behavior throughout the stable period although they are stably held by the D(R) party, and finally Party Flip rep-
resents those seats that, averaged over the stable time period, display bipartisan attitude, but mainly due to the fact 
that their holders lose the seat and are not re-elected (hence, the party flipping label).

Concluding Remarks
The proposed methodology encompasses a number of network formation models that give rise to network com-
munity structure. As illustrated on a number of synthetic and real data examples, it is highly capable of identifying 
phase transition epochs, estimate accurately the number of communities and their membership. It is further 
computationally scalable, since obtaining the decomposition of the network adjacency matrices at each time 

Figure 9. (a) Left panel, size of the three communities based on individual L(t) across Congress. (b) Middle 
panel, relative polarization of the three communities based on individual L(t) across Congress. (c) Right panel, 
relative polarization of the three communities based on the averaged Lm for the two stable periods.

Party

Congress 96–102 Congress 103–113

C1 C2 C3 C1 C2 C3

D 29 0 10 33 0 1

R 0 29 10 0 29 3

M 3 0 19 4 4 26

Table 4. Misclassification Table.
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point is a highly parallelizable step. Hence, the main computational bottleneck stems from the Singular Value 
Decomposition in obtaining the low-rank components L(t).

Further, note that the model can be further generalized and does not require a fixed low-rank component 
between phase transition epochs. The key requirement is that the community membership remains fixed as 
demonstrated through fixed rank, while the strength of their connections can fluctuate, as long as their average 
strengths over the length of the stable interval converges quickly. Hence, the proposed methodology would still 
be able to identify the transition epochs and extract the stable community structure provided that the length of 
the corresponding stable time intervals is adequate.

Finally, it would be of interest to couple the proposed strategy of identifying transition epochs, with more 
formal methods in change point analysis that come with statistical guarantees, as briefly outlined earlier on. One 
possibility is to extract the top eigenvectors from the adjacency matrices and then consider them as a multivariate 
time series. A possible challenge that requires careful study comes from the impact that the sparse and dense 
noise components considered may have on the extracted eigenvectors.

Data availability. The data sets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.
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