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Preparation of Macrometallocycle 
and Selective Sensor for Copper Ion
Yingjie Liu1, Zhixiang Zhao2 & Qingxiang Liu2

Two bis-imidazolium salts 1,8-bis[2’-(N-R-imidazoliumyl)acetylamino]naphthalene chloride (L1H4·Cl2: 
R = Et; L2H4·Cl2: R = nBu), as well as their four NHC metal complexes [L1H2Ag]Cl (1), [L1Ni] (2), [L2Ni] 
(3) and [L1H2Hg(HgCl4)] (4) have been synthesized. In each of the cationic moieties of complexes 1 or 
4, there is a groove-like 14-membered macrometallocycle, and each macrometallocycle is consisted 
of one biscarbene ligand L1H2 and one metal ion (silver(I) ion for 1 and mercury(II) ion for 4). Three 
6-membered cycles are contained in each molecule of complexes 2 or 3. Additionally, the selective 
recognition of macrometallocycle 1 for Cu2+ was studied with the methods of fluorescence and 
ultraviolet spectroscopy, 1H NMR titrations, MS and IR spectra. The experimental results display 
macrometallocycle 1 can discriminate Cu2+ from other cations effectively.

The detection of Cu2+ occupies an important position in host-guest chemistry because it plays a crucial part in 
chemistry, biology and environmental science1–3. As a trace element in the body, copper are key components of 
hemocyanin and some enzymes. Ingesting excess or deficient Cu2+ will cause serious illness, such as Alzheimer’s 
and Wilson’s diseases, haematological manifestations and liver damage4–12. Excess Cu2+ can also destroy the 
aquatic ecosystem, and disturb the nutrient absorption and transport of some plants13. Among the detection 
of Cu2+, the fluorescent chemosensor is one of significant tools due to its high sensitivity and the simplicity of 
equipment14–16. So far, a variety of types of fluorescent chemosensors for Cu2+ have been reported, such as organic 
small molecules and MOFs17–23. Besides, Liu and co-workers reported a sensor based on porous conjugated poly-
mers for Cu2+, and it is high sensitivity and selectivity24. Though some chemosensors for Cu2+ have appeared, the 
design and synthesis of new practical chemosensors are still desirable.

In the process of searching for suitable chemosensors for Cu2+, we focused on N-heterocyclic carbene (NHC) 
metal complexes because of their diverse structures, such as macrocycle25–29, molecular rectangle30–32 and 
groove33,34. In a large number of complexes, cyclic NHC metal complexes have favorable recognition capability 
for metal ions35–39, because this kind of host can capture effectively metal ions through several kinds of forces 
(electrostatic force, M···M interactions, M···X interactions and M···π interactions). Herein, we report the synthe-
sis of bis-imidazolium salts 1,8-bis[2′-(N-R-imidazoliumyl)acetylamino]naphthalene chloride (L1H4·Cl2: R = Et; 
L2H4·Cl2: R = nBu), as well as the preparation and structure of four NHC complexes [L1H2Ag]Cl (1), [L1Ni] (2), 
[L2Ni] (3) and [L1H2Hg(HgCl4)] (4). Additionally, we studied the selective recognition of macrometallocycle 1 
for Cu2+ with the methods of fluorescence and ultraviolet spectroscopy, 1H NMR titrations, MS and IR spectra.

Results and Discussion
Synthesis and characterization of L1H4·Cl2 and L2H4·Cl2. As shown in Fig. 1, 1,8-diaminonaphthalene 
reacted with chloroacetyl chloride to give 1,8-di(2′-chloroacetylamino)naphthalene, which further reacted with 
N-R-imidazole (R = Et or nBu) to generate bis-imidazolium salts L1H4·Cl2 and L2H4·Cl2. Precursors L1H4·Cl2 and 
L2H4·Cl2 remain stable in the air, and can be dissolved in DMSO, dichloromethane and acetonitrile, but their 
solubility is poor in benzene, diethyl ether and petroleum ether. In the 1H NMR spectra of L1H4·Cl2 and L2H4·Cl2, 
the proton signals (NCHN) of imidazolium appear at δ = 9.47 and 9.50 ppm, and these values are analogous to 
those of known imidazolium compounds33,40–46.

Synthesis and general characterization of complexes 1–4. The synthesis of NHC silver(I) complex 
[L1H2Ag]Cl (1) was accomplished via the reaction of L1H4·Cl2 with Ag2O in CH3CN/DMSO (Fig. 2). The reac-
tions of L1H4·Cl2 or L2H4·Cl2 with NiCl2 in the presence of K2CO3 in CH3CN/DMSO afforded NHC nickel(II) 
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complexes [L1Ni] (2) and [L2Ni] (3). The reaction of L1H4·Cl2 with HgCl2 in the presence of KOtBu in CH3CN/
DMSO gave NHC mercury(II) complex [L1H2Hg(HgCl4)] (4).

The crystals of complexes 1–4 were obtained via slow adding Et2O to their solutions. Complexes 1–4 can be 
dissolved in DMSO and CH3CN, but they are scarce soluble in benzene, diethyl ether and petroleum ether. The 

Figure 1. Preparation of Precursors L1H4·Cl2 and L2H4·Cl2.

Figure 2. Preparation of Complexes 1–4.
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Figure 3. Perspective view of 1 and anisotropic displacement parameters depicting 50% probability. Selected 
bond lengths (Å) and angles (°): Ag(1)-C(3) 2.100(8), Ag(1)-C(20) 2.074(8); C(3)-Ag(1)-C(20) 175.3(3), N(1)-
C(3)-N(2) 104.0(7), N(5)-C(20)-N(6) 104.5(6).

Figure 4. Perspective view of 2 and anisotropic displacement parameters depicting 50% probability. Selected 
bond lengths (Å) and angles (°):C(3)-Ni(1) 1.858(5), C(20)-Ni(1) 1.864(5), N(1)-Ni(1) 1.933(4), N(2)-Ni(1) 
1.925(4); C(3)-Ni(1)-C(20) 91.2(2), N(1)-Ni(1)-N(2) 94.6(2), N(3)-C(3)-N(4) 104.9(4), C(3)-Ni(1)-N(1) 
89.7(1), C(20)-Ni(1)-N(2) 88.1(2).
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Figure 5. Perspective view of 3 and anisotropic displacement parameters depicting 50% probability. Selected 
bond lengths (Å) and angles (°): N(3)-Ni(1) 1.918(1), C(4)-Ni(1) 1.900(2), C(23)-Ni(1) 1.871(2), N(4)-Ni(1) 
1.929(1); C(23)-Ni(1)-C(4) 97.9(1), N(3)-Ni(1)-N(4) 87.0(8), N(1)-C(4)-N(2) 103.5(1), N(5)-C(23)-N(6) 
104.9(1), C(4)-Ni(1)-N(3) 91.8(9), C(23)-Ni(1)-N(4) 84.4(9).

Figure 6. Perspective view of 4 and anisotropic displacement parameters depicting 50% probability. Selected 
bond lengths (Å) and angles (°): Hg(1)-C(5) 2.073(6), Hg(1)-C(20) 2.081(7), Hg(1)-Cl(1) 2.880(1), Hg(2)-Cl(1) 
2.514(1), Hg(2)-Cl(2) 2.557(1), Hg(2)-Cl(3) 2.437(1), Hg(2)-Cl(4) 2.418(1); C(5)-Hg(1)-C(20) 168.6(2), N(1)-
C(5)-N(2) 106.3(5), N(5)-C(20)-N(6) 106.2(6).
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solution of complex 1 is slightly light-sensitive. The proton signals (NCHN) of imidazolium disappear in the 
1H NMR spectra of 1–4 due to the introduction of metals, and other proton signals are analogous to L1H4·Cl2 
or L2H4·Cl2. In the 13C NMR spectra of 1, no carbene carbon signal is found, and this phenomenon may be the 

Figure 7. Plot of fluorescence intensity of 1 (2.0 × 10−6 mol/L) and Cu2+ (20 × 10−6 mol/L) as a function of time 
in minutes.

Figure 8. Fluorescence spectra of 1 (2.0 × 10−6 mol/L) and 10 equiv. of some cations (Li+, Na+, K+, NH4
+, Ag+, 

Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+ and Hg2+) in CH3CN at 25 °C.

Figure 9. Fluorescence titration spectra of 1 (2.0 × 10−6 mol/L) in the presence of different concentrations of 
Cu2+ in CH3CN at 25 °C. CCu

2+ for curves 1–21 (from top to bottom) are 0, 0.6, 1.2, 1.8, 2.6, 3.4, 4.2, 5.0, 5.8, 
6.8, 7.8, 8.8, 10.0, 11.5, 13.0, 14.5, 16.0, 18.0, 20.0, 22.0, 24.0 × 10−6 mol/L (λex = 330 nm). Inset: variation of 
fluorescence quenching F/F0 of 1 with increasing Cu2+ concentration.
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fluxional behavior of the NHC silver(I) complexes47–49. The carbene carbon signals of 2–4 are observed at 175.0–
176.8 ppm, which are consistent with other NHC metal complexes in literatures50–60.

Structure of complexes 1–4. In complexes 1–4 (Figs 3–6), the N-C-N angles are between 103.5(1)° and 
106.3(5)°, and these values are consistent with those of literatures47–49,61. One 14-membered macrometallocycle 
is contained in each of the molecules of complexes 1 or 4. By contrast, three 6-membered cycles in each mole-
cule of 2 or 3 are observed. In the same ligand for 1–4, the naphthalene plane and two imidazole planes form 
the dihedral angles of 51.5(5)–75.9(8)° (Table S1 in Supporting Information). Two imidazole planes in the same 
NHC-metal-NHC unit form the dihedral angles of 9.6(5)–14.2(4)° for 1 and 4. In complexes 2 and 3, the dihedral 
angles formed by two imidazole planes are in the range of 74.9(1)–83.4(3)°.

In complex 1, the arrangement of C(3)-Ag(1)-C(20) is almost linear with the angle of 175.3(3)°, and the dis-
tances of Ag(1)-C(3) and Ag(1)-C(20) are 2.074(8) Å and 2.100(8) Å. Both are comparable with those of known 
NHC Ag(I) complexes47–49.

In complexes 2 or 3, two acetylamino groups (-CONH-) and two imdazolium moieties of precursors L1H4·Cl2 
or L2H4·Cl2 are deprotonated in the presence of K2CO3. As a result, Ni(II) ion is coordinated to two carbene atoms 
and two nitrogen atoms to adopt a quadrilateral geometry with slight distortion. The bond distances of C-Ni 
and N-Ni are 1.858(5)–1.900(2) Å and 1.918(1)–1.933(4) Å, respectively. The bond angles of C-Ni-C, N-Ni-N 
and C-Ni-N are 91.2(2)–97.9(1)°, 87.0(8)−94.6(2)° and 84.4(9)–169.9(9)°, respectively. Similar values were also 
reported in other literatures about NHC Ni(II) complexes61.

Both of Hg(1) and Hg(2) in complex 4 are tetra-coordinated. The distances of Hg(1)-C(5) and Hg(1)-C(20) 
are 2.073(6) Å and 2.081(7) Å, and the bond angle of C(5)-Hg(1)-C(20) is 168.6(2)°. The distances of Hg(2)-Cl 
(2.418(2)–2.557(1) Å) are shorter than that of Hg(1)-Cl(1) (2.880(1) Å). A distorted Hg2Cl2 quadrangular arrange-
ment is formed by Hg(1), Cl(1), Hg(2) and Cl(2), in which the dihedral angle between the Cl(1)-Hg(1)-Cl(2) 
plane and the Cl(1)-Hg(2)-Cl(2) plane is 30.5(8)°. The Hg···Hg separation of 3.815(5) Å suggests the nonexistence 
of metal-metal interactions between both Hg(II) ions (van der Waals Radii of mercury = 1.70 Å)62,63.

Recognition of Cu2+ using 1 as a chemosensor. The screening experiments of complexes 1–4 for some 
cations (Li+, Na+, K+, NH4

+, Ag+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+ and Hg2+, and their ani-
ons are NO3

−) via fluorescence spectroscopy in CH3CN at 25 °C were carried out. The fluorescence intensities of 
complexes 2–4 didn’t change after adding cations. However, the fluorescence emission of complex 1 decreased 
remarkably after adding Cu2+, and other cations did not have similar phenomenon. Therefore, complex 1 was 
selected as a chemosensor to process recognition investigation of cations.

To evaluate the response time of complex 1 to Cu2+, the time-dependent plot was measured (Fig. 7). The 
results showed that the interactions between Cu2+ and 1 can cause fluorescence quenching, in which fluores-
cence intensity quickly reduced within 6 minutes, and then the tendency slowed down. The fluorescence quan-
tum yields (Φ) of L1H4·Cl2 and complex 1 using 1-aminonaphthalene as fluorescence standard (Φ = 0.39) were 
measured64. The fluorescence quantum yields of L1H4·Cl2 and complex 1 were determined to be 0.16 and 0.21, 
and the latter was higher than the former. It may be originated to the incorporation of metal-ligand coordination 
interactions65,66.

As shown in Fig. 8, complex 1 showed a fluorescence emission band at ca. 415 nm, which originated from con-
jugated bis(acetylamino)-naphthalene (λex = 330 nm). When 10 equiv. of Li+, Na+, K+, NH4

+, Ag+, Ca2+, Co2+, 
Ni2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+ and Hg2+ were added, the fluorescence intensity of 1 had no observable change. 
However, the significant fluorescence quenching of 1 was observed after adding 10 equiv. of Cu2+. In UV/vis 
experiment, upon addition of Cu2+ to the solution of 1, the absorption of 1 at ca. 250–350 nm increased remarka-
bly, but other cations had no similar influence on the absorption of 1 (Fig. S1 in the Supporting Information). The 
experiment results showed that 1 can discriminate Cu2+ from other cations effectively.

Figure 10. The Job’s plot of 1 toward Cu2+ at 214 nm. χ is the molar fraction of 1. It illustrates the host-guest 
fluorescence quenching occurs in 1:1 complexation.
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In the fluorescence titration experiments (Fig. 9), upon the titration of Cu2+ into solutions of 1 in CH3CN 
at 25 °C, the fluorescence intensities of 1 at ca. 415 nm decreased gradually. In the inset of Fig. 9, the fluores-
cence intensities of 1 went down quickly in the ratios of CCu

2+/C1 being 0 to 10:1. When the ratio ascended to 
20:1, the quenching rate slowed down. Finally, fluorescence intensities remained unchanged even though more 
Cu2+ was added. The quenching behaviors of Cu2+ on the fluorescence of 1 were found to follow a conventional 
Stern-Volmer relationship67,68 (equation (1)).

F F K C/ 1 (1)SV Cu0
2= + +

where F0 and F are the fluorescence intensities of 1 in the absence and presence of Cu2+, and CCu
2+ is the concen-

tration of Cu2+. The equation reveals that F0/F increases in direct proportion to the increasing concentration of 
Cu2+, and the Stern-Volmer constant KSV defines the quenching efficiency of Cu2+.

The KSV value for 1·Cu2+ was calculated as 5.68 × 105 M−1 (R = 0.999) by using the equation (1) (Fig. S2). As 
shown in Fig. S3, the detection limit was estimated to be 1.5 × 10−7 mol/L34. To furthur comfirm the complexation 
stoichiometry between 1 and Cu2+, a Job’s plot analysis at 214 nm was carried out (Fig. 10)62,63. The χΔA values 
for 1·Cu2+ reached a maximum when molar fractions (χ) of 1 was 0.5, and it indicated stoichiometric ratio was 
1:1. Where total concentration was a constant, and ΔA was the discrepancy of the absorption bands.

Figure 11. Partial 1H NMR spectra in DMSO-d6. (i) 1; (ii) 1 and 0.25 equiv. of Cu2+; (iii) 1 and 0.5 equiv. of 
Cu2+; (vi) 1 and 1 equiv. of Cu2+; (v) 1 and 1.5 equiv. of Cu2+; (vi) 1 and 2 equiv. of Cu2+.

Figure 12. The interactions of 1 with Cu2+.
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To test the ability to resist interference of other cations, the competition experiments were conducted (Fig. S4), 
where 1 (2.0 × 10−6 mol/L) was mixed with 5 equiv. of Li+, Na+, K+, NH4

+, Ag+, Ca2+, Co2+, Ni2+, Zn2+, Cd2+, 
Cr3+, Al3+, Pb2+ or Hg2+, and then 5 equiv. of Cu2+ was added. The presence of other cations did not cause any 
significant changes in the emission of 1·Cu2+.

Analogous to Fig. 8, the decrease of fluorescence intensities of 1 were also observed after the addition of 
other copper(II) salts (1.0 × 10−5 mol/L) with different counter anions (Br−, SO4

2−, OAc−, Cl−, NO3
− and 

CO3
2−) (Fig. S5). Thus, the different anions did not obviously influence on the binding between 1 and Cu2+. 

Reversible binding of 1 with Cu2+ was also carried out (Fig. S6). The addition of 10 equiv. of EDTA to a mixture 
of 1 (2.0 × 10−6 mol/L) and Cu2+ (20 × 10−6 mol/L) resulted in the increase of fluorescence intensity at 415 nm, 
and the fluorescence intensity was approximately equal to that of 1, which signified the regeneration of the free 
1. The fluorescence intensity decreased upon the addition of Cu2+ again. This result showed that 1 was a good 
chemosensor for Cu2+ with admirable reversibility and regeneration capacity.

Interactions of 1 with Cu2+. The potential binding sites of 1 for Cu2+ may be oxygen atoms, nitrogen atoms 
and π systems (including O···Cu2+ interactions, N···Cu2+ interactions and π···Cu2+ interactions). To get detailed 
information on how 1 bound with Cu2+, we studied the data of 1H NMR titrations (CCu

2+/C1 was from 0 to 2.0 
equiv.) in DMSO-d6 (Fig. 11). Upon the addition of 1 equiv. of Cu2+, the proton signal on NH (Hd) had a large 
downfield shift by 0.92 ppm (Fig. 11(iv)), and the proton signals of He and Hf on naphthalene ring also shifted to 
downfield (ca. 0.27 ppm), which may be attributed to electron-withdrawing effect of Cu2+ due to Cu2+···N interac-
tions (Fig. 12). The proton signal of Hc on CH2 attached to C=O shifted to downfield (ca. 0.25 ppm), which may 
be attributed to electron-withdrawing effect of Cu2+ due to Cu2+···O interactions. More equivalents of Cu2+ did 
not cause further change of chemical shifts of Hc-Hf (Fig. 11(v,vi)), which showed the combination ratio between 
1 and Cu2+ was 1:1.

Additional evidence for the combination ratio between 1 and Cu2+ was obtained through high-resolution 
mass spectra of 1·Cu2+ (Fig. S7). The observation of m/z (318.3) for (1·Cu2+)/2 furthur comfirmed the formation 
of a 1:1 complex. This finding agreed with the result of Job’s plot (Fig. 10). The IR spectra of 1 and 1·Cu2+ were 
measured for more information about how 1 bound with Cu2+. In Fig. S8, we found that several absoption bands 

1 2·Et2O

Chemical formula C24H26AgClN6O2 C24H24N6NiO2·Et2O

Formula weight 573.83 561.32

Cryst syst Monoclinic Monoclinic

Space group P21 P21/c

a, Å 4.555(3) 11.321(1)

b, Å 20.043(1) 12.999(2)

c, Å 14.775(1) 18.718(3)

α, deg 90 90

β, deg 91.2(1) 104.3(3)

γ, deg 90 90

V, Å3 1348.8(1) 2668.1(7)

Z 2 4

Dcalcd, Mg m−3 1.413 1.397

Abs coeff, mm−1 0.877 0.769

F(000) 584 1184

Cryst size, mm 0.14 × 0.12 × 0.11 0.18 × 0.17 × 0.16

θmin, θmax, deg 2.03, 25.01 1.86, 25.01

T, K 173(2) 173(2)

No. of data collected 7781 13811

No. of unique data 3736 4669

No. of refined params 335 360

Goodness-of-fit on F2a 1.092 1.071

Final R indicesb [I > 2σ(I)]

R1 0.0462 0.0775

wR2 0.1236 0.2053

R indices (all data)

R1 0.0511 0.0965

wR2 0.1279 0.2244

Table 1. Summary of crystallographic data for 1–4. aGOF = [Σw(Fo
2 − Fc

2)2/(n − p)]1/2, where n is the number 
of reflection and p is the number of parameters refined. bR1 = Σ(||Fo| − |Fc||)/Σ|Fo|; wR2 = [Σ[w(Fo

2 − Fc
2)2]/

Σw(Fo
2)2]1/2.
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have changed after adding Cu2+. The υ(C=O) varied from 1660 cm−1 to 1683 cm−1, υ(N-H) varied from 3378 cm−1 to 
3382 cm−1, and δ(N-H) varied from 1617 cm−1 to 1629 cm−1, respectively.

By analyzing the structure of 1 and above experiment results, we can conclude that 1 bound with Cu2+ mainly 
through Cu2+···O and Cu2+···N interactions. Once complex 1·Cu2+ was formed, the photo-induced electron trans-
fer (PET) process from the imidazole rings to naphthalene ring was switched on and it led to the quench of fluo-
rescence emission of 169,70. We tried to cultivate the single crystal of 1·Cu2+, but unsuccessful.

Conclusion
In conclusion, we prepared and characterized two bis-imidazolium salts L1H2·Cl2 and L2H2·Cl2, as well as their 
four NHC metal complexes 1–4. In each molecule of 1 or 4, one 14-membered groove-like macrometallocycle 
was contained. Additionally, the selective recognition of macrometallocycle 1 for Cu2+ was studied with the meth-
ods of fluorescence and ultraviolet spectroscopy, 1H NMR titrations, MS and IR spectra. The experimental results 
displayed macrometallocycle 1 can distinguish Cu2+ from other cations effectively. KSV value of 5.68 × 105 M−1 for 
1·Cu2+ based on a 1:1 association equation analysis was obtained through fluorescence titrations. The detection 
limit was calculated as 1.5 × 10−7 mol/L, which indicated that 1 is sensitive for Cu2+. In literatures, some peptide 
sensors for Cu2+ were reported71–76, and their association constants and detection limits were in the ranges of 
104–106 M−1 and 10−5–10−7 mol/L. Compared with these sensors, sensor 1 showed similar binding ability and 
good sensitivity to Cu2+. Further investigation for new NHC metal complexes from L1H2·Cl2, L2H2·Cl2 and sim-
ilar to precursors are still under way.

Experimental Section
General procedures. N-ethyl-imidazole and N-nbutyl-imidazole were prepared according to the methods 
of literature reported67,77. Schlenk techniques were used in all manipulations. All the reagents for synthesis and 
analyses were of analytical grade and used without further purification. Melting points were determined with 
a Boetius Block apparatus. 1H and 13C NMR spectra were recorded on a Varian Mercury Vx 400 spectrometer 
at 400 MHz and 100 MHz, respectively. Chemical shifts, δ, are reported in ppm relative to the internal standard 
TMS for both 1H and 13C NMR. J values are given in Hz. Elemental analyses were measured using a Perkin-
Elmer 2400 C Elemental Analyzer. The fluorescence spectra were performed using a Cary Eclipse fluorescence 

3·1.5CH3CN 4·CH3CN·DMSO

Chemical formula C28H32N6NiO2 C24H26Cl4Hg2N6O2·CH3CN·DMSO

Formula weight 543.28 1092.67

Cryst syst Orthorhombic Monoclinic

Space group Pbca P21/n

a, Å 17.192(5) 9.893(3)

b, Å 17.019(6) 24.332(6)

c, Å 17.565(6) 14.889(3)

α, deg 90 90

β, deg 90 97.4(2)

γ, deg 90 90

V, Å3 5139.7(4) 3554.1(1)

Z 8 4

Dcalcd, Mg m−3 1.404 2.042

Abs coeff, mm−1 1.392 18.929

F(000) 2288 2080

Cryst size, mm 0.25 × 0.24 × 0.20 0.25 × 0.15 × 0.14

θmin, θmax, deg 4.43, 67.07 3.50, 67.07

T, K 173(2) 173(2)

No. of data collected 13621 13064

No. of unique data 4591 6340

No. of refined params 336 409

Goodness-of-fit on F2a 1.020 1.080

Final R indicesb [I > 2σ(I)]

R1 0.0393 0.0400

wR2 0.0785 0.1047

R indices (all data)

R1 0.0662 0.0440

wR2 0.0860 0.1087

Table 2. Summary of crystallographic data for 3 and 4. aGOF = [Σw(Fo
2 − Fc

2)2/(n − p)]1/2, where n is the 
number of reflection and p is the number of parameters refined. bR1 = Σ(||Fo| − |Fc||)/Σ|Fo|; wR2 = [Σ[w(Fo

2 − 
Fc

2)2]/ Σw(Fo
2)2]1/2.
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spectrophotometer. UV-vis spectra were recorded on a JASCO-V570 spectrometer. EI mass spectra were 
recorded on a VG ZAB-HS mass spectrometer (VG, U.K.). IR spectra (KBr) were taken on a Bruker Equinox 55 
spectrometer.

Synthesis of 1,8-bis(2′-chloroacetyl)diaminonaphthalene. A suspension of 1,8-diaminonaphthalene 
(10.000 g, 63.2 mmol) and triethylamine (21.0 mL, 151.6 mmol) in CH2Cl2 (120 mL) was stirred for 30 min at 
0 °C. Then chloroacetyl chloride (11.4 mL, 151.7 mmol) was dropwise added to the suspension above and 
stirred continually for 3 h at ambient temperature. The mixture was filtered and washed by water to afford 
1,8-bis(2′-chloroacetyl)diaminonaphthalene as a yellow powder. Yield: 15.731 g (80%). M.p.: 265–267 °C. 1H 
NMR (400 MHz, DMSO-d6): δ 4.36 (s, 4H, CH2), 7.52 (t, J = 3.4 Hz, 6H, PhH), 7.90 (t, J = 4.6Hz, 2H, PhH), 10.10 
(s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 43.8 (CH2), 126.0 (PhC), 127.8 (PhC), 132.18 (PhC), 135.9 (PhC), 
165.6 (C=O).

Preparation of 1,8-bis[2′-(N-ethylimidazoliumyl)acetylamino]naphthalene chloride 
(L1H4·Cl2). A solution of N-ethyl-imidazole (1.538 g, 16.0 mmol) and 1,8-bis(2′-chloroacetylamino)naphtha-
lene (2.000 g, 6.4 mmol) in DMF (150 mL) was heated to reflux for 7 days with stirring, and precipitated a black 
powder. The precipitate was collected by filtration and washed with a small portion of DMF to give 1,8-bis[2′
-(N-ethyl-imidazoliumyl)acetylamino]naphthalene chloride. Yield: 1.480 g (48%). M.p.: 260–261 °C. Anal. 
Calcd for C24H28N6O2Cl2: C, 57.25; H, 5.60; N, 16.69%. Found: C, 57.20; H, 5.56; N, 16.68%. 1H NMR (400 MHz, 
DMSO-d6): δ 1.48 (t, J = 7.2 Hz, 6H, CH3), 4.32 (m, 4H, CH2), 5.50 (s, 4H, CH2), 7.59 (s, 2H, PhH), 7.92 (t, 
J = 15.6 Hz, 4H, PhH), 9.47 (s, 2H, 2-imiH), 11.07 (s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 15.6 (CH3), 44.7 
(CH2), 52.1 (CH2), 121.6 (PhC), 124.7 (PhC), 125.8 (PhC), 126.8 (PhC), 127.9 (PhC), 131.4 (PhC), 136.0 (PhC), 
137.7 (PhC), 164.9 (C=O) (imi = imidazolium).

Preparation of 1,8-bis[2′-(N-nbutyl-imidazoliumyl)acetylamino]naphthalene chloride 
(L2H4·Cl2). L2H4·Cl2. Was prepared according to the methods of L1H2·Cl2, only N-ethyl-imidazole was 
replaced by N-nbutyl-imidazole (1.984 g, 16.0 mmol). Yield: 1.790 g (50%). M.p.: 240–242 °C. Anal. Calcd for 
C28H36N6O2Cl2: C, 60.10; H, 6.48; N, 15.01%. Found: C, 60.22; H, 6.32; N, 15.23%. 1H NMR (400 MHz, DMSO-d6): 
δ 0.93 (s, 6H, CH3), 1.30 (m, 4H, CH2), 1.82 (s, 4H, CH2), 4.28 (s, 4H, CH2), 5.55 (s, 4H, CH2), 7.59 (t, J = 7.4 Hz, 
4H, PhH), 7.97 (m, 6H, PhH), 9.50 (s, 2H, 2-imiH), 11.16 (s, 2 H, NH). 13C NMR (100 MHz, DMSO-d6): δ 13.7 
(CH3), 19.2 (CH2), 31.8 (CH2), 49.0 (CH2), 52.2 (CH2), 121.9 (PhC), 124.8 (PhC), 125.8 (PhC), 126.8 (PhC), 127.8 
(PhC), 131.4 (PhC), 136.0 (PhC), 138.0 (PhC), 164.9 (C=O).

Preparation of [L1H2Ag]Cl (1). The mixture of L1H4·Cl2 (0.100 g, 0.2 mmol) and Ag2O (0.046 g, 0.2 mmol) 
in DMSO (2.5 mL) and CH3CN (12.5 mL) was heated to reflux for 24 h with stirring. After filtration, the solvent 
was evaporated to 5 mL, and the yellow powder of 1 was obtained after adding 5 mL of diethyl ether. Yield: 0.040 g 
(36%). M.p.: 192–194 °C. Anal. Calcd for C24H26AgN6O2Cl: C, 50.23; H, 4.56; N, 14.64%. Found: C, 50.44; H, 
4.42; N, 14.52%. 1H NMR (400 MHz, DMSO-d6): δ 1.43 (t, J = 17.5 Hz, 6H, CH3), 4.20 (q, 4H, CH2), 5.06 (s, 4H, 
CH2), 7.29 (m, 4H, PhH), 7.60 (d, J = 88 Hz, 4H, PhH), 8.34 (s, 2 H, PhH), 9.29 (s, 2H, NH). 13C NMR (100 MHz, 
DMSO-d6): δ 17.3 (CH3), 46.2 (CH2), 121.0 (CH2), 124.1 (PhC), 125.5 (PhC), 135.9 (PhC), 166.3 (C=O).

Preparation of [L1Ni] (2). NiCl2 (0.052 g, 0.4 mmol) was mixed with L1H4·Cl2 (0.100 g, 0.2 mmol) and 
K2CO3 (0.138 g, 1.0 mmol) in DMSO (2.5 mL) and CH3CN (12.5 mL), and the reaction kept going for 24 h at 60 °C 
with stirring. After filtration, the solvent was evaporated to 5 mL, and the pale yellow powder of 2 was obtained 
after adding 5 mL of diethyl ether. Yield: 0.040 g (40%). M.p.:>320 °C. Anal. Calcd for C24H24NiN6O2: C, 59.16; 
H, 4.96; N, 17.25%. Found: C, 59.32; H, 4.87; N, 17.43%. 1H NMR (400 MHz, DMSO-d6): δ 1.06 (t, J = 7.2 Hz, 6H, 
CH3), 3.41 (q, J = 6.9 Hz, 4H, CH2), 4.50 (t, J = 3.2 Hz, 4H, CH2), 6.70 (s, 2H, PhH), 7.11 (t, J = 7.6 Hz, 2H, PhH), 
7.28 (d, J = 2.0 Hz, 2H, PhH), 7.40 (d, J = 3.0 Hz, 2H, PhH), 7.55 (d, J = 0.5 Hz, 2H, PhH). 13C NMR (100 MHz, 
DMSO-d6): δ 15.6 (CH3), 44.5 (CH2), 65.3 (CH2), 121.5 (PhC), 122.2 (PhC), 124.5 (PhC), 135.4 (PhC), 166.6 
(C=O), 175.0 (2-imiC).

Preparation of [L2Ni] (3). [L2Ni] (3) was prepared according to the methods of 2, only L1H4·Cl2 was 
replaced by L2H4·Cl2 (0.100 g, 0.2 mmol). Yield: 0.020 g (20%). M.p.: >320 °C. Anal. Calcd for C28H32NiN6O2: 
C, 61.90; H, 5.93; N, 15.46%. Found: C, 61.78; H, 5.84; N, 15.58%. 1H NMR (400 MHz, DMSO-d6): δ 0.70 (t, 
J = 23 Hz, 6H, CH3), 1.07 (m, 4H, CH2), 1.44 (m, 4H, CH2), 3.80 (t, J = 48.4 Hz, 4H, CH2), 5.03 (s, 4H, CH2), 6.78 
(s, 2H, PhH), 7.09 (t, J = 7.8 Hz, 2H, PhH), 7.29 (d, J = 8.0 Hz, 2H, PhH), 7.36 (s, 2H, PhH), 7.55 (d, J = 0.8 Hz, 
2H, PhH). 13C NMR (100 MHz, DMSO-d6): δ 13.3 (CH3), 19.1 (CH2), 30.3 (CH2), 49.5 (CH2), 53.7 (CH2), 112.4 
(PhC), 112.5 (PhC), 113.2 (PhC), 116.0 (PhC), 121.7 (PhC), 122.2 (PhC), 123.9 (PhC), 132.0 (PhC), 165.1 (C=O), 
175.0 (2-imiC).

Preparation of [L1H2Hg(HgCl4)] (4). HgCl2 (0.110 g, 0.4 mmol) was mixed with L1H4·Cl2 (0.100 g, 
0.2 mmol) and KOBut (0.056 g, 0.5 mmol) in DMSO (2.5 mL) and CH3CN (12.5 mL). The solution was heated 
to 80 °C for 24 h with stirring. After filtration, the solvent was evaporated 10 mL, and the pale brown pow-
der of 4 was obtained after adding 5 mL of diethyl ether. Yield: 0.080 g (40%). M.p.: > 320 °C. Anal. Calcd 
for C24H26Hg2N6O2Cl4: C, 29.61; H, 2.69; N, 8.63%. Found: C, 29.76; H, 2.58; N, 8.77%. 1H NMR (400 MHz, 
DMSO-d6): δ 1.46 (t, J = 7.2 Hz, 6H, CH3), 4.56 (m, 4H, CH2), 5.57 (s, 4H, CH2), 7.51 (d, J = 4.8 Hz, 4H, PhH), 7.77 
(d, J = 18.8 Hz, 4H, PhH), 7.88 (t, J = 6.4 Hz, 4H, PhH), 10.22 (s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 16.0 
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(CH3), 45.6 (CH2), 52.7 (CH2), 122.2 (PhC), 125.0 (PhC), 125.4 (PhC), 125.5 (PhC), 127.1 (PhC), 131.8 (PhC), 
135.4 (PhC), 165.0 (C=O), 176.8 (2-imiC).

Fluorescence titrations. The stock solution (1.0 × 10−4 M) of the host was prepared and diluted to the 
suitable concentration with CH3CN. The stock solutions (1.0 × 10−3 M or 1.0 × 10−4 M) of guest were prepared 
and diluted in the same solvent. Test solutions were prepared through placing 0.2 mL of host stock solution into 
a 10 mL volumetric flask, and the appropriate amount of the stock solutions (1.0 × 10−3 M or 1.0 × 10−4 M) of 
guest were added with a microsyringe. The mixture solutions were diluted to 10 mL with CH3CN to prepare test 
solutions. The concentrations of guest in the test solutions were from 0 to 24.0 × 10−6 M, and the concentration 
of host stayed the same (2.0 × 10−6 M). The test solutions were kept at 25 °C for 8–10 minutes, and then fluores-
cence spectra were recorded with the excitation wavelength at 330 nm, and the excitation and emission slits are 
5 nm and 5 nm. Statistical analysis of the data was carried out using Origin 8.0. CH3CN used in the titrations was 
freshly distilled.

Quantum yields. Fluorescence quantum yields (Φ) of L1H4·Cl2 and complex 1 were determined by using 
1-aminonaphthalene (Φ = 0.39) in CH3CN as the standard compound. Fluorescence quantum yields could be 
calculated according to the equation (2) below64.

Φ = Φ A A F F( / )( / )(n /n ) (2)S U U SU S U S
2

where ΦU, AU and FU are the quantum yield, the absorbance and the emission intensity for L1H4·Cl2 or complex 1. 
ΦS, AS and FS are the quantum yield, the absorbance and the emission intensity for 1-aminonaphthalene. nU and 
nS are the average refractive index of the sample solution (nU = nS = nacetonitrile).

Method for Job’s plot. The stock solution (1.0 × 10−4 M) of the host was prepared and diluted to the suit-
able concentration with CH3CN. The stock solutions (1.0 × 10−4 M or 1.0 × 10−3 M) of guest were prepared and 
diluted in the same solvent. The molar fractions of host and guest in the test solutions were from 1 to 0 and 0 to 
1, respectively. The total concentration is 4.0 × 10−5 M and different amounts of host and guest solutions were 
placed into a 10 mL volumetric flask using a microsyringe, and then diluted to 10 mL. The test solutions were kept 
at 25 °C for 8–10 minutes, and then absoption spectra were measured. Statistical analysis of the data was carried 
out using Origin 8.0.

X-Ray data collection and structure determinations. A Bruker Apex II CCD diffractometer were used 
for the collection of diffraction data of 1–478. The structure was solved with the SHELXS program79. Figures 1–4 
were formed via employing Crystal-Maker80. Other details for structural analysis and crystallographic data was 
listed in Tables 1 and 2.
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