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Increased testicular blood flow 
maintains oxygen delivery and 
avoids testicular hypoxia in 
response to reduced oxygen 
content in inspired air
G. Rizzoto1, C. Hall2, J. V. Tyberg2, J. C. Thundathil1, N. A. Caulkett3 & J. P. Kastelic1

Despite a long-standing assertion that mammalian testes operate near hypoxia and increased 
testicular temperature causes frank hypoxia, we have preliminary evidence that changes are due to 
hyperthermia per se. The objective was to determine how variations in inspired oxygen concentration 
affected testicular blood flow, oxygen delivery and extraction, testicular temperature and lactate 
production. Eight rams were maintained under general anesthesia, with successive decreases in oxygen 
concentration in inspired air (100, 21 and 13%, respectively). As oxygen concentration decreased 
from 100 to 13%, there were increases in testicular blood flow (9.6 ± 1.7 vs 12.9 ± 1.9 ml/min/100 g 
of testis, P < 0.05; mean ± SEM) and conductance (normalized flow; 0.46 ± 0.07 to 1.28 ± 0.19 ml/
min/mm Hg/100 g testis (P < 0.05). Increased testicular blood flow maintained oxygen delivery and 
increased testicular temperature by ~1 °C; this increase was correlated to increased testicular blood 
flow (r = 0.35, P < 0.0001). Furthermore, oxygen utilization increased concomitantly and there were no 
significant differences among oxygen concentrations in blood pH, HCO3− or base excess, and no effects 
of venous-arterial differences in lactate production. In conclusion, under acute hypoxic conditions, 
testes maintained oxygen delivery and uptake by increasing blood flow and oxygen extraction, with no 
evidence of anaerobic metabolism. However, additional studies are needed to determine longer-term 
responses and potential evidence of anaerobic metabolism at the molecular level.

Maintenance of testicular temperature 3–4 °C lower than the body core temperature is essential for production 
of morphologically normal and motile sperm in most mammals1–3. There is a long-standing paradigm that the 
testicular microenvironment functions on the brink of hypoxia4 and that with increasing testicular temperature, 
there is increased testicular metabolism and increased oxygen demands, but no change in testicular blood flow. 
Thus, decreases in percentage of morphologically normal and motile sperm that follow testicular hyperthermia 
are usually attributed to secondary effects of hypoxia and not directly to hyperthermia5,6.

With ischemic conditions due to compromised blood flow caused by obstruction of testicular vessels (e.g., 
varicocele and testicular torsion) or hypobaric hypoxia (e.g., reduced oxygen pressure at high altitudes), sper-
matogenesis and fertility were impaired, similar to changes after testicular warming7–10. Notwithstanding, these 
observations were not clear evidence that the pathogenesis of increased testicular temperature was due to hypoxia.

Markers of hypoxia have been detected after exposure to hyperthermia6,11, supporting the assertion that effects 
of testicular hyperthermia are due to hypoxia. However, in those studies, neither testicular blood flow nor oxygen 
delivery/utilization were measured. Although hyperemia was reported when testes not covered by the scrotum 
were exposed to increased temperatures12, this was not regarded as sufficient evidence to challenge the classi-
cal view that hypoxia mediates damage caused by testicular hyperthermia. In a previous preliminary study13, 
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conscious rams breathed inspired air containing 85, 21 or 14% oxygen for 30 h. Half of the rams had an insulated 
scrotum (a well-established model to increase testicular temperature); in those rams, percentages of morphologi-
cally normal sperm and motile sperm were significantly decreased from ~2 to 5 wk after exposure. Furthermore, 
in that study, hyperoxia did not mitigate effects of scrotal insulation, nor did hypoxia cause subsequent decreases 
in morphologically normal or motile sperm. Based on that preliminary study, we inferred that hyperthermia 
per se, and not hypoxia, was the underlying cause of reductions in morphologically normal and motile sperm 
following testicular hyperthermia. However, neither testicular blood flow nor oxygen delivery were measured. 
Therefore, objectives of the current study were to determine how variations in oxygen concentrations in inspired 
air affected testicular blood flow, oxygen delivery and extraction, lactate production and testicular temperature.

Results
As oxygen content in inspired air decreased, there were significant increases in testicular blood flow (Fig. 1a) and 
conductance (Fig. 1b), accompanied by concurrent increases in intra-testicular temperature (Fig. 1c), although 
body temperature remained constant. Furthermore, testicular blood flow and intra-testicular temperature were 
correlated (r = 0.35, P < 0.0001; Fig. 1d).

Testicular oxygen delivery was maintained throughout the entire experiment and not affected by reductions 
in oxygen concentration in inspired air (Fig. 2a). Furthermore, as oxygen concentrations decreased, there were 
increases in testicular metabolic rate (Fig. 2b) and oxygen extraction (Fig. 2c).

Consistent with our experimental design, there were large and significant differences among groups for tes-
ticular arterial and venous oxygen content (Fig. 3a) and arterial and venous PO2 (Fig. 3b). However, there were no 
significant differences among groups for PCO2 in either the testicular artery or vein.

Lactate concentrations in the testicular artery and the testicular vein were higher (P < 0.05) at 13% oxygen 
versus at 21 or 100%, but there was no significant difference among groups for venous-arterial differences in 
lactate concentrations (Fig. 3c). Furthermore, there were no significant differences among groups for arterial or 
venous pH, HCO3− or base excess, and no significant venous-arterial differences for pH, HCO3− or base excess.

Figure 1.  (a) Testicular blood flow and (b) testicular conductance (mean ± SEM) in eight rams exposed to 
three concentrations of oxygen in inspired air. (c) Testicular and body temperatures over time (mean ± SEM). 
(d) Correlation between testicular temperature and testicular blood flow (r = 0.35, P < 0.0001). One-way 
analysis of variance for repeated measures, followed by a Dunnet’s t test, was used to compare, among groups, 
data recorded at 30 min. Pearson’s correlation analyses were used to determine linear correlations. *P ≤ 0.05; 
**P ≤ 0.01.
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Discussion
Although regulation of blood flow in response to varying oxygen concentrations in inspired air has been 
extensively studied in several organs3,14–17, this was apparently the first study to characterize effects of varying 
inspired-air oxygen concentrations on testicular blood flow, oxygen delivery, oxygen uptake, and temperature in 
rams. In this study, as oxygen concentrations in inspired air decreased from 100 to 13%, blood flow increased con-
currently and sustained oxygen delivery to the testis. This increased blood flow increased testicular temperature 
by ~1 °C and concomitantly increased metabolism and oxygen utilization. There was a small (albeit significant) 
increase in venous lactate concentrations, but no significant increase in the venous-arterial difference. Therefore, 
under the acute conditions of this study, we concluded that there were no indications of a shift to anaerobic 
metabolism over a broad range of inspired-air oxygen concentrations.

In the present study, hypoxia (i.e., 13% oxygen) significantly increased the supply of blood to the testes, either 
measured as blood flow or as conductance (flow normalized by arterial pressure). Although testicular hypoxia is 
considered to cause male infertility18–20, repeated complete interruptions of blood flow to the testes (occlusion of 
testicular artery for 1-h intervals) did not cause long-term impairment of sperm production in rams21. Regardless, 
chronic exposure to severe intermittent hypoxia in male rats (5% oxygen in inspired air) reduced sperm motility 
and fertility22. Perhaps the degree and duration of testicular hypoxia affects the ability to compensate.

Testicular blood flow and testicular temperature were significantly correlated (r = 0.35) in the current study, 
similar to bulls23. Clearly, hypoxia-induced increases in blood flow increased testicular temperature and metab-
olism. Furthermore, rectal temperature remained constant, suggesting that increased blood flow to the testis 
was not a systemic response, consistent with a previous report23,24. Acute or chronic hypoxia decreased oxygen 
content in rat muscle, although blood flow was not altered25. In the human brain, hypoxia (14% for 18 min) 
increased oxygen metabolic rate and blood flow (compared to 21% oxygen26, consistent with the present study. In 
some organs, a reduced oxygen supply increased blood flow27,28 due to release of vasodilators (decreased oxygen 
impairs re-phosphorylation of adenosine diphosphate (ADP), which is subsequently degraded to adenosine, a 
compound that causes vasodilation15.

Another consequence of induced hypoxia was increased oxygen extraction from arterial blood, from ~40% at 
21% oxygen to ~60% at 13% oxygen (P < 0.01), thereby reducing oxygen content and PO2 in the testicular vein, 
although PCO2 remained unchanged. Observed effects were similar to those reported by Pittman15 and Hoffman29, 
indicating that under hypoxic conditions, the first physiological reflex was to open capillaries to increase available 
area for oxygen exchange, accounting for the observed increase in oxygen extraction. Interestingly, prolonged 
exposure to reduced oxygen concentrations (e.g., at high altitudes) may result in adaptation with no increase 

Figure 2.  (a) Testicular oxygen delivery, (b) testicular metabolic rate and (c) testicular oxygen extraction 
(mean ± SEM) in eight rams exposed to three concentrations of oxygen in inspired air. One-way analysis 
of variance for repeated measures, followed by a Dunnet’s t test, was used to compare, among groups, data 
recorded at 30 min. *P ≤ 0.05; **P ≤ 0.01.
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in extraction after long-term exposure, suggesting a more important role for increased extraction under acute 
exposures30.

Both hyperoxia and hypoxia can cause oxidative damage and lipid peroxidation11. Chronic exposure to hyper-
oxia reduced PO2, pH and increased PCO2 in old versus young rats, indicating that age affects tolerance to this 
condition31,32. Furthermore, hyperoxia increased the activity of radical oxygen species and may impair diaphragm 
contractility, potentially affecting body oxygenation20. Exposure to ~100% oxygen in inspired air decreased blood 
flow to the rat brain26,33, reduced (~8–30%) cardiac blood flow in humans34, and caused a 7% reduction in renal 
blood flow35, all of which were consistent with our finding that testicular blood flow was lowest at 100% oxygen.

Lactate is a well-defined marker of hypoxia36–38. In bulls, lactate concentrations in the rete testis were similar to 
those in the blood39, although for humans they can be slightly higher38. Lactate is produced in testes as a product 
of glucose metabolism by Sertoli cells40–42; increased concentrations were reported in pathological conditions in 
rats, including cryptorchidism43 and hypoxia44. Furthermore, a severe reduction in lactate was also associated 
with infertility45. In the present study, lactate concentrations in the testicular vein were increased (P < 0.05) when 
rams were exposed to 13% oxygen. However, venous-arterial differences were not significant among groups, nor 
were there significant venous-arterial differences in pH, HCO3− or base excess. Therefore, there was no evidence 
of reduced oxygen concentrations in inspired air causing anaerobic metabolism.

In the present study, only blood samples were collected and analyzed. Although retrieval of testicular biopsies 
was considered, it was expected that this would cause hemorrhage and inflammation that could invalidate the 
study. Furthermore, we did not sample tissues to detect angiogenesis, as these changes were not detected at 1 d 
after the onset of hypoxia in mice46, although they were detected at 5 d after the onset of hypoxia in rats47.

There are alternative approaches to detect a change from aerobic to anaerobic metabolism. Important exam-
ples are genes that contain the Hypoxia-Response Element (HRE) in their promoter region; hypoxia is associated 
with increased gene expression of those specific genes, including Hypoxia Induced Factor (HIF) I and II48,49. 
Furthermore, identification of thiobarbituric acid reactive substances (TBARS) and Reactive Species of oxygen 
(ROS) are important markers of tissue hypoxia and oxidative damage in the testes50,51. Unfortunately, in the 
present work, due to the experimental design and the potential for damage, testicular biopsies were not collected. 
Therefore, in future studies, recovery of testicular tissue and assessment of cellular and molecular evidence of 
tissue hypoxia should be done. In addition, more prolonged exposure to hypoxia in rams to determine long-term 
effects on testicular tissue, sperm and blood testosterone concentrations, are indicated.

Figure 3.  Testicular arterial, venous, and A-V difference in (a) venous blood oxygen content, (b) PO2; and 
(c) lactate concentrations and net production (mean ± SEM) in eight rams exposed to three concentrations 
of oxygen in inspired air. One-way analysis of variance for repeated measures, followed by a Dunnet’s t test, 
was used to compare, among the three groups, data recorded at 30 min. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; 
****P ≤ 0.0001.
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Our experiment was designed to minimize the impact of anesthesia. Each ram was initially subjected to 100% 
oxygen, followed by two successive reductions in oxygen content in inspired air; therefore, each ram served as 
its own control. In addition, anesthetic depth was maintained at as constant a plane as possible throughout the 
experiment. Furthermore, adult animals were used, since the testicular vascular cone (TVC) undergoes devel-
opment until puberty52,53 and is fundamental for thermoregulatory capabilities of the testes3. To our knowledge, 
there are no studies in pre-pubertal animals regarding testicular blood flow response to heat stress.

In conclusion, under acute hypoxic conditions (13% oxygen in inspired air), the testis maintained oxygen 
delivery and uptake by increasing blood flow and oxygen extraction, with no indications of a shift to anaerobic 
metabolism. Similarly, in our previous study in conscious rams, exposure of control rams (no scrotal insulation) 
to 85, 21 and 14% oxygen for 30 h had no significant effect on semen quality13. Thus, we concluded that the testis 
compensated for decreased oxygen concentrations in inspired air, although this needs additional confirmation.

Materials and Methods
Eight crossbred rams (12–15 mo, 40–56 kg) were used. Rams were pre-medicated with 8 μg/kg dexmedetomidine 
(Dexdomitor (0.5 mg/ml, Zoetis, Parsippany-Troy Hills, NJ, USA) and 2 mg/kg of alfaloxone (Alfaxan 10 mg/ml, 
Jurox Pty Ltd, Rutherford, NSW Australia) administered IM. After approximately 15 min, anesthesia was induced 
with 2 mg/kg of alfaloxone administered IV. Thereafter, rams were intubated, anesthesia was maintained by inhala-
tion of isoflurane (1.0–2.0%; Fresenius Kabi Animal Health, Richmond Hill, ON, Canada) and a constant volume 
ventilator (Harvard Apparatus – 12 breaths/min – 10 ml/kg stroke volume) was used throughout the study. To 
reduce the depth of anesthesia needed, epidural analgesia (0.07 mg/kg of xylazine (Rompun, 20 mg/kg, Bayer, 
Mississauga, ON, Canada) in ~4 mL of saline) and local anesthetic blocks (bupivacaine (Bupivacaine, 2.5 mg/ml, 
Hospira Inc., Lake Forest, IL, USA), ~2 ml/site SC) were performed at incision sites. All rams were maintained 
under general anesthesia throughout the procedure and euthanized (saturated potassium chloride given IV under 
deep anesthesia) at the end of the study. This study was reviewed and approved by the University of Calgary 
Health Sciences Animal Care Committee (AC16-0010) and all methods were conducted in accordance with  
the guidelines.

Each ram was exposed to three oxygen concentrations (100, 21 and 13% sequentially) in inspired air, by com-
bining oxygen and nitrogen. Following reductions in oxygen concentration, rams were allowed ~20 min to adapt, 
and thereafter exposure was maintained for another 45 min, with measurements recorded at 30 min (temperature 
measured at 0, 15, 30 and 45 min). Oxygen concentrations were determined with an oxygen analyzer (MySign®O, 
Wilmar, MV, Germany).

All invasive procedures were performed under anesthesia. Testicular temperatures were measured by insert-
ing a needle thermocouple (20-gauge × 2.5 cm23), through the scrotal skin (anterior aspect of testis) and into the 
testis. This thermocouple was inserted at the beginning of the intervention and remained in situ throughout the 
study. Standard ECG leads were attached (for cardiac monitoring). The right carotid artery was isolated and a 
14-gauge polyvinyl catheter was placed for monitoring arterial pressure and determining arterial blood gases. The 
right jugular was isolated for intravenous administration of saline (5 ml/kg/h) and drug administration. An inci-
sion (~12 cm) was made between the right external inguinal ring and attachment of the scrotum to the body wall. 
The spermatic cord was identified and the testicular artery and vein isolated. A 20-gauge catheter was inserted in 
the left testicular vein (distal to the testis) for blood gas and lactate measurement. Blood samples were collected 
from the carotid artery and testicular vein to measure blood gases and lactate (Nova Biomedical, Stat Profile® 
pHOx Ultra®, Waltham, MA, USA). An ultrasonic flow probe (2SB1551; Transonic® Flowprobe, Ithaca, NY, 
USA) was placed around testicular artery to measure blood flow. Measurements were performed and recorded 
and arterial and venous blood samples collected at 30 min after the start of the monitored interval. Blood flow 
was obtained with specific software (Sonometrics Corp. System, London, ON, Canada) and data were further 
converted using custom software (CV Works, AccuDAQ Inc, Calgary, AB, Canada). Testicular perfusion and 
oxygenation were calculated as described (Table 1). In addition, for testicular vasculature, arterial-venous differ-
ences were calculated for oxygen content, PO2, PCO2, pH, HCO3− or base excess and venous-arterial differences 
were calculated for lactate.

One-way analysis of variance for repeated measures, followed by a Dunnet’s t-test, was used to compare, 
among the three groups, data recorded at 30 min. Pearson’s correlation analysis was used to determine linear 
correlations. All statistical analyses were performed with GraphPad Prism Version 6.0 (GraphPad Software Inc, 
La Jolla, CA, USA) and P < 0.05 was considered significant.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Testicular O2 delivery (ml/min) TDO2 = Q(t)*CaO2/100

Testicular metabolic rate (ml/min) TVO2 = Q(t)*(CaO2 − CvO2)/100

Testicular O2 extraction (%) O2 extraction = TVO2/TDO2

Testicular conductance (mL/min−1/g−1/mmHq−1) Testicular conductance = (Q(t)/testicular 
weight)/aortic blood pressure

Table 1.  Formulas for testicular perfusion and oxygenation54,55. *Q(t) = testicular blood flow (ml/min); 
CaO2 = arterial O2 content (ml/dl). CvO2 = venous O2 content (ml/dl).
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