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Nuclear Norm Clustering: a 
promising alternative method  
for clustering tasks
Yi Wang1,6, Yi Li  1,5,6, Chunhong Qiao1,6, Xiaoyu Liu1,6, Meng Hao1,6, Yin Yao Shugart2,3,5, 
Momiao Xiong4 & Li Jin2,5,6

Clustering techniques are widely used in many applications. The goal of clustering is to identify 
patterns or groups of similar objects within a dataset of interest. However, many cluster methods are 
neither robust nor sensitive to noises and outliers in real data. In this paper, we present Nuclear Norm 
Clustering (NNC, available at https://sourceforge.net/projects/nnc/), an algorithm that can be used in 
various fields as a promising alternative to the k-means clustering method. The NNC algorithm requires 
users to provide a data matrix M and a desired number of cluster K. We employed simulated annealing 
techniques to choose an optimal label vector that minimizes nuclear norm of the pooled within cluster 
residual matrix. To evaluate the performance of the NNC algorithm, we compared the performance 
of both 15 public datasets and 2 genome-wide association studies (GWAS) on psoriasis, comparing 
our method with other classic methods. The results indicate that NNC method has a competitive 
performance in terms of F-score on 15 benchmarked public datasets and 2 psoriasis GWAS datasets. So 
NNC is a promising alternative method for clustering tasks.

Clustering is defined as grouping objects in sets. A good clustering method will generate clusters with a high 
intra-class similarity and a low inter-class similarity1. There are several classic and representative clustering 
methods which are widely used in biological data analysis, including k-means clustering2,3, Partitioning Around 
Medoids (PAM)4, hierarchical clustering (Hcluster)5, Clustering Large Applications (CLARA)4, Agglomerative 
Nesting (AGNES)4,6,7, Divisive Analysis Clustering (DIANA)4, Clusterdp8,9 and DBSCAN10.

K-means clustering is a popular method of vector quantization in data mining. The term “k-means” was first 
used by MacQueen2 in 1967 and the standard algorithm was first proposed by Lloyd3 in 1957. K-means clustering 
is typically used to partition n observations into k clusters in which each observation belongs to the cluster with 
the nearest mean, serving as a prototype of the cluster.

The Partitioning Around Medoids (PAM) is a clustering algorithm related to the k-means clustering and the 
medoids shift algorithm4. Both the k-means and PAM are partitional (breaking the dataset up into groups) and 
both attempt to minimize the distance between points labeled to be in a cluster and a point designated as the 
center of that cluster. In contrast to the k-means clustering, PAM chooses data points as centers and works with 
a generalization of the Manhattan Norm to define distance between data points. The PAM method was proposed 
in 1987 and is a classical partitioning technique of clustering that clusters the dataset of n objects into k clusters.

Hierarchical clustering (Hcluster)5 is a method of cluster analysis which seeks to build a hierarchy of clusters. 
Strategies for hierarchical clustering generally fall into two subcategories: agglomerative and divisive1. In general, 
the merges and splits can be achieved in a greedy manner. The results of hierarchical clustering are usually pre-
sented in a dendrogram.
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Clustering large applications (CLARA)4 is characterized by taking a small portion of the data as a sample 
without considering the entire data set. It extracts multiple sample sets from the data set and uses the best cluster 
as output, by using PAM for each sample set. CLARA can handle a larger data set than PAM. Agglomerative 
nesting (AGNES)4,6,7 algorithm belongs to hierarchical clustering method. AGNES initially takes each object as 
a cluster, afterwards the clusters are merged step by step according to certain criteria, using a single-link method. 
The level of similarity of the two clusters is measured by the similarity of the nearest pair of data points in the 
two different clusters. The clustering process is repeated until all objects finally meet the number of clusters. The 
DIANA (Divisive analysis)4 algorithm is a typical split clustering method. DIANA first places all objects in a clus-
ter and then subdivides them into smaller clusters until the desired number of clusters is obtained. Density-based 
methods include Clusterdp8,9, DBSCAN10, etc. Clusterdp8,9 is a recently developed method based on the idea that 
centroids are characterized by a higher local density than their neighbors and by a comparably high distance from 
objects with higher density.

Obviously, each clustering method has its own strengths and drawbacks. Although some methods work 
well on one data set, it may give poor results on another data set. The K-means clustering algorithm is com-
promised when feature is highly correlated and is extremely sensitive to outliers, because its distance measure-
ment can be easily influenced by extreme values, and it is also computationally difficult (NP-hard)11–15. The most 
time-consuming part of PAM is the calculation of the distances between objects. CLARA relies on the sampling 
approach to handle large datasets4, therefore, the quality of CLARA’s clustering results depends greatly on the size 
of the sample. AGNES algorithm does not undo what was previously carried out. No objective function is directly 
minimized. Sometimes it is difficult to identify the correct number of clusters by using the dendrogram. DIANA 
chooses the object with the maximum average dissimilarity and then moves all objects to this cluster that are 
more similar to the new cluster than to the remainder.

We consider that the objective of clustering is to minimize the “residuals” within clusters. We can use norms 
to measure “residuals”, like L2~L0 norms16. For example, L2 error is the square error, L1 error is the nuclear norm 
and L0 error is the rank of the residual matrix. Minimizing nuclear norm not only reduces the quantitative error 
(variance) but also reduces the qualitative errors (rank) and encourages the residuals to be embedded in low 
dimensional spaces. To achieve this goal, we developed the Nuclear Norm Clustering (NNC) method (available 
at https://sourceforge.net/projects/nnc/), a highly accurate and robust algorithm used for clustering analysis. 
Nuclear Norm Clustering aims to improve the accuracy of clustering. In this paper, we compared the performance 
of NNC with that of other seven methods, using 15 publically available datasets. We then tested the performance 
of NNC on two psoriasis genome-wide association study (GWAS) datasets17–20.

Methods
To apply our method to a specific dataset, users need to provide a data matrix M and the desired number of cluster 
K. The objective function to minimize is the nuclear norm of the pooled within class residual. The nuclear norm 
of a matrix is defined as the sum of singular values of the matrix.

Suppose we had a candidate class label vector A, where A[i] was an integer indicating that the ith sample 
belong to the A[i]th cluster. We first calculated the means/center of each class. Then for each sample/row, we 
subtracted its corresponding class mean, forming a pooled residual matrix. Then we performed singular value 
decomposition (SVD)21 to obtain nuclear norm. This procedure could be denoted as NN(A).

We used simulated annealing22 to choose an optimal A that minimize NN(A). First we initially random guess 
some A. Then we randomly change one sample’s label obtain A′, and test if it improves the nuclear norm. If 
Uniform(0, 1) < exp((NN-NN’)/T) then A = A′, where T is the annealing parameter. The algorithm is shown in 
Table 1.

Bechmarking
We benchmarked eight methods: k-means clustering, Partitioning Around Medoids (PAM), Hierarchical clus-
tering (Hcluster, using Euclidean metric to calculate dissimilarities), Clustering Large Applications (CLARA), 
Agglomerative Nesting (AGNES), Divisive Analysis Clustering (DIANA), Clusterdp (Clusterdp was chosen as 
the representative of density-based methods) and Nuclear Norm Clustering (NNC). We used the NNC software 

subroutine Nuclear Norm (A, M)
    {Parameter: assignment vector A, normalized data matrix M.
    1:    Calculate the cluster center/mean C using A and M
    2:    For each rows i in M, subtract the corresponding cluster mean vector CAi.
    3:    Perform SVD of the matrix M = USVT return the sum of singular values}

Nuclear Norm Clustering of normalized data matrix M
1:    randomly assign the assignment vector A
2:    NN = Nuclear Norm (A, M)
3:    repeat N iterations
4:                 {A′ = A
5:             A′ [random sample] = random cluster
6:             NN′ = Nuclear Norm (A′)
7:             T = N/(100*(iter + 1.0))
8:             if (Uniform (0, 1) < exp ((NN-NN′)/T))
9:               {A = A′
10:              NN = NN′}}
11:    A is the clustering result

Table 1. The pseudocode of Nuclear Norm Clustering.
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available at https://sourceforge.net/projects/nnc/ and implemented the other seven methods using various R 
packages: factoextra23 and densityClust24. To evaluate the performance of benchmarked clustering methods, we 
used the macro-averaged F-score25,26. Benchmarking was performed on a desktop PC equipped with an Intel Core 
i7-4790 CPU and 32 GB of memory. The parameters tested were shown in Supplemental Materials 1, 2 and 4.

Benchmarking Public Datasets Study. Overall 15 public datasets were included: spambase27, Indian 
liver patient28, blood transfusion service center29, pima Indians diabetes30, parkinsons31, QSAR biodegradation32, 
Ionosphere27, pathbased33, mammographic mass34, breast cancer wisconsin diagnostic35, seeds36, wine27, jain37, 
flame38, iris27.

Applications on GWAS Dataset Study. We applied each of the aforementioned method to two psoria-
sis genome-wide association (GWAS) genetic datasets17–20. We obtained the dataset, a part of the Collaborative 
Association Study of Psoriasis (CASP), from the Genetic Association Information Network (GAIN) database, a 
partnership of the Foundation for the National Institutes of Health. The data were available at http://dbgap.ncbi.
nlm.nih.gov. through dbGap accession number phs000019.v1.p1. All genotypes were filtered by checking for data 
quality18. We included 1590 subjects (915 cases, 675 controls) in the general research use (GRU) group and 1133 
subjects (431 cases and 702 controls) in the autoimmune disease only (ADO) group. A dermatologist diagnosed 
all psoriasis cases. Each participant’s DNA was genotyped with the Perlegen 500 K array. Both cases and controls 
agreed to sign the consent contract, and controls (≥18 years old) had no confounding factors relative to a known 
diagnosis of psoriasis.

In our previous work18, we found that when the number of SNPs as predictors was chosen as 50, the inde-
pendent ADO (testing) dataset could reach the maximum AUC39 (AUC = 0.7063) using logistic regression pre-
diction model. Thus we used SNP ranking methods, considering allelic association p-values (on the Psoriasis 
GWAS dataset of GRU group), to select top 50 associated SNPs (take 5 intervals, such as 5, 10 …, 50, shown in 
Supplementary Materials 4) and then compared the performance of different clustering methods on two Psoriasis 
GWAS datasets (both GRU and ADO group).

Results
Results from public datasets. Table 2 summarizes the macro-averaged F-score of all methods on 15 public 
datasets. NNC, together with Clusterdp and Hcluster, all performed best in 4 datasets. PAM performed optimally 
in 2 datasets. Following PAM, DIANA performed best only one datasets. Furthermore, we observed that the data-
sets in which NNC performed better were linearly separable (especially in iris, seeds and wine datasets).

And NNC performed significantly better (Wilcoxon Rank Sum test’s p value < 0.05, Supplemental Materials 3) 
than k-means, PAM, CLARA, AGNES and DIANA in F-score on benchmarked 15 datasets. Thus NNC is a com-
petitive method for clustering task.

Results from psoriasis dataset study. We benchmarked seven methods: k-means, PAM, Hcluster, 
CLARA, AGNES, DIANA, NNC (Clusterdp was not included was because the psoriasis data was too large, so it 
took too long to adjust the parameters) in the psoriasis dataset study.

Table 3 presents the mean and standard deviation of each method’s performance among 2 psoria-
sis GWAS datasets. The macro-averaged F-score of selected 50 top associated SNPs (take 5 intervals) were 
shown in Supplemental Materials 4. In Table 3, we observed that NNC had the second largest mean of F-score 
(mean = 0.5735) in psoriasis dataset of GRU group and the maximal mean of F-score (mean = 0.6725) in psori-
asis dataset of ADO group, and the mean differences between NNC and the next best performing method were 

Datasets sample feature class k-means PAM Hcluster CLARA AGNES DIANA Clusterdp NNC

spambase 4601 57 2 0.4756 0.7594 0.8257 0.3771 0.3779 0.3779 0.6088 0.8492

Indian liver patient 579 10 2 0.4122 0.5406 0.6196 0.5418 0.4163 0.4122 0.5981 0.5837

blood transfusion service center 748 4 2 0.5630 0.5710 0.6482 0.5849 0.4658 0.5547 0.6304 0.5554

pima Indians diabetes 768 8 2 0.5803 0.6202 0.6918 0.6169 0.4131 0.6385 0.6100 0.7079

parkinsons 195 22 2 0.4682 0.6748 0.7013 0.6733 0.4231 0.4073 0.7529 0.6376

QSAR biodegradation 1055 41 2 0.5025 0.7112 0.7119 0.6570 0.3982 0.3982 0.7344 0.7057

Ionosphere 351 33 2 0.7024 0.6991 0.7076 0.6872 0.3992 0.5004 0.6904 0.7024

mammographic mass 830 5 2 0.6774 0.8137 0.8067 0.8010 0.5218 0.5374 0.7976 0.7987

breast cancer wisconsin 
diagnostic 569 30 2 0.8268 0.9370 0.9181 0.9276 0.4007 0.8832 0.8552 0.9303

jain 373 2 2 0.7660 0.8369 1.0000 0.7974 0.9127 0.8416 0.9001 0.8636

flame 240 2 2 0.8331 0.8461 0.8962 0.8620 0.7986 0.8584 1.0000 0.8303

pathbased 300 2 3 0.7081 0.7270 0.7586 0.7147 0.7223 0.7668 0.7273 0.7270

iris 150 4 3 0.8918 0.8593 0.8841 0.8867 0.8841 0.8512 0.8996 0.8853

seeds 210 7 3 0.8954 0.9104 0.9290 0.9054 0.8795 0.9037 0.9286 0.9479

wine 178 13 3 0.7032 0.9270 0.9500 0.9425 0.5500 0.8245 0.7860 0.9722

Table 2. Macro-averaged F-score of all methods on 15 datasets. Bold: The bold means the first place result of all 
methods compared.
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0.0860 and 0.0135. Additionally, in psoriasis dataset of GRU group, NNC obviously improved the F-score in the 
benchmarked datasets (improved clustering accuracy = 18%), compared with the third best performing method. 
While compared to the best performing method, the clustering accuracy of NNC was reduced by 5%. In psoriasis 
dataset of ADO group, the clustering accuracy of NNC was improved by 2% compared to the second best per-
forming method. And the macro-averaged F-score curves of seven methods on psoriasis dataset 1 and psoriasis 
dataset 2 were shown in Figs 1 and 2, respectively. More interestingly, we found that the F-score of NNC and 
Hcluster in the top 50 SNPs were superior to other methods in Fig. 1. In Fig. 2, the F-score of NNC was optimal. 
In conclusion, NCC performed well in two psoriasis datasets and appears to be superior to its competitor meth-
ods: k-means, PAM, Hcluster, CLARA, AGNES and DIANA. It is worth mentioning that NNC appeared to be 
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Figure 2. The macro-averaged F-score of selected top 50 associated SNPs on the Psoriasis GWAS dataset of 
ADO group.

methods

Psoriasis 1 Psoriasis 2

Mean 1 SD Pvalue Mean 2 SD Pvalue

k-means 0.4363 0.1155 1.9531E-03 0.6314 0.0316 2.9297E-03

PAM 0.4864 0.1221 2.4414E-02 0.6548 0.0328 6.5430E-02

Hcluster 0.6006 0.0138 9.8145E-01 0.6590 0.0214 5.3664E-02

CLARA 0.4875 0.1247 9.6680E-02 0.6507 0.0229 4.8828E-03

AGNES 0.3654 0.0029 9.7656E-04 0.5261 0.0711 9.7656E-04

DIANA 0.4340 0.1127 9.7656E-04 0.6119 0.0401 4.8828E-03

NNC 0.5735 0.0722 — 0.6725 0.0065 —

Table 3. Mean and SD of F-score on 2 psoriasis datasets. Bold: The bold means the first place result of 
all methods compared. SD: Standard Deviation. The pvalue was calculated by Wilcoxon Rank Sum test 
(paired = TRUE, alternative = “greater”).
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Figure 1. The macro-averaged F-score of selected top 50 associated SNPs on the Psoriasis GWAS dataset of 
GRU group.
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more robust and less sensitive to potential outliers. Although the F-score of NNC was not the best for all datasets, 
it was the top performer in both the public and the psoriasis datasets.

Discussion
Clustering has been applied for identifying groups among the observations4. For example, using clustering to 
classify patients into subgroups according to their gene expression profile in cancer research. It can be useful for 
identifying the molecular profile of patients with good or bad prognostic, as well as for understanding the disease.

NNC outperforms the k-means clustering by breaking its limitations: K-means attempts to minimize the total 
squared error, which is sensitive to the outliers. Furthermore, k-means performed not well in datasets (like Indian 
liver patient and Parkinsons, Table 2) with strong correlation coefficient matrixes. To overcome the limitation, 
we employed the nuclear norm as a measure of clustering fitness. First, nuclear norm40 is a L1 measure of error, 
thus is relatively more robust than squared error. Second, in the presence of variable correlation, nuclear norm 
internally orthogonalizes the variables and penalizes/down-weights correlated variables.

NNC, along with Clusterdp and Hcluster, had the best performance in more public datasets (Table 2). And 
we found that these three methods performed best on different public datasets. They could be complementary 
methods in different real datasets. Furthermore, we observed that the datasets in which NNC performed better 
were linearly separable (especially in iris, seeds and wine datasets).

NNC has two parameters, the desired number of cluster K and the number of iterations. The greater the num-
ber of iterations, the more precise the convergence. But if the number of iterations is too large, it will affect the 
computing efficiency. In the psoriasis GWAS datasets, the parameters were chosen as follows: K = 2, the number 
of iterations = 200000. Generally, when the number of iterations is 20000, NNC also performs well enough (robust 
with the parameters). The computation complexity of NNC is O(sample number × feature number × min(sample 
number, feature number) × iterations). When there are 10k or 100k objects in the dataset, it will be rather slow. 
However, NNC is fast enough (Table 4) to handle medium size datasets (below 10k) in practice.

In conclusion, we presented the Nuclear Norm Clustering (NNC) method and our work demonstrated that 
NNC is a rather promising alternative method for clustering in medium size datasets.
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