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Estimation of Cardiovascular Risk 
Predictors from Non-Invasively 
Measured Diametric Pulse 
Volume Waveforms via Multiple 
Measurement Information Fusion
Zahra Ghasemi1, Jong Chan Lee1, Chang-Sei Kim2, Hao-Min Cheng  3, Shih-Hsien Sung3, 
Chen-Huan Chen3, Ramakrishna Mukkamala4 & Jin-Oh Hahn  1

This paper presents a novel multiple measurement information fusion approach to the estimation 
of cardiovascular risk predictors from non-invasive pulse volume waveforms measured at the body’s 
diametric (arm and ankle) locations. Leveraging the fact that diametric pulse volume waveforms 
originate from the common central pulse waveform, the approach estimates cardiovascular risk 
predictors in three steps by: (1) deriving lumped-parameter models of the central-diametric arterial 
lines from diametric pulse volume waveforms, (2) estimating central blood pressure waveform by 
analyzing the diametric pulse volume waveforms using the derived arterial line models, and (3) 
estimating cardiovascular risk predictors (including central systolic and pulse pressures, pulse pressure 
amplification, and pulse transit time) from the arterial line models and central blood pressure waveform 
in conjunction with the diametric pulse volume waveforms. Experimental results obtained from 164 
human subjects with a wide blood pressure range (systolic 144 mmHg and diastolic 103 mmHg) showed 
that the approach could estimate cardiovascular risk predictors accurately (r ≥ 0.78). Further analysis 
showed that the approach outperformed a generalized transfer function regardless of the degree of 
pulse pressure amplification. The approach may be integrated with already available medical devices to 
enable convenient out-of-clinic cardiovascular risk prediction.

Cardiovascular disease (CVD) is the most prevalent chronic disease in the United States and around the world1. 
It has been well known that CV health and disease may be assessed by means of an array of CV risk predictors, 
including central systolic and pulse pressures (SP and PP), aortic PP amplification, and aortic pulse wave velocity 
(PWV)2–7. However, some of the state-of-the-art techniques for estimating gold standard CV risk predictors are 
inconvenient and costly. For example, the measurement of central SP and PP requires aortic catheterization7–11 
(which is invasive) or carotid artery tonometry12,13 (which involves costly probe and trained operators). The 
measurement of aortic PP amplification and PWV (or equivalently, pulse transit time (PTT)) likewise necessitates 
inconvenient carotid-femoral tonometry procedure5,14–18. It is arguable that these cost and convenience issues 
have hampered early detection and timely treatment of CVD. Hence, novel technologies to complement the 
state-of-the-art CV health and risk predictors estimation techniques via convenient out-of-clinic monitoring and 
tracking of CV risk predictors may significantly improve the prevention, early detection, and treatment of CVD.

Effort has been made to enable more convenient and affordable estimation and tracking of CV risk predictors 
based on automated cuff devices19–26. In this approach, pulse volume pulsation (called the pulse volume recording 
(PVR) in the literature) waveform of the brachial artery is measured while cuff pressure is maintained at a con-
stant sub-diastolic or supra-systolic level. The PVR waveform is then calibrated to the arm cuff BP measurement 
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and converted to central BP waveform using a mathematical transformation. However, the vast majority of the 
prior work have two shortcomings: (1) the techniques rely on population-based transformation (called hereafter 
the generalized transfer function (GTF)) to convert the arm PVR waveform to central BP waveform and thus may 
not achieve optimal accuracy; and (2) CV risk predictors other than central BP, especially those associated with 
the central aorta (such as aortic PP amplification and PWV), cannot be readily estimated due to the absence of 
relevant distal aortic pulse measurement.

In a series of prior work, we have demonstrated that CV risk predictors including central BP10,27–29, PTT30, 
and wave reflection characteristics31 may be estimated in a subject-specific fashion from arterial pulse waveforms 
measured at the body’s diametric (i.e., arm and leg) locations. This so-called multiple measurement information 
fusion approach is built on the novel idea that diametric arterial pulse waveforms, despite their difference in 
morphology (due to the difference in the arterial line dynamics associated with each of the diametric locations), 
originate from common central BP, and therefore, central BP may be inferred from judicious analysis of the dia-
metric arterial pulse waveforms. To date, the validity of this multiple measurement information fusion approach 
has been limited to the use of invasive diametric BP waveforms. Yet, considering already available dual-cuff 
devices23,32–34, this approach has potential to be integrated with such devices to yield convenient, affordable, and 
subject-individualized technologies for estimation and tracking of CV risk predictors.

This paper presents a novel multiple measurement information fusion approach to the estimation of CV 
risk predictors from non-invasive pulse volume (PVR) waveforms measured at the body’s diametric loca-
tions. Leveraging the fact that diametric PVR waveforms originate from the common central pulse waveform, 
the approach estimates CV risk predictors in three steps by: (1) deriving lumped-parameter models of the 
central-diametric arterial lines from diametric PVR waveforms, (2) estimating central BP waveform by analyz-
ing the diametric PVR waveforms using the derived arterial line models, and (3) estimating CV risk predictors 
(including central SP and PP, PP amplification, and PTT) from the arterial line models and central BP waveform 
in conjunction with the diametric PVR waveforms. In this study, we report the results of investigating the perfor-
mance of this novel approach using the experimental data collected from 164 subjects.

Methods
Experimental Data. We studied electronically archived data from 164 human subjects that were origi-
nally obtained in a previous study under the approval from the institutional review board at the Taipei Veterans 
General Hospital and written informed consent35. The study was performed in accordance with relevant guide-
lines and regulations. These subjects had central BP waveform measured at the carotid artery using the appla-
nation tonometry, as well as PVR waveform recordings from the upper arm (i.e., brachial artery) and ankle (i.e., 
posterior-tibial artery) using automated arm and ankle cuff devices. The carotid BP and PVR waveforms were 
calibrated using the brachial mean (MP) and diastolic (DP) BPs obtained using the oscillometric BP measure-
ment method. We randomly split the 164 subjects into 50 for training and 114 for testing of the proposed multiple 
measurement information fusion approach to estimation of CV risk predictors from diametric PVR waveforms, 
which is an approximate proportion of 1:2.

To investigate the efficacy of the multiple measurement information fusion approach to the estimation of CV 
risk predictors, the following CV risk predictors were computed from both training and testing data and used as 
reference CV risk predictors. First, reference central SP and PP were computed as the carotid SP and PP. Second, 
reference aortic PP amplification was computed as the ratio of carotid PP and ankle PP. Third, reference aortic 
PTT was computed as the time delay between the diastolic troughs of the carotid BP and ankle PVR waveforms36.

Estimation of CV Risk Predictors from Diametric PVR via Multiple Measurement Information 
Fusion. Figure 1 illustrates the proposed multiple measurement information fusion approach to estimation 
of CV risk predictors from diametric PVR waveforms. The approach estimates CV risk predictors in three steps. 
First, lumped-parameter models of the central-diametric arterial lines are derived from diametric PVR wave-
forms. Second, central BP waveform is estimated by analyzing the diametric PVR waveforms using the derived 
arterial line models. Third, CV risk predictors (including central BP waveform, central SP and PP, and aortic PP 
amplification and PTT) are estimated from the arterial line models and central BP waveform in conjunction with 
the diametric PVR waveforms.

The lumped-parameter central-diametric arterial line models are derived from diametric PVR waveforms 
by leveraging the fact that diametric PVR waveforms originate from the common central pulse waveform from 

Figure 1. Overview of multiple measurement information fusion approach to estimation of cardiovascular 
(CV) risk predictors. The approach estimates CV risk predictors in three steps. Step 1: Lumped-parameter 
models of the central-diametric arterial lines are derived from diametric pulse volume (PVR) waveforms using 
Eq. (3). Step 2: Central blood pressure (BP) waveform is estimated by analyzing the diametric PVR waveforms 
using the derived arterial line models using Eq. (4). Step 3: CV risk predictors (including central systolic and 
pulse pressures, pulse pressure amplification, and pulse transit time) are estimated from the arterial line models 
and central BP waveform in conjunction with the diametric PVR waveforms.
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the heart. Using the following tube-load models developed and validated in our prior work37 to relate central BP 
waveform (P0) to the arm (y1) and ankle (y2) PVR waveforms (Fig. 2):
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where s is the Laplace operator, τ1 and τ2 are the central-arm and central-ankle PTTs, respectively, ηij, j = 1, 2 are 
the polynomial parameters associated with the yj(s), while E1, E2, and ηVE are the parameters characterizing the 
viscoelastic model associated with the brachial artery-tissue-arm cuff interface, the following correlation equation 
can be formed by canceling the unknown yet common central BP P0 from Eq. (1):
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which can be solved to derive the unknown subject-specific parameters in the arterial line models G1(s) and G2(s) 
via, e.g., numerical optimization in the time domain10,38:
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where  is the Laplace transform operator and E E{ , , , , , , , , }VE1 2 11 21 12 22 1 2θ τ τ η η η η η=  is the vector of unknown 
arterial line model parameters. Note that the first, second, and third terms in Eq. (3) represent central BP wave-
form, SP, and PP errors, respectively. Since Eq. (3) is solved using y1 and y2 measured from a specific subject, θ* 
derived from Eq. (3) is specific to the subject at the time of the PVR measurement. It must be noted that multiple 
measurement information fusion approach requires G1(s) and G2(s) to be distinct for Eq. (2) to be non-trivial. 
Considering that arterial line dynamics associated with diametric locations are expected to be highly distinct 
from each other, it is preferable to employ diametric PVR waveforms in realizing the multiple measurement infor-
mation fusion approach.

The central BP waveform specific to the subject can be estimated from y1 and y2 and the subject-specific arte-
rial line models as follows:

Figure 2. Lumped-parameter (tube-load) models to relate central blood pressure (BP) waveform to diametric 
pulse volume (PVR) waveform. Each arterial tree model has a constant characteristic impedance ZCj (j = 1,2) 
and allows BP wave to travel with a constant pulse wave velocity (PWV). Pulse transit time (PTT) τj (j = 1,2) is 
given by dividing the central-diametric (arm or ankle) arterial distance by PWV. The model of the terminal load 
(ZLj (j = 1,2)) includes the resistances ZCj (j = 1,2) and RTj (j = 1,2) as well as compliance CTj (j = 1,2) of the distal 
arteries. Each BP waveform (P0, P1, and P2) are given by the sum of forward (Pfj(t), j = 1,2) and backward (Pbj(t), 
j = 1,2) BP waves at the corresponding location: Pj(t) = Pfj(t) + Pbj(t), j = 1,2, and P0(t) = Pfj(t + τj) + Pbj(t − τj), 
j = 1,2.
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the central BP waveforms estimated from y1 and y2, respectively, and 0 , 11 2σ σ≤ ≤  are the weights (note that 

11 2σ σ+ = ).
The CV risk predictors can then be estimated as follows. Central SP and PP can be estimated as the maximum 

and amplitude values associated with P0̂. Aortic PP amplification can be estimated as the ratio of estimated central 
PP and the amplitude value associated with the ankle PVR waveform. Aortic PTT can be estimated as 2

⁎τ  obtained 
from Eq. (3).

Data Analysis. Using CV risk predictors derived from carotid artery tonometry and ankle PVR waveform 
measurements as reference, we investigated the performance of the multiple measurement information fusion 
approach to the estimation of CV risk predictors from non-invasive diametric PVR waveforms in comparison 
with the state-of-the-art population-based GTF approach (Fig. 3). We used the training data to optimize the mul-
tiple measurement information fusion approach outlined in the Estimation of CV Risk Predictors from Diametric 
PVR via Multiple Measurement Information Fusion section as well as to construct a GTF. Then, we used the 
testing data to conduct a blind testing and comparatively investigate the efficacy of the multiple measurement 
information fusion approach and the GTF approach. Note that the GTF constructed in this way enables more 
rigorous evaluation of the proposed multiple measurement information fusion approach than the GTFs reported 
in the literature39; indeed, the former represents the population considered in this study better than the latter and 
is thus expected to outperform the latter. Details follow.

We considered a set of GTFs associated with the carotid BP and diametric PVR waveform measurements: an 
arm GTF based on the tube-load model with a standard linear solid model (taking the form of G1(s) in Eq. (1) 
with population-averaged parameters, called hereafter the arm TLS GTF), an arm GTF based on the tube-load 
model with a static gain (taking the form of G1(s) in Eq. (1) with ηVE = 0 and population-averaged parameters, 
called hereafter the arm TLG GTF), and an ankle GTF based on the tube-load model (taking the form of G2(s) in 
Eq. (1) with population-averaged parameters, called hereafter the ankle TL GTF). Each GTF was constructed 
using the training data by first deriving the corresponding arterial line model parameters associated with each of 
the 50 training subjects from the subject’s carotid BP and PVR waveforms via numerical optimization (similarly 
to our prior work)37, and then implementing the same arterial line model characterized by the median values of 
the model parameters derived for the 50 training subjects. We compared these GTFs in terms of their accuracy in 
estimating central BP waveform from the respective PVR waveforms, including the root-mean-squared waveform 
error (RMSE), absolute SP and PP errors (eSP and ePP), and SP and PP error norm = +e e( )SP PP

2 2  across the 50 
training subjects. We used the best-performing GTF as the reference technique in investigating the performance 
of the multiple measurement information fusion approach in the blind testing stage.

We likewise considered a set of realizations of the multiple measurement information fusion approach (called 
hereafter the individualized transfer functions (ITFs)). First, we optimized the fully individualized transfer func-
tion described in the Estimation of CV Risk Predictors from Diametric PVR via Multiple Measurement 
Information Fusion section (f-ITF, in that all the elements in θ in Eq. (3) are individualized) using the training 
data, in terms of its configurable factors in Eqs (3) and (4) including the parametric search bounds as well as the 
weights σ1 and σ2, so that its accuracy in estimating central BP waveform from diametric PVR waveforms (includ-
ing the RMSE, absolute SP and PP errors, and SP and PP error norm) was maximized across the 50 training sub-
jects. Specifically, all the parameters in θ were restricted to be positive in solving Eq. (3) to preserve their physical 
implications, while σ σ= = 1/21 2  was used in Eq. (4); although not shown, the quality of the estimated central BP 
waveform P s( )0̂  was not sensitive to the choice of σ1 and σ2. Second, we constructed two partially individualized 
transfer functions (p-ITFs, in that only a subset of the elements in θ in Eq. (3) are individualized) based on the 

Figure 3. Data analysis procedure.
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optimized f-ITF, in order to create individualized transfer functions equipped with improved performance and 
robustness by relaxing the complexity of the optimization problem in Eq. (3), thereby avoiding high-variance 
model parameters as well as overfitting. One was constructed by fixing the model parameter(s) which exhibited 
the smallest inter-individual variability across the 50 training subjects (called hereafter the p-ITF1), while the 
other was constructed by fixing the polynomial parameters η11 and η21 in G1(s), which are known to often have 
little impact on the transfer function and may thus be fixed at appropriate nominal values10,27. We derived these 
p-ITFs by likewise solving Eq. (3) with respect to the set of parameters to be individualized while fixing the 
remaining parameter(s) to the respective nominal value(s) specified as the median value(s) of the parameter(s) 
derived for the 50 training subjects. We compared these ITFs in terms of their accuracy in estimating central BP 
waveform from diametric PVR waveforms, including the root-mean-squared waveform error (RMSE), absolute 
SP and PP errors (eSP and ePP), and SP and PP error norm e e( )SP PP

2 2= +  across the 50 training subjects. Then, we 
investigated the best-performing ITF(s) in the blind testing stage.

We conducted a blind testing to investigate the performance of the best-performing GTF and ITFs as follows. 
First, we compared the best-performing GTF and ITFs in terms of their accuracy in estimating central BP wave-
form, including the root-mean-squared waveform error (RMSE), absolute SP and PP errors (eSP and ePP), and SP 
and PP error norm = +e e( )SP PP

2 2  across the 114 testing subjects. Second, we examined the relevance of the CV 
risk predictors estimated from the ITFs in terms of their correlations with the reference CV risk predictors 
obtained directly from the carotid BP and ankle PVR waveform measurements. Third, we scrutinized the perfor-
mance of the ITFs relative to the GTF with respect to different degrees of PP amplification.

Statistical Analysis. We used the paired t-test in comparing the (1) arm TLS, arm TLG, and ankle TL GTFs; 
(2) f-ITF, p-ITF1, and p-ITF2; and (3) best-performing GTF and ITFs. We used a significance level of p = 0.05 with 
the Holm-Bonferroni correction to counteract the influence of multiple comparisons.

Results
Experimental Data. Table 1 shows the demographic information of the subjects analyzed in this study 
(median (IQR)). CV risk predictors, including BP (MP: 41–159 mmHg; DP: 28–131 mmHg), carotid-ankle PP 
amplification (1.01–1.62), and PTT (carotid-arm: 24–124 ms; carotid-ankle: 80–200 ms) varied widely in these 
subjects, indicating that the data are challenging enough to rigorously examine the validity and performance of 
the GTFs and ITFs under a wide range of physiological states. Comparison of CV risk predictor values associated 
with the training and testing as well as all data exhibits the homogeneity of characteristics (especially PTT which 
has a large influence on both GTF and ITF)40, suggesting that the findings from this study may be robust against 
the choice of training and testing data.

Training Results. Table 2 shows the model parameters associated with all the GTFs and ITFs consid-
ered in the training stage. In general, there was a large inter-individual variability in all the model parameters. 
Interestingly, τ2 exhibited the smallest variability (17.8% IQR relative to the median value), while η12 and η22 
exhibited the largest variability (1216% and 291% IQR relative to the median value), compared with the rest of 
the parameters. Table 3 shows the performance of the GTFs and ITFs in terms of the errors associated with the 
estimation of central BP from diametric PVR waveforms. The arm TLS GTF overall largely outperformed its TLG 
counterpart and the ankle TL GTF (Table 3(a)). Both p-ITFs significantly outperformed the f-ITF (Table 3(b)): 
when root-mean-squared across all 50 training subjects in the training data, p-ITF1 and p-ITF2 could reduce 
the waveform RMSE, SP and PP errors, and SP and PP error norm significantly by 44.9% and 36.6%, 62.6% and 
59.4%, 38.6% and 34.1%, and 50.0% and 46.2%, respectively, relative to the f-ITF. On the other hand, the perfor-
mance of the two p-ITFs in estimating central SP and PP were statistically insignificant. These results led us to 
investigate the arm TLS GTF and two p-ITFs in the testing stage.

Testing Results. Table 4 shows the performance of the arm TLS GTF and two p-ITFs in terms of the errors 
associated with the estimation of central BP from diametric PVR waveforms, and Fig. 4 shows an illustrative 
example of central BP waveforms estimated from these transfer functions under low, middle, and high PP 

Training Data 
(N = 50)

Testing Data 
(N = 114)

All Data 
(N = 164)

Age [Years] 58 (46–70) 56 (45–69) 57 (45–69)

Gender M 29/F 21 M 60/F 54 M 89/F 75

Height [cm] 165 (160–168) 160 (153–167) 162 (155–167)

Weight [kg] 63 (59–72) 60 (52–68) 61 (53–69)

Systolic BP [mmHg] 116 (100–138) 115 (99–129) 115 (100–130)

Mean BP [mmHg] 90 (82–108) 93 (81–105) 93 (81–106)

Diastolic BP [mmHg] 73 (66–86) 76 (65–83) 76 (65–84)

Carotid-Ankle PP Amplification 1.12 (1.06–1.21) 1.17 (1.08–1.28) 1.15 (1.08–1.27)

Carotid-Upper Arm PTT [ms] 52 (48–56) 52 (48–56) 52 (48–56)

Carotid-Ankle PTT [ms] 136 (124–148) 136 (120–148) 136 (123–148)

Table 1. Subject demographics (median (IQR)).
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amplification. Both p-ITFs significantly outperformed the arm TLS GTF: when root-mean-squared across all 
114 testing subjects, p-ITF1 and p-ITF2 could reduce the waveform RMSE, SP and PP errors, and SP and PP error 
norm significantly by 37.8% and 32.8%, 43.4% and 47.2%, 25.6% and 24.8%, and 32.9% and 34.1%, respectively, 
relative to the arm TLS GTF. Figure 5 shows the correlation and limits of agreement between reference (in terms 
of carotid-ankle) versus estimated aortic SP, PP, PP amplification (based on the estimated central BP and meas-
ured ankle PVR), and PTT (τ2). Both p-ITFs could estimate aortic SP (r = 1.00), PP (r = 0.99), PP amplification 
(p-ITF1: r-0.90; p-ITF2: r = 0.88), and PTT (p-ITF2: r = 0.78) that were closely correlated with their respective ref-
erence counterparts. The bias and confidence interval were also adequately small: the bias and confidence interval 
for aortic SP, PP, PP amplification, and PTT were 0.4% and 3.2% (p-ITF1) and 0.6% and 2.8% (p-ITF2), 4.5% and 
9.8% (p-ITF1) and 5.0% and 8.9%(p-ITF2), 5.7% and 12.3% (p-ITF1) and 6.3% and 13.1% (p-ITF2), and 0.8% and 
33.4% (p-ITF2), respectively, of the respective median values (Table 1). As a comparison, PP amplification based 

TLG GTF 
(Arm)

TLS GTF 
(Arm)

TL GTF 
(Ankle) f-ITF p-ITF1 p-ITF2

τ1 0.068 0.048 — 0.032
(0.025–0.038)

0.052
(0.040–0.060)

0.047
(0.039–0.055)

η11 0.86 20.48 — 14.54
(9.57–22.45)

14.58
(9.89–29.94) 14.45

η21 0.64 12.61 — 13.88
(9.26–20.15)

11.60
(8.77–17.94) 13.88

E1 0.81 1.43 — 0.33
(0.31–0.47)

0.33
(0.31–0.47)

0.33
(0.31–0.47)

E2 — 0.16 — 1.63
(1.44–2.02)

1.63
(1.44–2.02)

1.63
(1.44–2.02)

ηVE — 0.63 — 0.22
(0.19–0.26)

0.22
(0.19–0.26)

0.22
(0.19–0.26)

τ2 — — 0.13 0.12
(0.11–0.13) 0.12 0.14

(0.12–0.15)

η12 — — 431.3 19.3
(8.59–243.6)

189.9
(96.49–309.7)

121.6
(44.73–405.5)

η22 — — 56.05 1.60
(0.78–5.53)

23.72
(7.29–47.98)

20.98
(3.45–64.97)

Table 2. Model parameters estimated from training data (median (IQR)).

Training 
(N=50)

RMSE 
[mmHg]

SP Error 
[mmHg]

PP Error 
[mmHg]

SP & PP Error 
Norm [mmHg]

(a) GTF

Arm TLG GTF 4.39* 4.92* 4.35 6.57*

Arm TLS GTF 3.70 3.52 3.84 5.21

Ankle TL GTF 3.96 4.35 4.65 6.37

(b) ITF

f-ITF 3.83 5.37 5.02 7.36

p-ITF1 2.11† 2.01† 3.08† 3.68†

p-ITF2 2.43† 2.18† 3.31† 3.96†

Table 3. Performance of the GTFs and ITFs in terms of the errors associated with the estimation of central BP 
from diametric PVR waveforms in training data. Errors are root-mean-squared across all subjects. SP: systolic 
pressure. PP: pulse pressure. SP & PP Error Norm: Euclidean norm of SP and PP errors. *Significantly different 
from the arm TLS GTF (p < 0.05 with Holms-Bonferroni correction). †Significantly different from the f-ITF 
(p < 0.05 with Holms-Bonferroni correction).

Testing 
(N = 114)

RMSE 
[mmHg]

SP Error 
[mmHg]

PP Error 
[mmHg]

SP & PP 
Error Norm 
[mmHg]

Arm TLS GTF 3.20 3.43 3.79 5.11

p-ITF1 1.99* 1.94* 2.82* 3.43*

p-ITF2 2.15* 1.81* 2.85* 3.37*

Table 4. Performance of the arm TLS GTF and p-ITFs in terms of the errors associated with the estimation of 
central BP from diametric PVR waveforms in testing data. Errors are root-mean-squared across all subjects. SP: 
systolic pressure. PP: pulse pressure. SP & PP Error Norm: Euclidean norm of SP and PP errors. *Significantly 
different from the arm TLS GTF (p < 0.05 with Holms-Bonferroni correction).
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on the central BP estimated from the arm TLS GTF and the measured ankle PVR was significantly less correlated 
with the reference aortic PP amplification (r = 0.66).

Table 5 shows the performance of the arm TLS GTF and two p-ITFs in subjects associated with low, middle, 
and high PP amplification. The superiority of the p-ITFs to arm TLS GTF was all in all consistent across all the PP 
amplification regimes, but especially in low and high PP amplification regimes. When root-mean-squared across 
all 38 testing subjects with low PP amplification, p-ITF1 and p-ITF2 could reduce the waveform RMSE, SP and 
PP errors, and SP and PP error norm significantly by 38.6% and 35.9%, 39.1% and 46.3%, 22.5% and 26.6%, and 
29.5% and 34.8%, respectively, relative to the arm TLS GTF. When root-mean-squared across all 38 testing sub-
jects with high PP amplification, p-ITF1 and p-ITF2 could reduce the waveform RMSE, SP and PP errors, and SP 
and PP error norm significantly by 36.8% and 28.9%, 55.1% and 67.6%, 41.6% and 50.5%, and 46.8% and 56.8%, 
respectively, relative to the arm TLS GTF.

Discussion
We presented and demonstrated the validity of a novel multiple measurement information fusion approach to 
non-invasive estimation of CV risk predictors from PVR waveforms measured at diametric locations in the body. 
This approach has a few advantages compared with the state-of-the-art techniques for estimation of CV risk pre-
dictors. First, it may be more accurate than the traditional GTF approach by virtue of subject specificity. Second, 
it may offer more comprehensive assessment of CV risk in a subject by virtue of its ability to estimate a number of 
CV risk predictors. Third, it may enable convenient monitoring of CV risk predictors by obviating the measure-
ment of central pulse waveform (which usually requires costly procedures and trained operators).

The proposed p-ITFs (which significantly outperformed the f-ITF in the training stage) boasted significantly 
superior performance to the arm TLS GTF (which was the best performing GTF obtained in the training stage) 
in estimating central BP waveform in blind testing (Table 4). In terms of enabling non-invasive estimation of 
central BP waveform, this study can be viewed as a leap from a series of our prior work, where we have shown 
that an f-ITF based on invasive diametric arterial pulse waveforms could estimate central BP waveform more 
accurately than an arm TL GTF10,27. In this study, we found that the f-ITF did not perform as well as the arm TLS 
GTF when realized with diametric PVR waveforms (Table 3), which may be attributed to two reasons: (1) PVR 
waveforms are less informative than arterial BP waveforms with the high-frequency contents in the latter lost in 
the former due to arterial and tissue viscoelasticity, and (2) non-invasive f-ITF involves more complex arterial 
line models with increased number of parameters than its invasive counterpart, making it more susceptible to 
overfitting when used with PVR waveforms offering relatively sparse information contents. We also showed that 
partial individualization of the arterial line models (i.e., the p-ITFs) could largely enhance the performance of 
the ITF, perhaps via the regularization of the parameter estimation process for the arterial line models to prevent 
overfitting. It is important to emphasize that the p-ITFs considered in this study are built upon solid ration-
ale and insight. First, the p-ITF1 was motivated by the observation from Table 2 that τ2 showed the smallest 
inter-individual variability among all the arterial line model parameters and may thus be fixed at a nominal value. 
Second, the p-ITF2 was motivated by the widely accepted knowledge that the arterial line model exhibits much 
larger sensitivity to its PTT parameter τj than the polynomial parameters ηij, i, j = 1, 210,27. According to Table 2, 

Figure 4. An illustrative example of central BP waveforms estimated from the arm TLS GTF, p-ITF1, and 
p-ITF2 under low, middle, and high PP amplification.
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the ankle line polynomial parameters (η12 and η22) showed larger inter-individual variability than the arm line 
polynomial parameters (η11 and η21). Further, our prior work indicates that η11 and η21 are subject to larger estima-
tion uncertainty than η12 and η22

10,27. Hence, it made a lot of sense to regularize the parameter estimation by fixing 
η11 and η21 to appropriate nominal values in considering viable options for p-ITF. Therefore, it was not surprising 
that p-ITF1 and p-ITF2 examined in this study performed very well. However, it must be noted that the efficacy of 

Figure 5. Correlation (A) and limits of agreement (B) between reference versus estimated aortic SP, PP, PP 
amplification, and PTT. Reference aortic SP, PP, PP amplification, and PTT are based on measured carotid 
BP and ankle PVR waveforms. Estimated aortic SP, PP, PP amplification, and PTT are based on central BP 
estimated by p-ITF and measured ankle PVR.



www.nature.com/scientificreports/

9SCiENTifiC REPORTS |  (2018) 8:10433  | DOI:10.1038/s41598-018-28604-6

p-ITF1 may not generalize to subjects whose PTT drastically deviate from the population-average nominal value 
(e.g., in subjects receiving vasoactive agents), whereas p-ITF2 may still generalize well to a wider range of subjects.

The proposed p-ITFs (p-ITF2 in particular) could estimate a number of CV risk predictors solely based on 
non-invasive diametric pulse measurements (i.e., without requiring any direct measurement of central pulse 
waveform): aortic SP, PP, PP amplification, and PTT. These CV risk predictors were estimated from the indi-
vidually estimated arterial line models (i.e., τ2 as aortic PTT36) and central BP waveform (i.e., peak and pulse 
amplitude of the estimated central BP waveform as aortic SP and PP) in conjunction with the measured PVR 
waveform (i.e., ratio between the amplitudes of estimated central BP and ankle PVR waveforms as aortic PP 
amplification). Encouragingly, the CV risk predictors thus estimated were closely correlated with the reference 
CV risk predictors derived from carotid BP and ankle PVR waveform measurements with tight limits of agree-
ment (Fig. 5). In our prior work, we showed that an ITF based on invasive arterial BP waveforms could track the 
time-varying PTT in a subject27,30. The results obtained from this study suggest that aortic PTT and other CV risk 
predictors may be monitored conveniently through time. Currently, non-invasive measurement of aortic BP, PP 
amplification, and PTT resorts to carotid-femoral tonometry procedure, which requires costly equipment and 
trained operators to measure both central and distal arterial pulse waveforms. Technologies to incorporate the 
functionality to estimate central BP from arm PVR waveform into today’s arm cuff devices exist21–25. However, 
these technologies have limitations in estimating aortic PP amplification and PTT due to the absence of distal 
aortic pulse measurement. In this regard, obviating the measurement of central pulse waveform in estimating a 
range of CV risk predictors may be viewed as a significant innovation of this study. In fact, the proposed approach 
may be readily integrated with already available medical devices (e.g., dual arm-ankle cuffs or a pair of finger-toe 
pulse oximeters) to enable convenient out-of-clinic monitoring of CV risk predictors. That being said, it must also 
be emphasized that arm cuff device equipped with a GTF may still be a convenient option for brachial and central 
BP measurement, if CV risk predictors requiring the measurement of distal aortic pulse is not of primary interest.

Scrutinizing the performance of the arm TLS GTF and p-ITFs obtained from the blind testing with respect to 
the degree of PP amplification, the p-ITFs were superior to the arm TLS GTF independently of PP amplification. 
In particular, the p-ITFs were significantly superior to the arm TLS GTF in all error metrics in subjects with low 
and high PP amplification regimes (except the PP error in low PP amplification regime). The difference between 
the p-ITFs and the arm TLS GTF was less significant in the middle PP amplification regime, which may be attrib-
uted to the fact that the arm TLS GTF was trained to perform adequately in all the PP amplification regimes, and 
thus, it is expected to perform relatively better in subjects with middle than low and high PP amplification.

As an additional remark, it must be emphasized that the arm TLS GTF is a secondary contribution of this 
study regardless of the focus of this study on the ITF. In fact, we showed in our prior work that, on an individual-
ized basis, arm TLS model outperformed its TLG counterpart and individualized ankle TL model in estimating 
central BP waveform from the respective distal PVR waveforms37. The results obtained in this study (Table 3(a)) 
show that our previous findings persist even on a generalized basis. Noting that (at least a subset of) prior work 
on the GTF resorted to the assumption that arm PVR waveform may be used as a surrogate of brachial BP 
waveform19, the arm TLS GTF may offer opportunities to improve the efficacy of GTF in estimating central BP 
waveform.

This study has a few limitations. First, we examined only two options for the p-ITF. On one hand, the two 
p-ITFs were built upon solid rationale and insight, and for that reason, were shown to perform very well. On the 
other hand, there are many alternatives to construct p-ITF that could have been explored. In this regard, more 
extensive investigation of the p-ITF approach may be a rewarding exercise. Second, we examined only the use 
of a pair of PVR waveforms from arm and ankle for the realization of the proposed approach. Other distal sites 
such as ear, finger, and toe may afford viable options for practical implementation of the approach. In addition, 
the efficacy of the approach may benefit from increasing the number of measurements, e.g., by leveraging richer 
information contents to robustify the ITFs. Future work must explore such opportunities. Third, the ethnic group 
we examined was rather homogeneous (Asians). Future work must examine the performance of the proposed 
approach in diverse ethnic groups in order to truly establish its efficacy.

In summary, we demonstrated the efficacy of the proposed multiple measurement information fusion 
approach in estimating a range of CV risk predictors (including central SP and PP as well as aortic PP ampli-
fication and PTT). The CV risk predictors estimable from the proposed approach have already been shown to 
have close relationship to CV health and disease (in case of central SP and PP as well as aortic PP amplification) 
and other established CV risk predictors (in case of aortic PTT in terms of carotid-ankle PTT, which is corre-
lated with carotid-femoral PTT). Hence, the close correlation between the CV risk predictors estimated from the 

Testing 
(N = 114)

Low (1.02–1.30) Middle (1.31–1.38) High (1.38–1.58)

RMSE
SP 
Error

PP 
Error Norm RMSE

SP 
Error

PP 
Error Norm RMSE

SP 
Error

PP 
Error Norm

Arm TLS 
GTF 3.77 4.67 5.15 6.96 2.94 2.22 2.15 3.09 2.80 2.91 3.46 4.52

p-ITF1 2.32* 2.85* 3.99 4.90* 1.84* 1.24* 1.96 2.32 1.77* 1.30* 2.02* 2.41*

p-ITF2 2.42* 2.51* 3.78 4.54* 2.01* 1.64* 2.65 3.12 1.99* 0.94* 1.71* 1.95*

Table 5. Performance of the arm TLS GTF and p-ITFs in subjects associated with low, middle, and high PP 
amplification. Errors are root-mean-squared across all subjects. SP: systolic pressure. PP: pulse pressure. Norm: 
Euclidean norm of SP and PP errors. *Significantly difference from the arm TLS GTF (p < 0.05 with Holms-
Bonferroni correction).
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proposed approach and the reference CV risk predictors (Fig. 5) suggests that the CV risk predictors derived from 
the proposed approach may be valuable in predicting CV health, risk, and disease more conveniently than the 
state-of-the-art carotid-femoral tonometry procedure.

Yet, the strict predictive power of the proposed approach for CV risk must be validated using longitudinal data 
of the patients with history of CV events. That said, the proposed approach may complement the prior analyses 
and models based on the existing large-scale studies (including, e.g., the Framingham Heart Study) as well as 
benefit the design of future large-scale studies on CV health, risk, and disease. First, it may compliment the prior 
analyses and models with novel subject-specific CV risk predictors. Specifically, considering that (1) a subset of 
prior studies found limited efficacy of the GTF-estimated central SP and PP as well as PP amplification based on 
radial (i.e., non-aortic) tonometry in predicting CV risk41, and that (2) the ITF-estimated subject-specific central 
SP and PP as well as aortic PP amplification correlated closely to the reference CV risk predictors, the CV risk pre-
dictors derived from the ITFs may be exploited to improve the predictive power of the prior analyses and models. 
In addition, despite its close correlation to the gold standard carotid-femoral PTT, the efficacy of carotid-ankle 
PTT in CV risk prediction has yet to be rigorously investigated in future work. In this way, the proposed approach 
has potential to enrich and complement today’s CV risk prediction paradigm. Second, it may benefit the design of 
future studies on CV health and disease as an analytic tool capable of simplifying the instrumentation protocols. 
For example, the proposed approach may be leveraged to obviate the need for carotid artery tonometry procedure 
in the measurement of central SP, PP, and carotid-femoral PTT performed in prior large-scale studies42. In addi-
tion, it may even completely eliminate the need for arterial tonometry procedure (especially at the femoral artery, 
which can entail discomfort in many subjects due to the access to private body site) in the measurement of central 
SP and PP as well as aortic PP amplification and PTT43,44 with its potential to derive equivalent CV risk predictors 
simply based on the diametric PVR waveform measurements. Future investigations to explore the potential of the 
proposed approach is thus worth pursuing.
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