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Crossover from Jamming 
to Clogging Behaviours in 
Heterogeneous Environments
H. Péter1,2, A. Libál1,2, C. Reichhardt1 & C. J. O. Reichhardt  1

Jamming describes a transition from a flowing or liquid state to a solid or rigid state in a loose assembly 
of particles such as grains or bubbles. In contrast, clogging describes the ceasing of the flow of 
particulate matter through a bottleneck. It is not clear how to distinguish jamming from clogging, nor 
is it known whether they are distinct phenomena or fundamentally the same. We examine an assembly 
of disks moving through a random obstacle array and identify a transition from clogging to jamming 
behavior as the disk density increases. The clogging transition has characteristics of an absorbing phase 
transition, with the disks evolving into a heterogeneous phase-separated clogged state after a critical 
diverging transient time. In contrast, jamming is a rapid process in which the disks form a homogeneous 
motionless packing, with a rigidity length scale that diverges as the jamming density is approached.

The concept of jamming is used in loose assemblies of particles such as grains or bubbles to describe the transition 
from an easily flowing fluidlike state to a rigid jammed or solidlike state1–4. Liu and Nagel proposed a generalized 
jamming phase diagram combining temperature, load, and density, where a particularly important point is the 
density φj at which jamming occurs1. Jamming has been extensively studied in a variety of systems3–5, and there 
is evidence that in certain cases, the jamming transition has the properties of a critical point, such as a correlation 
length that diverges as the jamming density is approached2–9. A related phenomenon is the clogging that occurs 
for particles flowing through a hopper, where as a function of time there is a probability for arch structures to 
form that block the flow10–13. Clogging is associated with the motion of particulate matter past a physical con-
straint such as wells, barriers, obstacles, or bottlenecks14–19; however, it has not been established whether jamming 
and clogging are two forms of the same phenomenon or whether there are key features that distinguish jamming 
from clogging.

Here we show for frictionless disks moving through a random obstacle array that jamming and clogging are 
distinct phenomena and that a transition from clogging to jamming occurs as a function of increasing disk den-
sity. We identify the number of obstacles required to stop the flow and the transient times needed to reach a sta-
tionary clogged or jammed state. There are two critical obstacle densities, φc

j for the jammed state and φc
c for the 

clogged state. In the jamming regime, the obstacle density φc
j at which flow ceases drops to lower obstacle densi-

ties with increasing disk density, and the system forms a homogeneous jammed state when the rigidity correlation 
length associated with φj becomes larger than the average distance between obstacles. In contrast, during clogging 
the system organizes over time into a heterogeneous or phase-separated state, and the transient time diverges at a 
critical obstacle density φc

c that is independent of the disk density. The phase-separated state consists of regions 
with a density near φj coexisting with low density regions.

Results
Time evolution to a jammed or clogged state. We numerically examine disks driven through a two-di-
mensional array of obstacles in the form of immobile disks. Simulation details appear in the Methods section. The 
total area density of the system is φtot = φm + φobs, where φm is the area density of the moving disks and φobs is the 
area density of the obstacles. Starting from a uniformly dense sample, we apply a driving force and find that over 
time the system evolves either to a steady free flowing state or to a motionless clogged or jammed state. In Fig. 1a–c 
we illustrate the time evolution of a system with a disk density of φm = 0.2186 and an obstacle density of φobs = 0.175, 
beginning with the uniform density initial state in Fig. 1a. Upon application of a drive, we find a transient flowing 
state as shown in Fig. 1b which gradually evolves into the final motionless phase-separated or clustered clogged 
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state in Fig. 1c. For a higher disk density of φm = 0.436, Fig. 1d–f shows that the same evolution from uniform initial 
state to transient flowing state to static clogged state occurs, but the dense clusters in the clogged state are larger. At 
much higher disk densities of φm = 0.785, we find jamming behavior when the obstacle density is larger than a 
critical value φc

j. Below φc
j, the system quickly settles into steady state flow, as shown in Fig. 2(a,b) for φobs = 0.043 

and in Fig. 2(c,d) for φobs = 0.065. The magnitude of the flow decreases with increasing φobs. Above φc
j the disks 

quickly form a disordered jammed state when driven, as illustrated in Fig. 2(e,f) for φobs = 0.0872. In contrast to the 
density phase-separated clogged states that form at lower φm, the jammed states are homogeneously dense. The 
randomly placed obstacles prevent the monodisperse disks from developing long-range crystalline order.

Velocity measurement of the transition from clogging to jamming. To characterize the system we 
perform a series of simulations with varied φm and φobs. We measure the final velocity V0 of the mobile disks after 
a fixed time interval, and average over ten different realizations. In Fig. 3 we plot a velocity heat map as a function 
of φobs versus φm. We find a flowing regime at small φobs, a clogged regime for φm < 0.67, and a jammed regime for 
φm > 0.67. The critical obstacle density φc

c above which the velocity V0 drops to zero in the clogging regime 
remains roughly constant at φ ≈ .0 15c

c , independent of the value of φm. This indicates that the transition to a 
clogged state is controlled by the average spacing l 1/obs obsφ=  between obstacles, similar to the manner in 
which hopper clogging is controlled by the aperture size. In contrast, in the jamming regime the critical obstacle 
density φc

j separating flowing from jammed states decreases linearly with increasing φm and reaches φ = 0c
j  for 

φm ≈ 0.9069, indicating that this transition is controlled by a growing correlation length ξ associated with the 
jamming point φj

5. We argue that the system jams when ξ = lobs. If we assume that near jamming in a clean system, 
the correlation length grows as ξ ∝ (φj − φm)−ν, then the transition to the jammed state varies with obstacle den-
sity according to φ φ φ∝ − ν( )c

j
j m

2 . In Fig. 3, φ φ∝c
j

m, implying that ν = 1/2, consistent with the exponent ν = 1/2 
proposed for jamming in refs.20,21, as well as with simulation measurements giving ν in the range 0.6 to 0.7 for 
two-dimensional bidisperse disks6,8. The exponent we find is also in agreement with that observed for the shift in 
the jamming point in bidisperse disks on random pinning arrays22. Studies of bidisperse disk jamming with dilute 
obstacles very near φj also show that φj decreases linearly with obstacle density, giving ν = 1/223.

Previous simulations of bidisperse disks of radius Rs = 0.5 and Rl = 0.7 flowing through a periodic array of obsta-
cles with radius Rs = 0.5 showed that clogging is strongly enhanced when .l 2 35obs

24. This is because in order for a 
pair of disks, one large and one small, to fit between two obstacles, the lattice constant a of the obstacle array must be 

Figure 1. Clogging in obstacle arrays. Images of (a,d) initial, (b,e) transient flowing, and (c,f) final clogged state 
for mobile disks (dark blue open circles) driven in the positive x direction through obstacles (red filled circles) 
in a sample with obstacle density φobs = 0.175 and disk density (a–c) φm = 0.2186 and (d–f) φm = 0.436. Green 
lines in (b,e) indicate the disk trajectories over a fixed time period. The disks are initially in a flowing state and 
evolve into a phase-separated clogged state. The dense regions have a local disk density of φloc = 0.84.



www.nature.com/scientificreports/

3ScientiFic REPORts |  (2018) 8:10252  | DOI:10.1038/s41598-018-28256-6

at least large enough to accommodate the size of the obstacle itself plus the size of the two disks, 
a ≥ 2Rs + 2Rs + 2Rl = 2.4. In our monodisperse disk system, the obstacles are placed randomly, but one can obtain an 
estimate of the lobs for the onset of clogging by considering the circular holes in the obstacle array25. If we construct a 
circle that just touches any three disks and/or obstacles, this circle is defined to be a hole when it does not overlap any 
disks. For a pair of disks to pass between two obstacles, the obstacle spacing must once again accommodate the size 
of the obstacle itself plus the size of the two disks, ≥ = + + = .l l R R R2 2 2 3 0obs obs

c
d d d . This spacing can be 

achieved by placing the obstacles such that circular holes of size Rd can form on all sides of the hole on average, giv-
ing an effective obstacle radius of 3Rd and a critical obstacle density of φ π= = .(1/6) ( /(2 3 )) 0 15obs

c . Below φobs
c , 

the holes percolate and the disks can flow, while above obs
cφ , not enough holes are available to permit steady state free 

flow and a clogged state forms. In Fig. 3, the onset of clogging, 0 15c
cφ ≈ . , is close to obs

cφ . When 0 15m φ . , φc
c is no 

longer constant but decreases with decreasing φm. At these low disk densities, mobile disks are trapped inde-
pendently, so at least one additional obstacle must be added for every additional mobile disk, giving c

c
mφ φ∝ .

Transient velocities near the clogging and jamming transitions. In Fig. 4a we show representative 
time series of the average velocity V per mobile disk in the clogging regime at φm = 0.234 for φobs ranging from 
φobs = 0.087 to 0.175. At low obstacle densities, the disks reach a steady state flow after a very short transient time 
τ. As φobs increases, τ increases, showing a divergence at the critical obstacle density φc

c where clogging first 
occurs, while for obs c

cφ φ> , τ decreases with increasing φobs and the disks reach a completely clogged state with 
V = 0. We fit τ∝ − +V t A t V( ) exp( / ) 0, as indicated by the dashed lines in Fig. 4(a), and plot the resulting values 
of τ in Fig. 5a as a function of φobs for φm = 0.234 to 0.349. In each case, τ diverges near φobs = 0.15. We fit this 
divergence for φ φ>obs c

c to a power law, τ φ φ∝ − γ( )obs c
c , as shown in the inset of Fig. 5b for φm = 0.234, where 

γ = −1.29 ± 0.1. The plot of γ versus φm in the main panel of Fig. 5(b) indicates that γ has a constant value in the 
range −1.25 to −1.35. The transient time behavior is similar to that found for the diverging time scales that 
appear near the irreversible-reversible transition in systems exhibiting random organization26–28 and near the 
depinning transition for colloids29 and vortices30,31 driven over random pinning arrays. The power law exponents 
are also close to the value γ = −1.295 expected for the universality class of two-dimensional directed 

Figure 2. Jamming in obstacle arrays under increasing obstacle density in a sample with φm = 0.785. The 
randomly placed obstacles prevent the monodisperse disks from forming a state with crystalline ordering. 
(a,c,e) Mobile disks (dark blue open circles) and obstacles (red filled circles). (b,d,f) Corresponding disk 
trajectories over a fixed time period (green lines) and obstacle locations (red filled circles), with the mobile disks 
omitted for clarity. (a,b) At an obstacle density of φobs = 0.043, we find steady state flow. (c,d) At φobs = 0.065 the 
steady state flow is reduced but still present. (e,f) At φobs = 0.0872, the system jams. The jammed state is much 
more uniform in density than the clogged state, and jamming occurs rapidly with almost no transient flow 
above a critical obstacle density φc

j.
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Figure 3. Clogging-jamming phase diagram. The heat map of the disk velocity V0 after 106 simulation time steps 
as a function of obstacle density φobs vs disk density φm. Yellow indicates high V0 and blue indicates zero V0. The 
white region at the upper right is above the density φ π= ≈ ./2 3 0 9069tot  at which the disks would form a 
hexagonal solid, and thus lies outside the range of our model. Clogging occurs for φm < 0.67, and the critical 
obstacle density for clogging φ ≈ .0 15c

c , is nearly independent of φm. Jamming occurs for φm > 0.67, as indicated 
by the red vertical dashed line, and φc

j, the critical obstacle density for jamming, decreases linearly with increasing 
φm, ranging from φ. > >0 15 0c

j . The dots along φm = 0.234 indicate the values of φobs shown in the time series of 
Fig. 4a, while the dots along φm = 0.785 indicate the values of φobs shown in the time series of Fig. 4b.

Figure 4. Transient times for clogging and jamming. (a) The average velocity V per mobile disk vs time in 
simulation time steps for samples with mobile disk density φm = 0.234 at varied obstacle density φobs = 0.087, 
0.109, 0.131, 0.153, and 0.175, from top to bottom. Dashed lines indicate fits to τ∝ − +V A t Vexp( / ) 0. The 
disks reach a clogged state for φobs > 0.15. (b) V vs time for samples with φm = 0.785 in the jamming regime for 
φobs = 0.022, 0.044, 0.065, and 0.087, from top to bottom. The transient times are very short.
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percolation32, and we find similar values of γ for φm < 0.67 throughout the clogging regime. Directed percolation 
is often used to describe nonequilibrium absorbing phase transitions32, and in our case the steady state flow cor-
responds to a fluctuating state, while the clogged state is the non-fluctuating or absorbed state.

In the jamming regime the transient times are much shorter, as shown by the plot of V(t) in Fig. 4b for 
φm = 0.785 at φobs = 0.022 to 0.087. In Fig. 5c, τ versus φobs in the range φm = 0.785 to 0.872 has a value that is an 
average of 20 times smaller than in the clogging regime from Fig. 5a. The peak in τ shifts to lower φobs with 
increasing φm, reflecting the behavior of the critical jamming density φc

j. By fitting the curves in Fig. 5c to 
τ φ φ∝ − γ( )obs c

j , as demonstrated in the inset of Fig. 5d for φm = 0.872, we obtain γ ≈ −0.66, as shown in the plot 
of γ versus φm in the main panel of Fig. 5d. This indicates that there is a pronounced difference in the dynamics of 
the jamming regime compared to the clogging regime.

In Fig. 6 we show a heat map of the transient time τ obtained by fitting τ= − +V t A t V( ) exp( / ) 0. The tran-
sient times become large near the crossover from flowing to clogging for φm < 0.67, while in the jamming regime 
for φm > 0.67, the transient times are strongly reduced. This provides further evidence that in the clogging regime 
it is necessary for the system to organize over time into a clogged state, gradually forming phase-separated regions 

Figure 5. Transient times for clogging and jamming. (a) Transient times τ vs φobs obtained from V(t) curves 
such as those shown in Fig. 4a by fitting τ∝ − +V A t Vexp( / ) 0 for φm = 0.234 to 0.349, from top to bottom. 
There is a divergence in τ near the clogging density of φ = .0 15c

c . (b) The value of the exponent γ vs φm obtained 
by fitting the curves in a to ( )obs c

cτ φ φ∝ − γ. Inset: τ vs obs c
cφ φ−  at φm = 0.234. The pink line indicates a power 

law fit with γ = −1.29 ± 0.1. (c) τ vs φobs obtained from the V(t) curves such as those shown in Fig. 4b for 
φm = 0.785 to 0.872, from top to bottom. The transient times are much shorter than those in the clogging regime 
in panel (a). (d) Exponent γ vs φm obtained by fitting the curves in (c) to ( )obs c

jτ φ φ∝ − γ. Inset: τ vs obs c
jφ φ−  

at φm = 0.872. The pink line indicates a power law fit with γ = −0.66.
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of high and low density as illustrated in Fig. 1. In contrast, the jammed system has strong spatial correlations, and 
once the correlation length associated with φj is larger than the distance lobs between defects, very few disk rear-
rangements are needed to bring the system into a stationary, nonflowing state.

Figure 6. Transient time behavior. The heat map of the transient times τ obtained from fitting 
τ= − +V t A t V( ) exp( / ) 0 as a function of φobs vs φm. Yellow indicates large τ and blue indicates small τ. The 

dark dashed line is a guide to the eye marking the crossover from a flowing state to a clogged state, while the 
white dashed line indicates the transition from a flowing state to a jammed state. The white region is above the 
maximum density φ π= /2 3tot  of our model. The dots along φm = 0.234 indicate the values of φobs shown in 
the time series of Fig. 4a, while the dots along φm = 0.785 indicate the values of φobs shown in the time series of 
Fig. 4b. The system must organize into a clogged state, giving large transient times in the clogging regime, but 
can quickly enter a jammed state, giving small transient times in the jamming regime.

Figure 7. Transient times and critical exponents across the clogging to jamming transition. (a) The location of the 
transition from a flowing state to a clogged or jammed state, defined as points for which V0 = 0.01, as a function of 
φobs vs φm. The dashed line separates clogged states at low φm from jammed states at high φm. (b) The transient time 
τ at the flowing to nonflowing transition point vs φm. (c) The transient exponent γ extracted from the nonflowing 
side of the transition vs φm. There is a clear crossover from clogging to jamming. In the clogging regime, γ ≈ −1.29, 
but in the jamming regime, γ ≈ −0.66, indicating that the dynamics of clogging differ from those of jamming.



www.nature.com/scientificreports/

7ScientiFic REPORts |  (2018) 8:10252  | DOI:10.1038/s41598-018-28256-6

In Fig. 7a we show the transition from the flowing to the clogged or jammed state as a function of φobs versus 
φm by identifying the points from Fig. 3 for which V = 0.01. Figure 7b shows the transient times τ along this 
transition line, and in Fig. 7c we plot the transient exponent γ. The dashed vertical line at φm = 0.67 indicates a 
transition from clogging to jamming behavior, correlated with a change from γ ≈ −1.29 in the clogging regime 
to γ ≈ −0.66 in the jamming regime, as well as with a drop in φobs and τ. The point φm = 0.67 matches the density 
at which 2D continuum percolation of disks is expected to occur. We find a third value of γ for φm < 0.07 in a 
density regime where the value of φobs at which a clogged state appears decreases with decreasing φm. This regime 
is dominated by the trapping of single disks rather than collective clogging dynamics.

Local disk densities in clogged and jammed states. The clogged and jammed systems can also be 
distinguished by examining the local disk density φloc measured in areas 6Rd × 6Rd in size. In Fig. 8a we plot the 
local density distribution P(φloc) averaged over ten realizations of the final clogged state for a system with φm = 0.5 
and φobs = 0.175. As shown in the inset of Fig. 8a, the disks phase separate into low density regions associated with 
the peak at φloc = 0.1 and high density regions which produce a second peak at φloc = 0.85. The local density of the 
dense regions is lower than the value of φloc = 0.9069 for a dense ordered hexagonal disk arrangement due to the 
considerable disorder introduced in the packing by the randomly placed obstacles. In Fig. 8b, P(φloc) for a system 
with φm = 0.8 and φobs = 0.06 that reaches a jammed state has a single peak near φloc = 0.9, reflecting the uniform 
disk density at jamming that is illustrated in the inset of Fig. 8(b).

Discussion
Our results suggest that clogging and jamming processes have different dynamics. Clogging in the presence of 
random obstacles has signatures of an absorbing transition falling in a directed percolation universality class, 
and its dynamics are controlled by the average spacing of the obstacles. In the jamming that occurs for higher 
φtot, the dynamics are controlled by the growing correlation length associated with φj, the jamming density of an 
obstacle-free system. These results show that jamming and clogging in obstacles are indeed different phenomena. 
Jamming is associated with an equilibrium critical point, the formation of a homogeneous rigid state, and short 
transient times to reach this state, while clogging is a nonequilibrium dynamical phenomenon in which the sys-
tem evolves over an extended time into a strongly spatially heterogeneous state. Our results have implications for 
flow though heterogeneous media33, erosion34, depinning transitions in particle assemblies35, and active matter in 
disordered environments36,37. Experimentally our results could be tested using colloidal particles at low flow rates 
to reduce hydrodynamic effects. It would also be interesting to examine the effects of adding frictional contacts 
between the disks, since these can change the characteristics of the jamming transition38,39, or to replace the disks 
by elongated particles40 or chains41,42.

Methods
Numerical simulation details. We conduct simulations of nonoverlapping disks and obstacles confined to 
a two-dimensional plane. The system size is L × L with L = 60, and we use periodic boundary conditions in both 
the x and y directions. We introduce Nm mobile disks of radius Rd = 0.5 along with Nobs obstacles represented by 
disks of radius Rd that are not allowed to move. The area coverage of the mobile disks is φ π= N R L/m m d

2 2, the area 
coverage of the obstacles is φ π= N R L/obs obs d

2 2, and the total area coverage is φtot = φm + φobs.
The disk dynamics are given by the overdamped equation of motion

Figure 8. Local density distributions in clogged and jammed systems. (a) The local density distribution P(φloc) 
averaged over 10 realizations for a system with φm = 0.5 and φobs = 0.175 that reaches a clogged state in which 
the local density is bimodally distributed. Inset: Image of a clogged configuration from one of the realizations, 
showing the mobile disks (dark blue open circles) trapped by the obstacles (red filled circles). (b) P(φloc) 
averaged over ten realizations for a jammed system with φm = 0.8 and φobs = 0.06 shows a single peak at φtot. 
Inset: Image of a jammed disordered configuration from one of the realizations.
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η
∆
∆

= + +
t
r F F F1

(1)
i

pp
i i

dobs

where η = 1 is the viscosity. The interaction between two disks at ri and rj is a short range harmonic repulsion, 
= − Θ − ˆk r R r RF r( 2 ) ( 2 )dd

ij
ij d ij d ij, where rij = |ri − rj|, = −ˆ rr r r( )/ij i j ij, and Θ is the Heaviside step function. We 

set k = 200, which is large enough that overlap between disks does not exceed 0.01Rd, placing us in the hard disk 
limit. The interactions with mobile disks are given by = ∑ ≠F Fpp

i
j i
N

dd
ijp , while the interactions with obstacles are 

given by = ∑F Fi
j
N

dd
ij

obs
ps . We apply a uniform driving force = ˆFF xd d  to all mobile disks, with Fd = 0.5. Distances 

are measured in simulation units l0 and forces are measured in simulation units f0 so that k is in units of f0/l0 and 
the unit of simulation time is t0 = ηl0/f0. We initialize the system by placing Nm + Nobs disks of reduced radius in 
randomly chosen nonoverlapping positions, and then gradually expanding the radii to size Rd while allowing all 
disks to move. This produces a randomized packing of homogeneous density with no internal tensions. We then 
randomly assign Nobs of the disks to be obstacles, and apply an external driving force. After a fixed simulation time 
of 1 × 106 simulation time steps, we determine whether the system has reached a clogged or jammed state based 
on whether the average disk velocity V has dropped to zero.
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