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Pretreatment prediction of 
pathologic complete response to 
neoadjuvant chemotherapy in 
breast cancer: Perfusion metrics of 
dynamic contrast enhanced MRI
Jeongmin Lee, Sung Hun Kim & Bong Joo Kang  

The purpose of this study was to investigate imaging parameters predicting pathologic complete 
response (pCR) in pretreatment dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) 
in breast cancer patients who were treated with neoadjuvant chemotherapy (NAC). A total of 74 
patients who received NAC followed by surgery were retrospectively reviewed. All patients underwent 
breast MRI before NAC. Perfusion parameters including Ktrans, Kep and Ve of tumor were measured 
three-dimensionally. These perfusion parameters of background parenchyma of contralateral breasts 
were analyzed two-dimensionally. Receiver-operating characteristic (ROC) analysis and multivariable 
logistic regression analysis were performed to compare the ability of perfusion parameters to predict 
pCR. Of 74 patients, 13 achieved pCR in final pathology. The fiftieth percentile and skewness of each 
perfusion parameter – Ktrans, Kep, and Ve of tumor were associated with pCR. Perfusion parameters 
of contralateral breast parenchyma in 2D analysis also showed predictive ability for pCR. The model 
combining perfusion parameters of contralateral breast background parenchyma and those of the 
tumor had higher predictive value than each single parameter. Thus, perfusion parameters of tumor, 
background parenchyma of contralateral breast and their combinations in pretreatment breast MRI 
allow early prediction for pCR of breast cancer.

Locally advanced breast cancer is defined as breast cancer with large tumor size (>2 cm), regional lymph node 
involvement, or direct invasion of the skin or underlying chest wall1. In locally advanced breast cancer, neo-
adjuvant chemotherapy (NAC) has been proposed as the standard therapy2,3, because there is no difference in 
disease-free survival (DFS) or overall survival (OS) compared with adjuvant chemotherapy, and since the rate of 
breast conserving surgery can be increased4.

Recently, down staging of cancer and achieving pathologic complete response (pCR) after completion 
of NAC have emerged as challenging goals in locally advanced breast cancer, because pCR may be associated 
with DFS and OS5. Many studies have sought to identify predictive factors of pCR in breast cancer, including 
clinico-pathological factors and imaging parameters.

In patients who plan to receive NAC, pretreatment breast magnetic resonance imaging (MRI) is being increas-
ingly performed, because of its high sensitivity and accuracy in detection of malignancy and clinical staging, 
respectively6,7. Morphologic features, such as tumor size and enhancement pattern, and functional parameters 
including perfusion parameters obtained from dynamic contrast enhanced MRI (DCE-MRI)8–10, and apparent 
diffusion cofficient (ADC) values from diffusion weighted imaging have been analyzed to predict pCR11.

Non-tumor factors, such as breast parenchymal enhancement (BPE) as well as tumor parameters, have been 
studied to investigate the correlation of tumor response after NAC. In these studies, in which either qualita-
tive or quantitative analyses of BPE on pretreatment MRI were done, higher BPE was associated with poorer 
prognosis12,13.
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Most previous studies have focused on changes in imaging parameters before and after treatment. Although 
it is important to know such changes, identifying the factor that can predict pCR with pretreatment images will 
truly allow early prediction of pCR. Early and accurate prediction of tumor response would enable proper choice 
of treatment regimen and proper operative planning by the surgeon.

We investigated imaging parameters for early prediction of pCR with pretreatment DCE-MRI, focusing on 
tumor perfusion parameters and background parenchymal enhancement of contralateral breast parenchyma.

Results
Patients. A total of 74 breast cancer patients who underwent pretreatment DCE-MRI with surgery after 
NAC were included. After completion of NAC, 22 patients underwent breast conservative surgery (BCS) and 52 
patients underwent mastectomy. Immunohistochemical staining of final surgical specimens revealed luminal 
type in 47 cases, HER-enriched type in 14 cases, and triple-negative type in 13 cases.

Thirteen (17.5%) of these 74 patients achieved pCR based on specimens obtained from surgery after NAC. 
Of these 13 patients, seven were confirmed to be luminal type while six as HER2+ type. There was no triple 
negative type. Cancer staging was classified according to AJCC 7th. Stage 0 was the most common (nine of 13 
patients). The remaining four patients had lymphovascular invasion in final pathology. They were classified as 
stage I (n = 1), II (n = 2), and III (n = 1) (Table 1).

Predictive ability of perfusion parameters. Tumor and background parenchyma of contralateral 
breast. Each perfusion parameter of DCE-MRI in tumor and background parenchyma of contralateral breast 
(BPCL) did not show high predictive ability for pCR based on receiver operating characteristic (ROC) curve analy-
sis (AUC < 0.7, 0.449 to 0.683) (Table 2). However, mean Ktrans value of BPCL (AUC = 0.683) had relatively better 
predictive ability than other single perfusion parameters.

Combination of parameters from tumor and background parenchyma of contralateral breast. Parameters with rel-
atively high AUC values in 3D histogram analysis were extracted, including 50th percentile values and skewness 
of Ktrans, Kep, and Ve values. These parameters were combined with perfusion parameters of BPCL.

The model combining perfusion parameters of BPCL and those of tumor showed higher predictive value than 
each single parameter. The combination of Ve of BPCL with 50th percentile and the skewness of Ve in tumor 
had the highest predictive power for pCR (AUC = 0.807, p = 0.002). The AUC value of a combination of Ktrans 
of BPCL and skewness of Ktrans in tumor was 0.760 (p = 0.003), and that of a combination of all three parame-
ters – Ktrans of BPCL, 50th percentile Ktrans in tumor, and skewness of Ktrans in tumor – was 0.757 (p = 0.004). 
Those showed higher predictive ability for pCR than each single parameter. Other combinations of parameters 
also showed high predictive power with AUC > 0.7, although they were not statistically higher than each single 
parameters. These included a combination of Ktrans of BPCL and 50th percentile Ktrans of tumor (AUC = 0.731, 
p = 0.092), and a combination of Ve of BPCL and skewness of Ve in (AUC = 0.718, p = 0.061) (Table 3).

Univariate and multivariable logistic regression analyses were performed to investigate the correlation 
between MRI perfusion parameters and pCR. All individual perfusion parameters were cateogrized as 0 or 1, 
based on optimal cutoff values obtained through ROC analysis. Combination models were scored by the sum 
of categorized single perfusion parameters (Table 4). In multivariable logistic regression analysis, odds ratio 
(OR) of each single perfusion parameter was not associated with pCR, except Ktrans of BPCL (OR = 0.01, 95% 
CI: < 0.001–0.55, p = 0.023) (Table 5). However, combination models showed much higher association with pCR 
than single parameters, with higher OR and statistical significance. The model with a combination of Ktrans of 
BPCL and skewness of Ktrans in tumor showed the highest OR (5.98, 95% CI: 1.89–18.97, p = 0.002). The model 

Total (n = 74)

CR (n = 13) Non-CR (n = 61)

Age

   Median (range) 49.0 (37.0–66.0) 45.0 (25.0–67.0)

Subtype

   luminal A, B 7 40

   Her2+ 6 8

   Triple negative — 13

Pathological TNM

   0 9 —

   I 1 21

   II 2 24

   III 1 16

Surgery type

   Breast conservative surgery (BCS) 5 17

   Mastectomy 8 44

Table 1. Patient demographics.
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with a combination of all three parameters of Ve also showed a high OR (5.26, 95% CI: 1.89–14.64, p = 0.002) 
(Table 6).

Discussion
In locally advanced breast cancer, NAC has been suggested as a means to improve prognosis. Patients who 
acquired pCR after NAC can expect better DFS or OS compared to patients with non-complete response14. Many 
studies have investigated imaging parameters of MRI with the aim to predict pCR in breast cancer patients who 
undergo NAC. Using conventional breast MRI, initial tumor size, tumor size reduction, and ADC value have been 
suggested as predictive factors of pCR in pre- and post-treatment MRI, after four cycles of NAC15.

Cut-off 
value*

non-CR 
(n = 61)

CR 
(n = 13) Sensitivity (99.8% CI**) Specificity (99.8% CI**) AUC (99.8% CI**)

2D analysis of BPCL

Ktrans ≥0.03 16 8 0.615 (0.190–0.940) 0.738 (0.560–0.915) 0.683 (0.425–0.941)

Kep ≥0.21 12 6 0.462 (0.025–0.795) 0.803 (0.643–0.964) 0.627 (0.331–0.924)

Ve ≥0.20 11 6 0.462 (0.025–0.795) 0.820 (0.664–0.975) 0.629 (0.332–0.925)

3D histogram analysis of tumor

Ktrans

  25th perc ≥0.11 29 9 0.692 (0.288–1.000) 0.525 (0.323–0.726) 0.610 (0.335–0.885)

  50th perc ≥0.22 24 9 0.692 (0.288–1.000) 0.607 (0.409–0.804) 0.624 (0.305–0.943)

  75th perc ≥0.34 19 9 0.692 (0.288–1.000) 0.689 (0.501–0.876) 0.612 (0.285–0.938)

  mean ≥0.24 23 9 0.692 (0.288–1.000) 0.623 (0.427–0.819) 0.605 (0.287–0.924)

  kurtosis ≤−0.92 28 4 0.308 (0.000–0.616) 0.541 (0.340–0.742) 0.502 (0.235–0.769)

  skewness ≤0.52 38 12 0.923 (0.690–1.000) 0.377 (0.181–0.573) 0.647 (0.388–0.905)

Kep

  25th perc ≥0.14 50 13 1.000 (1.000–1.000) 0.180 (0.025–0.336) 0.546 (0.267–0.825)

  50th perc ≥0.51 22 8 0.615 (0.190–0.940) 0.639 (0.445–0.833) 0.575 (0.257–0.893)

  75th perc ≥0.94 9 5 0.385 (0.000–0.710) 0.852 (0.709–0.996) 0.571 (0.241–0.902)

  mean ≥0.55 24 8 0.615 (0.190–0.940) 0.607 (0.409–0.804) 0.574 (0.250–0.897)

  kurtosis ≥4.53 2 2 0.154 (0.000–0.395) 0.967 (0.895–1.000) 0.508 (0.212–0.804)

  skewness <0.82 41 10 0.769 (0.400–1.000) 0.328 (0.138–0.518) 0.535 (0.267–0.802)

Ve

  25th perc ≤0.43 31 9 0.692 (0.288–1.000) 0.492 (0.290–0.694) 0.472 (0.243–0.702)

  50th perc ≤0.52 28 9 0.692 (0.288–1.000) 0.541 (0.340–0.742) 0.487 (0.236–0.738)

  75th perc ≤0.61 30 8 0.615 (0.190–0.940) 0.508 (0.306–0.710) 0.484 (0.223–0.745)

  mean ≤0.53 29 9 0.692 (0.288–1.000) 0.525 (0.323–0.726) 0.494 (0.244–0.745)

  kurtosis ≤0.28 40 6 0.462 (0.025–0.795) 0.344 (0.152–0.536) 0.449 (0.183–0.715)

  skewness ≤−0.10 23 9 0.692 (0.288–1.000) 0.623 (0.427–0.819) 0.641 (0.375–0.907)

Table 2. Diagnostic performance of perfusion parameters from DCE-MRI to predict pathologic complete response. 
*Optimal cut off point was obtained from Youden index on ROC curve perc, percentile. **Confidence interval use a 
Bonferroni corrected (1–0.05/30) confidence level.

Combination of parameters

AUC (99.8% CI**) Bonferroni-corrected p value2D analysis 3D histogram analysis

Ktrans
Background 
parenchyma of 
contralateral breast

50percentile 0.731 (0.485–0.978) 0.092

skewness 0.760 (0.549–0.972) 0.003

50percentile + skewness 0.757 (0.543–0.970) 0.004

Kep
Background 
parenchyma of 
contralateral breast

50percentile 0.626 (0.329–0.922) >0.999

skewness 0.633 (0.339–0.927) >0.999

50percentile + skewness 0.631 (0.336–0.925) >0.999

Ve
Background 
parenchyma of 
contralateral beast

50percentile 0.628 (0.328–0.928) >0.999

skewness 0.718 (0.495–0.940) 0.061

50percentile + skewness 0.807 (0.563–1.000) 0.002

Table 3. AUC valus and p value of the model combining perfusion parameters of contralateral breast 
background parenchyma and those of the tumor. **Confidence interval use a Bonferroni corrected (1–0.05/30) 
confidence level.
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However, conventional breast MRI cannot reflect neoangiogenesis of the tumor, which is one of the most 
important prognostic factors of breast cancer. Tumor neoangiogenesis reflects dissemination of malignant cells 
as well as the level of contrast enhancement. Imaging parameters capable of revealing vascular kinetics of tumors 
are important to monitor effects of chemotherapy and predict tumor prognosis16,17. DCE-MRI allows quantitative 
measurements of kinetic parameters related to perfusion and permeability of tumor. Studies using DCE-MRI 
have investigated imaging parameters with the goal to predict tumor response and prognosis. Martin D. Pickles 
et al. have suggested that patients with high perfusion and vascular permeability in pretreatment DCE-MRI are 
significantly less likely to have long-term DFS and OS as a result of neovascularization18. In a subsequent study, 
the authors also suggested that quantification of perfusion parameters could provide information to distinguish 
responders from non-responders before finishing the treatment, by demonstrating that early treatment change 
was possible for non-responders19. However, these studies focused on changes of MRI imaging parameters before 
and after NAC as a means to predict pCR. Post-treatment MRI must be performed for prediction, which is expen-
sive. In addition, the predictive factors presented in these studies could not be considered as true “predictive” 
factors because they were determined as predictors after at least one cycle of chemotherapy.

Our data demonstrate that multiple perfusion parameters obtained from pretreatment DCE-MRI can pre-
dict pCR, especially when single parameters are combined. Perfusion parameter of BPCL was explored using 
2D analysis and tumor perfusion parameters were assessed by 3D analysis. Perfusion parameter Ktrans of BPCL 
displayed the highest AUC (0.683) in 2D analysis, while the skewness of Ktrans displayed the highest AUC value 
(0.647) in 3D analysis of tumor. The AUC value of these combined perfusion parameters had a higher predictive 
ablity for pCR than each single parameter by ROC analysis. Multivariable logistic regression analysis of perfusion 
parameters that were combined after categorization revealed much higher association with pCR than each single 
perfusion parameter showing increased OR and statistical significance.

The present results indicate that perfusion parameters of BPCL could be a predictive factor for pCR. The rela-
tionship between BPE and tumor response has already been studied with a focus on qualitative or quantitative 
BPE reduction before and after NAC20,21. Higher BPCL is associated with worse prognosis, such as early tumor 
recurrence12,22. However, since these studies involved qualitative categorization of BPE rather than quantitative 
measurement, there might be a limit to use of BPE as an objective index for predicting tumor response. We 

Combining model

Scoring

0 1 2 3

Ktrans

BPCL & 50th percentile <0.03 & <0.22 ≥0.03† or ≥0.22† ≥0.03† & ≥0.22† —

BPCL & skewness <0.03 & >0.52 ≥0.03† or ≤0.52† ≥0.03† & ≤0.52† —

BPCL & 50 percentile & 
skewness <0.03 & <0.22 & >0.52 One of  

≥0.03† or ≥0.22† or ≤0.52†
Two of  
≥0.03† or ≥0.22† or ≤0.52†

≥0.03† & ≥0.22† 
& ≤0.52†

Kep

B   PCL & 50th percentile <0.21 & <0.51 ≥0.21† or ≥0.51† ≥0.21† & ≥0.51† —

BPCL & skewness <0.21 & ≥0.82 ≥0.21† or <0.82† ≥0.21† & <0.82† —

BPCL & 50 percentile & 
skewness <0.21 & <0.51 & ≥0.82 One of  

≥0.21† † or ≥0.51† or <0.82†
Two of  
≥0.21† † or ≥0.51† or <0.82†

≥0.21†† & ≥0.51† 
&<0.82†

Ve

BPCL & 50th percentile <0.20 & >0.52 ≥0.20† or ≤0.52† ≥0.20† & ≤0.52† —

BPCL & skewness <0.20 & >−0.10 ≥0.20† or ≤−0.10† ≥0.20† & ≤−0.10† —

BPCL & 50th percentile & 
skewness

<0.20 & >0.52 & 
>−0.10

One of  
≥0.20† or ≤0.52† or ≤−0.10†

Two of  
≥0.20† or ≤0.52† or ≤−0.10†

≥0.20† & ≤0.52† 
& ≤−0.10†

Table 4. Scoring of model with a combination of perfusion parameters. †The optimal cut off point was obtained 
from Youden index on ROC curve.

crude odds ratio(95% CI) p value adjust odds ratio(95% CI) p value

2D analysis of perfusion parameters of BPCL

BPCL _Ktrans, ≥0.03 4.50 (1.28–15.78) 0.019 0.01 (<0.001–0.55) 0.023

BPCL _Kep, ≥0.21 3.50 (0.99–12.34) 0.051 0.21 (0.02–2.15) 0.188

BPCL _Ve, ≥0.20 3.90 (1.09–13.89) 0.036 1.11 (0.07–18.40) 0.945

3D analysis of perfusion parameters of tumor

Ktrans

  50perc, ≥0.22 3.47 (0.96–12.54) 0.058 0.68 (0.03–13.51) 0.797

  skewness, ≤0.52 7.26 (0.89–59.58) 0.065 0.00 (<0.001–0.51) 0.028

Kep

  50perc, ≥0.51 2.84 (0.83–9.74) 0.098 0.10 (0.01–1.14) 0.064

  skewness < 0.82 1.63 (0.40–6.57) 0.495 1.97 (0.14–28.50) 0.619

Ve

  50perc, ≤0.52 2.65 (0.74–9.55) 0.136 0.01 (<0.001–0.27) 0.008

  skewness, ≤−0.10 3.72 (1.03–13.46) 0.046 0.14 (0.01–1.28) 0.081

Table 5. Uni- and multivariable logistic regression of single perfusion parameters as categorical variables.
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used perfusion parameters derived from pretreatment DCE-MRI to investigate the relationship between tumor 
response and BPCL. Each single perfusion parameter of BPCL showed fair ability to predict pCR, with a higher 
predictive ability when tumor perfusion parameters are combined.

This study has some limitations. First, it was a retrospective study with a small number of patients. The num-
ber of patients with pCR was much smaller than that of patients with non-pCR. Therefore, our results might not 
be generalizable. Second, patients received pretreatment MRI regardless of their menstrual cycle, because our 
study was a retrospective study. This would not be a limitation in postmenopausal patients. However it could 
affect perfusion parameters of BPE in contralateral breast parenchyma in premenopausal patients. Third, we 
excluded bilateral breast cancer, because it would be difficult to measure perfusion parameters of the contralateral 
breast parenchyma.

We investigated the correlation between pretreatment MRI parameters and postoperative final pathology 
without long-term follow-up after surgery. Thus, DFS and OS, including early or late tumor recurrence which 
could be correlated with pCR after NAC, were not investigated. Additional study will be needed to investigate 
imaging parameters in pretreatment MRI to predict DFS and OS after NAC.

In conclusion, early predictive factors of pCR in breast cancer patients using pretreatment MRI only, were 
explored. Each single perfusion parameters of tumor and BPCL showed fair predictive power for pCR of breast 
cancer. However, the combination of both perfusion parameters of tumor and BPCL showed higher predictive 
power for pCR of breast cancer.

Material and Methods
Patients. This study was approved by the Institutional Review Board of Seoul St. Mary’s Hospital. It was 
performed in accordanace with procedures complied with HIPAA guidelines. The requirement for informed con-
sent was waived due to its retrospective nature. A total of 294 breast cancer patients who underwent DCE-MRI 
between February 2014 and May 2016 were included. Of them, 214 patients who were not candidates of NAC 
before surgery were excluded. Two patients were also excluded from the remaining 80 patients because they had 
not received breast surgery. Of the remaining 78 patients, DCE-MRI raw data for postprocessing analysis were 
lost for four patients. Finally, 74 patients were enrolled (Fig. 1).

NAC. All patients underwent pretreatment MRI before the first cycle of NAC. All 74 patients received 
anthracycline-based chemotherapy. Twenty-nine patients were treated with a combination of anthracycline and 
cyclophosphamide, of which seven underwent additional Herceptin use. Forty-five patients were treated with 
the combination of anthracycline and taxane, of which seven underwent additional Herceptin treatment. After 
completion of NAC, all patients underwent surgery including breast conserving surgery or total mastectomy.

Pathology. Pathologic complete response (pCR) was defined as the absence of any invasive component, or 
residual ductal carcinoma in situ (DCIS) component in the specimen obtained from surgery23,24. A non-pCR 
was defined as the presence of microscopic invasive tumor in the final pathology23. All pathological information 
including immunohistochemical staining was obtained from surgically obtained specimens. However, immu-
nohistochemical staining results were obtained from biopsy samples for pCR patients who did not even have a 
residual DCIS component in surgical specimen.

MRI. MRI examinations were performed for patients in prone position using a Magnetom Verio 3 T sys-
tem (Siemens Healthcare, Erlangen, Germany) and a dedicated eight-channel phase-array coil. Images were 
obtained using the following sequences: (1) axial turbo spin-echo T2-weighted imaging (T2WI) with TR/TE 
of 4530/93 msec, flip angle of 80°, field of view (FOV) 320 × 320 mm2, matrix size of 576 × 403, slice thickness 
of 4 mm, and acquisition time of 2 min 28 sec; (2) pre-contrast T1-weighted three-dimensional (3D) volumetric 
interpolated breath-hold examinations (3D VIBE) with TR/TE of 2.7/0.8 msec, FOV of 320 × 320 mm2, matrix 
size of 256 × 192, slice thickness of 2 mm with various flip angles (2°, 6°, 9°, 12°, 15°), and acquisition time of 2 min 
15 sec to determine tissue T1 relaxation time prior to the arrival of contrast agent; (3) dynamic contrast-enhanced 

Adjusted Odds ratio (95% CI) p-value

Combining model of Ktrans

BPCL and 50 percentile 3.13 (1.33–7.35) 0.009

BPCL and skewness 5.98 (1.89–18.97) 0.002

BPCL and 50 percentile and skewness 2.91 (1.40–6.03) 0.004

Combining model of Kep

BPCL and 50 percentile 2.56 (1.13–5.84) 0.025

BPCL and skewness 2.66 (0.95–7.48) 0.064

BPCL and 50 percentile and skewness 2.34 (1.10–4.98) 0.027

Combining model of Ve

BPCL and 50 percentile 4.82 (1.46–15.90) 0.010

BPCL and skewness 2.85 (1.25–6.48) 0.013

BPCL and 50 percentile and skewness 5.26 (1.89–14.64) 0.002

Table 6. Univariable logistic regression of combining model of perfusion parameters.
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axial T1-weighted imaging (T1WI) with fat suppression with TR/TE of 2.5/0.8 msec, flip angle of 10°, slice thick-
ness of 2.0 mm, and acquisition time of 5 min 30 sec (temporal resolution 6 sec) following an intravenous bolus 
injection of 0.1 mmol/kg gadobutol (Gadovist, Schering, Berlin, Germany) followed by a 20 ml saline flush; (4) 
delayed axialT1-weighted 3D VIBE with TR/TE of 4.4/1.7 msec, flip angle of 10°, slice thickness of 1.2 mm, FOV 
of 340 mm, and matrix size of 448 × 358 to evaluate the overall extent of tumor.

Figure 1. Patient inclusion diagram.

Figure 2. (a) Fat-saturated T1-weighted images with gadolinium enhancement in a patient with breast cancer 
at the mid-inner portion of the left breast. (b) Applying magic wand tool in post processing program (Olea 
Sphere, version 3.0) to extract and analyze the enhancing portion of the tumor in the same patient.

Figure 3. Applying a eliptical region of interest (ROI) in post processing program (Olea Sphere, version 3.0) to 
obtain perfusion parameter of background parenchyma of the contralateral breast.
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Imaging analysis. To evaluate perfusion parameters from DCE-MRI, a standard Tofts model was used. 
Parameters such as volume transfer rate (Ktrans [min−1]), volume of extravascular extracellular space (EES) per 
unit volume of tissue (Ve), and flux rate constant between EES and plasma (Kep, [min−1])25 were calculated using 
postprocessing software (Olea Sphere, version 3.0, Olea Medical, La Ciotat, France). In Olea Sphere, it was chosen 
to derive the arterial input function (AIF) from perfusion weighted image pixels selected in ascending aorta, and 
the AIF was calculated automatically. Analysis of perfusion parameter was performed for the tumor itself, and the 
background parenchyma of the breast on the contralateral side without tumor involvement.

Tumor. Perfusion parameters of the tumor were obtained by 3D histogram analysis. In the analysis, after the 
whole outline of tumor was drawn manually, magic wand, a semi-automated region-growing segmentation tool 
was used to find and analyze the enhancing portion of the tumor (Fig. 2a,b). The 25th, 50th, 75th percentile, mean 
value, and skewness and kurtosis of each Ktrans, Kep, and Ve were then obtained.

Background parenchyma of contralateral breast. Perfusion parameters of BPCL were also obtained by two- 
dimensional (2D) analysis. Mean values of Ktrans, Kep, and Ve were derived. These parameters were measured by 
drawing a eliptical region of interest (ROI) at the level showing the largest fibroglandular tissue without enhanc-
ing lesions, except for the skin and fat layer (Fig. 3).

Statistical analyses. To test the predictive ability of each single perfusion parameter for pCR based on 
DCE-MRI, ROC curve analysis was performed. Optimal cut-off values, sensitivities, and specificities of each 
parameter were obtained from the Youden index on the ROC curve.

A multivariate logistic regression model combining perfusion parameters of BPCL and those of the tumor 
were fitted and their performance was evaluated by area under the curve (AUC). Univariate and multivariate 
logistic regression models were used to calculate OR of converting perfusion parameters with optimal cutoff. 
Additionally, univariate logistic regression was perfomed to gauge the effect of combined perfusion parameters 
(Table 4). A Bonferroni correction was applied for multiple comparisons, with a correction factor derived from 
the number of perfusion parameters. For comparison of total 30 parameters – 21 parameters of each single per-
fusion parameters (Table 2) and 9 combining perfusion parameters (Table 3), critical p value was calculated as 
0.0017 from 0.05/30.

All statistical analyses were performed using SAS ver. 8.4 software (SAS Institute Inc., Cary, NC, USA). A p 
value < 0.05 was considered statistically significant.
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