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Lifestyle Factors, Colorectal Tumor 
Methylation, and Survival Among 
African Americans and European 
Americans
Evan L. Busch1,2, Joseph A. Galanko3, Robert S. Sandler3, Ajay Goel4 & Temitope O. Keku3

Differences in tumor characteristics might partially account for mortality disparities between 
African American (AA) and European American (EA) colorectal cancer patients. We evaluated effect 
modification by race for exposure and patient-outcomes associations with colorectal tumor methylation 
among 218 AA and 267 EA colorectal cancer cases from the population-based North Carolina Colon 
Cancer Study. Tumor methylation was assessed in CACNA1G, MLH1, NEUROG1, RUNX3, and SOCS1. 
We used logistic regression to assess whether associations between several lifestyle factors—intake 
of fruits, vegetables, folate, and non-steroidal anti-inflammatory drugs—and tumor methylation 
were modified by race. Proportional hazards models were used to evaluate whether race modified 
associations between tumor methylation and time to all-cause mortality. Greater fruit consumption 
was associated with greater odds of high NEUROG1 methylation among EA at methylation cut points of 
15–35% (maximum OR 3.44, 95% CI 1.66, 7.13) but not among AA. Higher folate intake was associated 
with lower odds of high CACNA1G methylation among EAs but not AAs. Tumor methylation was not 
associated with all-cause mortality for either group. Race might modify associations between lifestyle 
factors and colorectal tumor methylation, but in this sample did not appear to modify associations 
between tumor methylation and all-cause mortality.

Disparities in colorectal cancer (CRC) incidence and mortality between African Americans (AA) and European 
Americans (EA) have long been noted. Compared to EA, AA have greater age-adjusted CRC incidence per 100,000 
individuals (44 AA versus 38 EA) and greater age-adjusted CRC mortality per 100,000 individuals (19 AA versus 14 
EA)1. These disparities might not be fully explained by differences in screening rates or access to care2,3.

A possible contributor to the mortality difference is variation in the biology of the tumors developed by AA 
and EA. Whether the two sets of tumors have different genetic profiles is unclear. For example, some studies of 
microsatellite instability (MSI) in CRC tumors have found that, compared to EA, AA have greater incidence of 
high MSI tumors4–6, while another study reported lower AA incidence of high MSI tumors7.

Another possible source of CRC tumor variation is differences in epigenetic profiles. Lifestyle and dietary 
exposures such as fiber intake and smoking have been associated with CRC methylation in humans8,9, and expo-
sure to non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with CRC status of the CpG island 
methylator phenotype (CIMP)10. However, it is not clear whether associations between lifestyle and dietary expo-
sures with methylation markers are modified by race, nor whether differences in CRC methylation by race might 
contribute to survival differences.

We evaluated potential differences by race for two sets of associations: first, between several lifestyle fac-
tors—intake of fruits, vegetables, dietary folate, and NSAIDs—and CRC tumor methylation; and second, between 
tumor methylation and overall survival. Methylation of tumor tissue was assessed using five genes that have been 
associated with the CIMP phenotype: CACNA1G, MLH1, NEUROG1, RUNX3, and SOCS1. Hypermethylation of 
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MLH1 has been associated with development of CRC11, while methylation levels of the other markers have been 
shown to provide sharply-distinguished high- and low-methylation groups of CRC tumors12. We hypothesized 
that associations would be modified by race for both sets of associations. In analyzing the methylation data, we 
used cut point analyses13 to evaluate the etiologic and survivorship implications of different definitions of high 
versus low methylation for each marker.

Materials and Methods
Study Population. Participants were 485 colon adenocarcinoma patients (218 AA, 267 EA) enrolled in 
the North Carolina Colon Cancer Study (NCCCS)14,15 with successful measurement of at least one methylation 
marker in tumor tissue specimens. Briefly, NCCCS was a population-based case-control study with participants 
drawn from 33 counties in eastern and central North Carolina. Eligible cases were identified by a rapid ascer-
tainment system set up with the state cancer registry. They were between 40 and 80 years old at the time of 
enrollment, which began in October 1996 and ended in September 2000. NCCCS controls were excluded from 
the present analysis because methylation measurements were only performed in tumor tissue. NCCCS collected 
baseline questionnaire data, including dietary and medication information. The School of Medicine Institutional 
Review Board at the University of North Carolina at Chapel Hill approved the protocol, and all participants pro-
vided informed consent. All research activities were performed in accordance with the ethical standards of the 
institutional committee and comparable to the 1964 Helsinki declaration and its later amendments.

Tumor Methylation Measurements. Extraction of genomic DNA from the formalin-fixed, 
paraffin-embedded tumor tissue collected by NCCCS was described previously14. Using the Bisulfite 
Pyrosequencing process12,16,17, methylation of tumor tissue was assessed in the 5 CIMP markers: CACNA1G, 
MLH1, NEUROG1, RUNX3, and SOCS1. Briefly, the EZ Methylation Gold Kit (Zymo Research, Orange, CA) 
was used to modify DNA with sodium-bisulfite. Pyrosequencing was used to analyze the markers. In addition to 
modified DNA, the polymerase chain reaction included forward primers, biotinylated reverse primers, HotStar 
Taq polymerase, and water. The primers were as reported previously16. For each CIMP marker, the final methyl-
ation measurement was recorded as the continuous mean percentage of methylation for all CpG sites evaluated. 
None of the 5 markers was measured successfully in all 485 participants, thereby reducing the number of partici-
pants who could be included in models of any given marker, with the amount of loss varying by marker.

Covariates. Demographic variables included race (AA or EA), age (continuous), and sex (male or female). 
Lifestyle factors of interest were self-reported fruit consumption (g/day), vegetable consumption (g/day), folate 
intake (dietary mcg/day), and NSAID use (number NSAID pills taken/month over the 5 years before study 
enrollment). Each lifestyle variable was measured as continuous. To assess time to all-cause mortality, the Social 
Security Death Index was checked for deaths recorded as of 14 August 2010.

Statistical Analysis. Associations between lifestyle factors and tumor methylation were evaluated using 
logistic regression models. The independent variables were age, sex, and lifestyle variables. For analysis, lifestyle 
variables were dichotomized at the 75th percentile based on the distribution in the overall sample (EA and AA 
combined) and coded as higher intake versus lower intake. The cut point to dichotomize vegetable consumption 
was 267.5 g/day, fruit consumption was 212.8 g/day, folate intake was 332.2 dietary mcg/day, and 13.0 NSAIDs 
taken per month. The dependent variable in the model was dichotomous methylation marker status (high versus 
low). For each marker, we evaluated the impact of varying the definition of high versus low methylation by select-
ing a series of cut points covering the range of continuous methylation measurements. For any given cut point, 
we defined high methylation as methylation at or above the cut point and low methylation as methylation below 
the cut point. The selection of cut points for each marker was as follows (all values are percentages): CACNA1G, 
5, 10, 15, 20, 25, 30, 35; MLH1, 1, 2, 4, 6, 8, 10, 12, 14, 16; NEUROG1, 10, 15, 20, 25, 30, 35, 40, 45, 50; RUNX3, 3, 
6, 9, 12, 15, 18, 21; and SOCS1, 3, 6, 9, 12, 15, 18, 21.

Models were stratified by race. To evaluate possible interactions between race and lifestyle variables, we also ran 
logistic models using AA and EA participants combined. These models included the same independent variables as 
the stratified models as well as four interaction terms, one for every combination of race and each lifestyle variable.

In addition to the above models in which both lifestyle and methylation variables were dichotomous, we ran 
several sensitivity analyses. These included logistic models in which the lifestyle variables were continuous and 
methylation variables were dichotomous. We also ran two sets of linear regression models in which the depend-
ent variable was continuous methylation: one set in which the lifestyle variables were continuous, and one set in 
which the lifestyle variables were dichotomous. A further sensitivity analysis was dichotomizing each lifestyle 
variable at its median value in the overall sample, rather than dichotomizing at the 75th percentile.

Associations between each tumor methylation marker and time to all-cause mortality were evaluated using 
Cox proportional hazards models18. Independent variables were sex, age, lifestyle variables dichotomized at the 
75th percentile, and dichotomous methylation marker status. The outcome was time from diagnosis to all-cause 
mortality, censored at 5 years after diagnosis. For each methylation marker, a series of Cox models was run, one 
for each different cut point to define dichotomous methylation status. We also ran a Cox model for each marker 
using continuous methylation measurements. As a sensitivity analysis, additional models were run censoring at 
10 years after diagnosis.

All analyses described so far examined associations involving a single methylation marker. In addition, we 
created summary scores to assess methylation profiles across multiple markers. Each of the 5 continuous meth-
ylation markers was converted to a dichotomous variable (0 = low methylation, 1 = high methylation). For this 
purpose, the cut point chosen for each marker was the lowest cut point where associations between lifestyle fac-
tors and dichotomous methylation status were observed, or if no such pattern was observed, then we chose the 
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lowest cut point at which the magnitudes of associations between lifestyle factors and dichotomous methylation 
status diverged between AA and EA. The summary score cut point chosen for each marker was the following: 
CACNA1G, 15%; NEUROG1, 10%; MLH1, 2%; RUNX3, 9%; and SOCS1, 3%. We created two summary scores 
by adding up different combinations of dichotomous markers: all 5 markers (range: 0–5), and a selection of 3 
markers (CACNA1G, NEUROG1, and RUNX3; range: 0–3). We then evaluated associations between lifestyle fac-
tors and methylation summary scores, as well as associations between methylation summary scores and overall 
survival, using similar models as were run for single markers.

All modeling results were reported as point estimates and 95% confidence intervals. Models were not adjusted 
for multiple comparisons because the multiple models in a cut point analysis are not independent13,19. To handle 
missing data, all models were run as complete-case analyses. This meant that methylation summary scores had a 
missing value if the participant had missing data for any marker included in the score. Analyses were run using 
SAS 9.4 (SAS Institute, Cary, NC).

Data Availability. The data are stored in the Center for Gastrointestinal Biology and Disease at the University 
of North Carolina, Chapel Hill under the direction of author RSS. Investigators wishing to obtain the data can 
request setting up a Data Use Agreement by contacting RSS (robert_sandler@med.unc.edu).

Results
EA and AA distributions of lifestyle factors overlapped to a considerable extent (Table 1). The two groups had 
similar colorectal primary tumor methylation levels for each individual gene and for the methylation summary 
scores.

For associations between dichotomous lifestyle factors and CACNA1G methylation (Table 2), among AA, 
higher vegetable consumption was associated with greater odds of a high methylation tumor when high meth-
ylation was defined by a cut point of 15% (OR = 2.95, 95% CI 1.10, 7.94) but not at other cut points. Vegetable 
consumption and CACNA1G methylation were not associated among EA, and confidence intervals generally 
overlapped with those for the corresponding AA estimates. Folate intake was not associated with methylation 
among AA, but among EA, higher folate intake was associated with lower odds of a high methylation tumor when 
high methylation was defined by cut points ranging from 5–30%. Higher intake of NSAIDs among AA was asso-
ciated with greater odds of a high methylation tumor at a methylation cut point of 5% (OR = 0.42, 95% CI 0.18, 
0.97), but among EA we did not observe an association between NSAIDs intake and CACNA1G methylation. 
Fruits were not associated with CACNA1G methylation for either group.

For NEUROG1 methylation (Table 3), fruit consumption was associated with tumor methylation at a cut 
point of 40% (OR = 0.27, 95% CI 0.08, 0.94) for AA, while for EA, higher fruit consumption was associated with 
greater odds of a high methylation tumor at methylation cut points of 15–35%. At a methylation cut point of 30%, 
confidence intervals for EA (OR = 3.44, 95% CI 1.66, 7.13) and AA (OR = 0.67, 95% CI 0.29, 1.56) estimates did 
not overlap. For both groups, higher vegetable intake was associated (or nearly so) with greater odds of a high 
methylation tumor at a cut point of 50%, but there was no association at lower methylation cut points. Folate 
intake was not associated with NEUROG1 methylation among AA, but higher folate intake among EA was nearly 
associated with lower odds of a high methylation tumor at methylation cut points of 15–20%. NSAID use was not 
associated with methylation for either group.

Characteristic
African Americans 
(n = 218)

European Americans 
(n = 267)

Age, median (IQR) 63.5 (54.0, 71.0) 67.0 (59.0, 73.0)

Sex, n (%)

   Male 96 (44) 148 (55)

   Female 122 (56) 119 (45)

Lifestyle Factors, median (IQR)

   Fruit consumption (g/day) 139.0 (59.1, 233.4) 110.6 (53.5, 201.2)

   Vegetable consumption (g/day) 150.0 (108.6, 232.2) 207.8 (147.2, 276.8)

   Folate (mcg/day) 231.9 (173.4, 307.0) 259.1 (206.0, 334.9)

   NSAIDs (uses/month) 0.0 (0.0, 8.4) 0.0 (0.0, 18.3)

Tumor Gene Methylation (%), median (IQR)

   CACNA1G 3.9 (2.5, 10.6) 3.8 (2.5, 8.2)

   MLH1 1.7 (1.0, 3.6) 1.7 (1.0, 3.0)

   NEUROG1 20.4 (8.8, 33.7) 20.7 (8.0, 34.6)

   RUNX3 3.2 (2.1, 5.1) 3.5 (2.2, 6.5)

   SOCS1 2.8 (2.1, 3.9) 2.9 (2.1, 4.8)

   Methylation summary score, All markers (0–5) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0)

   Methylation summary score, CACNA1G, 
NEUROG1, RUNX3 (0–3) 1.0 (1.0, 1.0) 1.0 (0.0, 1.0)

Deaths within 5 years of diagnosis, n (%) 70 (32) 66 (25)

Table 1. Participant characteristics. IQR = interquartile range, NSAIDs = non-steroidal anti-inflammatory 
drugs.
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For SOCS1 (Table 4), fruit consumption was not associated with tumor methylation for either group. Folate 
intake was not generally associated with methylation for either group, except for higher folate intake being asso-
ciated with lower odds of high tumor methylation among EA at a methylation cut point of 3% (OR = 0.30, 95% 
CI 0.11, 0.80). NSAID use could not be evaluated for AA at several methylation cut points due to zero cells. 
For methylation cut points where NSAID use was estimable, AA use was not associated with methylation while 
higher EA use was associated with lower odds of high tumor methylation at cut points of 6% amd 9%. We did not 
observe an association between vegetable consumption and SOCS1 methylation for either group.

Group
CACNA1G 
Cut Point (%)

n (%) 
High

Fruits Vegetables Folate NSAIDs

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

AA (n = 190)

5 74 (39) 0.72 0.33, 1.60 1.07 0.46, 2.51 2.16 0.85, 5.52 0.42 0.18, 0.97

10 48 (25) 0.82 0.35, 1.93 1.54 0.64, 3.71 1.90 0.71, 5.08 0.66 0.27, 1.62

15 32 (17) 0.46 0.16, 1.31 2.95 1.10, 7.94 1.56 0.48, 5.03 0.96 0.36, 2.58

20 21 (11) 0.32 0.08, 1.20 2.61 0.79, 8.62 1.35 0.31, 5.77 1.11 0.35, 3.46

25 12 (6) 0.51 0.10, 2.50 2.99 0.71, 12.61 1.40 0.25, 7.79 2.02 0.54, 7.52

30 8 (4) 0.90 0.15, 5.33 4.43 0.83, 23.57 1.24 0.18, 8.51 4.01 0.87, 18.38

35 5 (3) 0.94 0.10, 9.14 7.78 0.88, 68.47 1.15 0.11, 12.05 6.18 0.84, 45.50

EA (n = 233)

5 88 (38) 1.43 0.69, 2.96 1.25 0.65, 2.39 0.30 0.14, 0.66 0.60 0.31, 1.15

10 52 (22) 0.97 0.42, 2.26 1.18 0.56, 2.48 0.39 0.16, 0.96 0.83 0.40, 1.74

15 43 (18) 1.18 0.48, 2.90 1.40 0.63, 3.12 0.24 0.08, 0.71 0.83 0.38, 1.85

20 31 (13) 1.10 0.38, 3.15 1.92 0.77, 4.78 0.13 0.03, 0.59 0.72 0.28, 1.87

25 29 (12) 1.18 0.41, 3.39 1.98 0.80, 4.95 0.12 0.03, 0.59 0.74 0.28, 1.93

30 24 (10) 1.42 0.49, 4.15 1.03 0.36, 2.97 0.19 0.04, 0.94 0.82 0.29, 2.27

35 16 (7) 1.42 0.40, 5.02 0.68 0.17, 2.65 0.16 0.02, 1.39 0.85 0.25, 2.86

Table 2. Associations between lifestyle factors and colorectal primary tumor methylation of CACNA1G 
by race. N (%) High = number (%) with CACNA1G methylation at or above the respective cut point. Each 
row represents 1 model with a dependent variable of dichotomous methylation status (high versus low) as 
defined by the given cut point and independent variables of age, sex, and lifestyle variables (fruits, vegetables, 
folate, NSAIDS). Lifestyle variables were dichotomized (high versus low) at the 75th percentile based on 
the distribution in the overall sample (AA and EA combined). AA = African Americans, EA = European 
Americans, NSAIDs = non-steroidal anti-inflammatory drugs.

Group
NEUROG1 
Cut Point (%)

n (%) 
High

Fruits Vegetables Folate NSAIDs

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

AA (n = 192)

10 140 (73) 1.28 0.52, 3.15 1.51 0.57, 4.03 0.86 0.30, 2.44 1.16 0.50, 2.73

15 115 (60) 0.95 0.44, 2.05 0.85 0.37, 1.92 1.24 0.50, 3.10 1.02 0.48, 2.14

20 98 (51) 1.12 0.52, 2.39 0.98 0.43, 2.20 0.95 0.39, 2.34 1.23 0.59, 2.56

25 76 (40) 0.74 0.34, 1.64 1.01 0.44, 2.34 0.89 0.35, 2.26 1.13 0.54, 2.39

30 58 (30) 0.67 0.29, 1.56 1.30 0.54, 3.09 1.10 0.42, 2.96 0.73 0.32, 1.65

35 43 (22) 0.49 0.19, 1.28 1.59 0.62, 4.06 1.19 0.40, 3.54 0.65 0.26, 1.64

40 27 (14) 0.27 0.08, 0.94 2.26 0.78, 6.50 2.25 0.64, 8.00 0.96 0.34, 2.71

45 18 (9) 0.40 0.10, 1.55 1.63 0.47, 5.65 2.09 0.50, 8.82 0.61 0.16, 2.32

50 9 (5) 0.80 0.14, 4.41 5.03 0.98, 25.98 1.35 0.20, 9.16 1.25 0.23, 6.82

EA (n = 234)

10 161 (69) 2.11 0.92, 4.85 1.20 0.61, 2.37 0.58 0.28, 1.22 1.10 0.56, 2.17

15 141 (60) 2.73 1.24, 6.01 1.44 0.75, 2.76 0.51 0.25, 1.05 1.09 0.58, 2.08

20 119 (51) 2.51 1.21, 5.21 1.36 0.73, 2.55 0.52 0.25, 1.04 0.80 0.43, 1.49

25 97 (41) 2.83 1.39, 5.79 1.26 0.67, 2.38 0.62 0.30, 1.28 0.79 0.42, 1.50

30 75 (32) 3.44 1.66, 7.13 0.96 0.49, 1.88 0.68 0.32, 1.46 0.63 0.31, 1.25

35 58 (25) 2.68 1.26, 5.70 1.07 0.53, 2.18 0.62 0.28, 1.40 0.65 0.31, 1.36

40 43 (18) 1.96 0.85, 4.52 1.10 0.50, 2.43 1.00 0.41, 2.41 0.46 0.19, 1.13

45 27 (12) 1.55 0.52, 4.60 2.08 0.83, 5.23 0.44 0.14, 1.44 0.46 0.15, 1.44

50 17 (7) 0.88 0.21, 3.69 4.47 1.44, 13.90 0.63 0.16, 2.42 1.01 0.29, 3.51

Table 3. Associations between lifestyle factors and colorectal primary tumor methylation of NEUROG1 
by race. N (%) High = number (%) with NEUROG1 methylation at or above the respective cut point. Each 
row represents 1 model with a dependent variable of dichotomous methylation status (high versus low) as 
defined by the given cut point and independent variables of age, sex, and lifestyle variables (fruits, vegetables, 
folate, NSAIDS). Lifestyle variables were dichotomized (high versus low) at the 75th percentile based on 
the distribution in the overall sample (AA and EA combined). AA = African Americans, EA = European 
Americans, NSAIDs = non-steroidal anti-inflammatory drugs.
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For both groups, we did not observe any associations between lifestyle factors and colorectal primary tumor 
methylation of either MLH1 or RUNX3, with a few exceptions. Among AA, higher vegetable consumption 
was associated with greater odds of high RUNX3 methylation at methylation cut points of 18–21% (maximum 
OR = 6.12, 95% CI 1.12, 33.5). Among EA, higher vegetable intake was associated with greater odds of high MLH1 
methylation at a methylation cut point of 4% (OR = 2.10, 95% CI 1.00, 4.42). Among AA, higher vegetable intake 
was associated with greater odds of high MLH1 methylation at a methylation cut point of 14% (OR = 6.13, 95% CI 
1.02, 36.83). For methylation summary scores, no consistent pattern of association was observed (data not shown).

Sensitivity analyses of associations between lifestyle factors and tumor methylation did not reveal any notable 
departures from the main analyses, and consequently data for sensitivity analyses are summarized here but not 
shown. For associations between lifestyle factors and continuous methylation markers, results were generally null 
but a few associations were observed, mostly consistent with associations observed for dichotomous methyla-
tion status. When lifestyle variables were dichotomized at their median values rather than at the 75th percentile, 
associations that were positive when dichotomized at the 75th percentile tended to become null or to attenuate. 
Associations between lifestyle factors and methylation summary scores were generally null; we observed a few 
associations, but these were attenuated compared to anything observed for the strongest associations involving 
single markers, and with no clear differences between AA and EA. Interaction models including both AA and EA 
did not detect any main-effects associations between lifestyle factors and methylation.

In terms of patient survival, for EA, high CACNA1G methylation was associated with greater hazards of 
all-cause mortality at methylation cut points of 10% and 20% (Supplementary Table 1a). For both EA and AA, we 
observed no other associations between colorectal tumor methylation of any marker and time to all-cause mor-
tality (Supplementary Table 1a and b). This lack of association was consistent across sensitivity analyses: methyl-
ation single markers and summary scores; continuous and dichotomous methylation variables, including many 
different cut points for dichotomous variables; extending censoring to 10 years after diagnosis; and for models of 
the full sample as well as race-stratified models.

Discussion
Previous research had reported associations between race and CIMP20, as well as associations of lifestyle and 
dietary factors with CIMP10,20. This raised the possibility that associations of lifestyle factors with CIMP could be 
modified by race, and that race-modified differences in colorectal tumor methylation might contribute to survival 
disparities. In a sample of AA and EA colorectal cancer patients, we found some evidence of possible differences 
by race of associations between several lifestyle variables and methylation of multiple CIMP markers. The modifi-
cation by race tended to consist of an association in one group and no association in the other group, rather than 
associations in opposite directions, with confidence intervals usually, but not always, overlapping between the two 
groups. For each group and in the overall sample, we observed little evidence of associations between methylation 
of the evaluated genes and time to all-cause mortality.

Most notably, we observed associations of higher folate intake with lower odds of high methylation of 
CACNA1G among EA, but no associations between folate intake and CACNA1G methylation among AA 
(Tables 2 and 3). There was some evidence that higher vegetable intake was associated with greater odds of high 
CACNA1G methylation among AA, but vegetable consumption was not associated with CACNA1G methylation 
among EA (Table 2). Higher fruit intake was associated with greater odds of high NEUROG1 methylation among 

Group
SOCS1 
Cut Point (%)

n (%) 
High

Fruits Vegetables Folate NSAIDs

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

AA (n = 117)

3 54 (46) 1.50 0.57, 3.93 0.92 0.32, 2.69 0.89 0.28, 2.84 0.75 0.28, 1.99

6 13 (11) 1.86 0.32, 10.71 0.25 0.02, 2.47 1.72 0.25, 11.61 1.70 0.36, 8.09

9 7 (6) 0.90 0.07, 12.20 1.05 0.09, 12.98 1.41 0.05, 39.40 — —

12 5 (4) 2.23 0.11, 46.26 1.43 0.09, 22.76 0.75 0.02, 31.84 — —

15 4 (3) 2.23 0.11, 46.26 1.43 0.09, 22.76 0.75 0.02, 31.84 — —

18 4 (3) 2.23 0.11, 46.26 1.43 0.09, 22.76 0.75 0.02, 31.84 — —

21 4 (3) 2.23 0.11, 46.26 1.43 0.09, 22.76 0.75 0.02, 31.84 — —

EA (n = 149)

3 70 (47) 0.85 0.34, 2.13 1.23 0.53, 2.85 0.30 0.11, 0.80 0.45 0.20, 1.02

6 32 (21) 1.09 0.38, 3.10 0.56 0.20, 1.51 1.35 0.45, 4.04 0.31 0.10, 0.91

9 19 (13) 2.80 0.83, 9.48 0.73 0.22, 2.47 0.81 0.20, 3.23 0.20 0.04, 0.97

12 18 (12) 2.92 0.86, 9.99 0.78 0.23, 2.67 0.90 0.22, 3.63 0.22 0.04, 1.04

15 13 (9) 2.71 0.61, 11.98 0.25 0.04, 1.47 2.16 0.39, 12.00 0.16 0.02, 1.33

18 12 (8) 2.19 0.47, 10.29 0.34 0.06, 2.03 1.56 0.25, 9.59 0.19 0.02, 1.61

21 12 (8) 2.19 0.47, 10.29 0.34 0.06, 2.03 1.56 0.25, 9.59 0.19 0.02, 1.61

Table 4. Associations between lifestyle factors and colorectal primary tumor methylation of SOCS1 by race. 
N (%) High = number (%) with SOCS1 methylation at or above the respective cut point. Each row represents 1 
model with a dependent variable of dichotomous methylation status (high versus low) as defined by the given 
cut point and independent variables of age, sex, and lifestyle variables (fruits, vegetables, folate, NSAIDS). 
Lifestyle variables were dichotomized (high versus low) at the 75th percentile based on the distribution in the 
overall sample (AA and EA combined). AA = African Americans, EA = European Americans, NSAIDs = non-
steroidal anti-inflammatory drugs.
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EA, but among AA the association between fruit consumption and NEUROG1 methylation was either inverse 
or null (Table 3). These associations were the most robust in our analysis because they persisted across multiple 
definitions of high versus low gene methylation. We observed other statistically significant associations between 
lifestyle variables and gene methylation that were significant for only one or two methylation cut points, making 
these associations more likely to be significant due to chance rather than genuine findings.

The results were highly dependent on variable coding, particularly the cut point used to define dichotomous 
methylation status (Tables 2–4). Previous studies of continuous biomarkers have demonstrated the many statis-
tical trade-offs between different definitions of high versus low marker level based on different cut points13,21. 
These trade-offs include, among others, the magnitude and precision of an association, proportion of partic-
ipants defined as having high marker level, sensitivity, specificity, and risk reclassification statistics (e.g. event 
Net Reclassification Index and non-event Net Reclassification Index)13,22. Our results were consistent with these 
patterns of trade-offs, which should be taken into account when choosing a cut point to dichotomize a continuous 
variable, whether for etiologic, survivorship, or clinical purposes.

The present analysis had several strengths. First, the investigation was performed in a population-based study 
with a diverse population. Second, in evaluating how lifestyle factors and race relate to each other in terms of asso-
ciations with colorectal tumor methylation, the analytic emphasis on effect modification rather than interaction 
was appropriate, even though this meant focusing on stratified models with less statistical power. Effect modifica-
tion concerns relationships between two “exposure” variables in which only one is modifiable, whereas interaction 
is concerned with situations in which both exposures are modifiable23. Since lifestyle factors are modifiable but 
genetic background is not, the most informative etiologic analysis was an evaluation of how race modifies asso-
ciations between lifestyle factors and colorectal tumor methylation. While we did include interaction terms in 
etiologic models using the full sample, the primary interest in those models was to assess main effects of race and 
lifestyle factors with maximum power. As is the case with any evaluation of effect modification, we note that appar-
ent instances of modification apply only to the scale evaluated. In Tables 2–4, this is the odds scale. It is possible 
that no modification, or different patterns of modification, would be observed in associations on a different scale.

A third strength was our consideration of how colorectal tumor methylation was associated with both cancer 
risk factors and patient outcomes. Tumor characteristics can be thought of as intermediates on a pathway begin-
ning with disease risk factors and ending in patient outcomes13. This meant that evaluation of both etiologic and 
survivorship components of the path provided a more complete perspective on the role of tumor methylation 
than would evaluation of only half of the pathway.

Fourth, the analysis was made more informative by our use of cut point analyses to evaluate different defini-
tions of high versus low methylation for each marker in both etiologic and survivorship contexts. While we also 
evaluated associations using continuous methylation, analyses with continuous markers assume that every 1-unit 
change is equivalent. The results presented in Tables 2–4 cast doubt on that assumption. In addition, dichotomous 
or categorical markers are more easily interpreted, especially for clinical purposes in which dichotomous or cate-
gorical marker status might correspond to different treatment strategies.

The analysis had several limitations. First, the sample size was not large, even for models using the full sample. 
However, for stratified models concerned with differences in associations by race, limitations due to sample size 
might not have been drastic because the main interest was whether effect estimates diverged between AA and EA, 
not statistical significance. Estimates in the same direction, but with substantial differences in magnitude, could 
still be relevant for purposes of modification, especially when confidence intervals for the two groups do not 
overlap. Second, lifestyle variables were assessed by self-report and could have been subject to recall bias. Third, 
it would have been informative to evaluate associations between tumor methylation and additional survivorship 
outcomes such as time to colorectal cancer-specific mortality or response to therapy, but no outcomes other than 
all-cause mortality were available. Fourth, evaluation of methylation of additional genes would have strength-
ened the analysis, but the 5 genes evaluated were the only ones for which we had data. Lastly, it would have been 
informative to perform analyses that, in addition to being stratified by race, were further stratified by clinical var-
iables such as tumor stage or histologic type. Due to lack of data on several clinical variables of interest, as well as 
sample size limitations, we could not adequately address this issue in the present analysis. However, future studies 
with larger sample sizes and well-characterized clinical data should explore this question.

We found evidence suggesting that associations between some lifestyle variables and colorectal tumor meth-
ylation might vary between AA and EA. The differences in associations by race appeared to consist mainly of 
differences in effect measure magnitude rather than direction. Future research should attempt to replicate our 
findings in larger samples, as well as incorporating methylation measurements of more genes than the 5 studied 
here. Proper replication would include analyzing many different cut points to dichotomize methylation levels 
as shown in Tables 2–4. Future studies should also evaluate associations between tumor methylation and more 
survivorship outcomes than the one we were limited to here (time to all-cause mortality). Such research will fur-
ther clarify whether relationships between lifestyle factors, race, and colorectal tumor methylation contribute to 
disparities in disease incidence and survivorship.
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