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Statistical analysis and estimation 
of the regional trend of aerosol size 
over the Arabian Gulf Region during 
2002–2016
Alina Barbulescu  1, Yousef Nazzal2 & Fares Howari2

In this article, we present the results of the regional estimation of the evolution of monthly mean 
aerosol size over the Arabian Gulf Region, based on the data collected during the period July 2002 – 
September 2016. The dataset used is complete, without missing values. Two methods are introduced 
for this purpose. The first one is based on the partition of the regional series in sub-series and the 
selection of the most representative one for fitting the regional trend. The second one is a version of the 
first method, combined with the k-means clustering algorithm. Comparison of their performances is 
also provided. The study proves that both methods give a very good estimation of the evolution of the 
aerosol size in the Arabian Gulf Region in the study period.

Aerosols are tiny particles suspended in the atmosphere which result from natural or anthropic sources. The 
natural aerosols are classified in: product of sea spray evaporation, mineral aerosol, volcanic aerosol, particles of 
biogenic origin, smokes from burning on land, sulphates1.

Ginoux et al.2 did an extensive study for attribution of anthropogenic and natural dust sources. Haywood et al.3  
indicate that the aerosols cause a strong radiative forcing of climate because of their efficient scattering of solar 
radiation. Since they are acting as cloud and ice concentration nuclei, the aerosols have a significant impact on 
the climate variation4. Their diameters vary from less than one nanometer to 100 µm, those of the natural aero-
sols being generally higher than those of the human-made ones5. Particles larger than about 1 μm are also called 
coarse particles.

One of the most abundant aerosols in the atmosphere is the dust. Desert dust particles, also called mineral 
aerosol, are soil particles suspended in the atmosphere in the area with easily erodible dry soils, strong winds and 
little vegetation5. They are composed of oxides (silica, iron oxides), quartz, feldspar, gypsum and hematite etc1. 
Their inhalation is dangerous for the human health because they can get deposited in the gas-exchange region of 
the lungs6,7. Therefore, their production and transport must be investigated.

Scientists found that dust particles enter the lower atmosphere primarily through a mechanism called saltation 
bombardment, which is strongly dependent on the meteorological conditions near the surface, as well as on the 
soil texture and particle size8,9. According to Astitha et al.10, massive amounts of dust are lofted in deep atmos-
pheric boundary layers over the hot deserts. Spyrou et al.11 emphasized that extensive plumes can travel across 
multiple countries at high altitudes up to the middle troposphere, while other scientists emphasized the transport 
of the aerosol from Africa and Asia12–14. Levin et al.15 analyzed the interaction mechanism between the mineral 
dust, sea-salt particles, and clouds, while Smoydzin et al.4 analyzed the role of the meteorological conditions 
on the pollution over the Arabian Gulf. They stated that the dust is emitted as hydrophobic particles, relatively 
ineffective as cloud condensation nuclei, but during their transport in the atmosphere, and the interaction with 
gaseous and particulate air pollutants, their hygroscopicity increases, enhancing the efficiency of the dust removal 
through precipitation16. Alfaro and Gomes17 proposed a model for mineral aerosol production by wind erosion by 
combining preexisting models of saltation and sandblasting processes that lead to mineral aerosol release in arid 
areas, while the impact of dust particles on the condensation nuclei, important in the precipitation formation and 
its spatial distribution has been analysed by Karydis et al.18.
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Namikas19 investigated the causes of wind erosion in sand dunes. His research revealed that wind speed varies 
regionally, frequently occurring during certain periods and its interaction with the land-use disturbances may 
produce big quantities of atmospheric dust. It was shown that much of the desert dust mass transported in the 
atmosphere occurs during a few events. Part of them, occurring in South and Central Asia have been extensively 
studied by Chen et al.12 and Huang et al.20.

Recent research indicates a significant variability of the airborne desert dust concentrations that during the 
past decades in the Middle East, Africa, Central Asia and South America12,21–23, and the augmentation of aerosol 
optical depth worldwide, especially in spring and summer, suggesting a relationship with the dust abundance24. 
Analyses of airborne desert dust and atmospheric concentrations of mineral dust particles extending from the 
Sahara, across the Arabian Peninsula and the Middle East, to South and Central Asia have been provided, as 
well2,13,14,20.

Most article focused on classifying the aerosol types using the satellite data. The classification are based on the 
aerosol optical depth25,26, Angstrom exponent and index of refraction27–29, or fine mode fraction and the aerosol 
index30.

The reviews on the impact of the dust size on climate and biogeochemistry, are focusing on the characteriza-
tion of the size distributions of the aerosol particles. It was shown that the particles with sizes between 0.2–2 μm 
produce the largest shortwave radiative effect per unit mass20,31. As condensation nuclei, the number of particle 
above a given size is important32. Point of view of geochemistry, the amount of dust deposition is essential.

Given the importance of the study of aerosols dimensions, we notice only few articles treating this topic20,33.
Therefore, we aim at analyzing the series of aerosols radius over the Arabian Gulf Region and to model the 

trend of the regional series. Two approaches are proposed, based on the partition of the regional series into sub-
series and the selection of the most representative one, used for building the regional trend.

In the following, we shall understand by particular series, a series recorded at a certain point and by the 
regional series, the multidimensional series containing all the particular series.

Results and Discussions
Figure 1 represents the maxima, minima and average regional series during the study period and Fig. 2 presents 
the monthly average of the series in the study period.

Figure 2. Regional monthly average series during the study period.

Figure 1. Maxima, minima and the average series during the study period.
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We remark a seasonal variation of the series. At the beginning of the period the highest means have been 
recorded in October, November and December, but after 2010, we notice the highest monthly averages in 
November, December and January. The months when the smallest aerosols radii have been registered are May, 
June and July.

The analysis of the aerosols’ radii at all the observation sites provide the following limits: the minimum is 
between 12.99 and 39.76 µm, the maximum is between 71.65 and 100 µm, the average is in the interval 51.21–
56.79 µm, with the standard deviation in the interval 8.67–15.21. The series’ skewness is between −0.41 and 0.48, 
39% being in the interval [−0.05, 0.05], 31% greater than 0.05 and 33% less than −0.05, indicating that the major-
ity of the series distributions are left or right skewed. The excess kurtosis is between −1.31 and 1.05: only 5 values 
are greater than zero, and approximately 90% around −1. Therefore the majority of the distributions of the dust 
aerosol size are platykurtic, only five of them being leptokurtic.

The normality hypothesis for the individual series has been rejected for all the series by the Shapiro-Wilk and 
Anderson-Darling tests. Jarque-Bera’s test rejected the normality hypothesis for 95% of series. This result is in 
concordance with the finding related to the skewness and excess kurtosis.

After performing the Henze – Zirkler test, the null hypothesis was rejected as well. Therefore, the regional 
series does not follow a multivariate Gaussian distribution.

After applying the dcor t-test, the independence hypothesis has been rejected since the dcor coefficients are 
higher than 0.586. Since the p-value associated with the Kruskall-Wallis test is less than 0.0001, we can’t accept 
the hypothesis that all the samples come from the same population. Therefore, the series are not independent, but 
they don’t have the same distribution.

For emphasising the differences between the pairs of series, after the rejection of the null hypotheses by the 
Kruskall-Wallis test, the post-hoc Dunn’s test was performed. Its results show that 82.2% of pairs of series don’t 
come from the same population.

Mandel’s test has been performed for detecting if there are outlying means among the series averages. It was 
found that there are only 18 outlying means of the study series. Figure 3 illustrates the result of this test. The dot-
ted lines represent the critical values of the test (1.956 and −1.956), and the vertical lines, the values of h-statistic 
for the individual series. Most of these values are in the range from −1.25 to 1.25.

The Brown-Forsythe test rejected the homoscedasticity hypothesis. Therefore, we can conclude that the vari-
ances of the individual series are not homogenous.

For modeling the regional distribution of the aerosols’ size, we used the following two algorithms.

Method I. 

 (1) Given the data series recorded at m different observation points, on n consecutive periods, build the matrix 
of the regional series, = =

=

Y y( )ji j n
i m

1,
1,

, where yji is the series recorded at the moment j at the point i. So, a 

column of the matrix Y contains the data collected at a specific point, and a raw of the matrix contains all 
the values collected at a certain moment at all the sites.
For each j n1,= , perform the steps (2)–(6).

 (2) Compute the extreme values (maximum and minimum) on each row of the matrix (that is the regional 
extrema at each moment) and the amplitude, as the difference between the maximum and the minimum 
values.
For example, denoting respectively by yj max and yj min the maximum and minimum values at the moment j, 
the amplitude at the moment j will be defined by:

A y y (1)j j jmax min= −

 (3) Divide the intervals [yj min, yj max] into a convenient number of sub-intervals, mj, of length Lj = Aj/mj, such 
as each sub-interval contains enough values.
Let us denote by Ijl the sub-interval l of the period j.

Figure 3. Results of Mandel’s test.
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 (4) Attach to each sub-interval interval Ijl its frequency, fjl, defined as the number of values from Ijl.
 (5) Choose that interval Ijl whose frequency is maximum. Denote it by Ij max and by fj max the corresponding 

frequency. If the highest frequency appears more than once, Ij max will be that interval whose average is the 
closest to the average of the entire period j. For example, suppose that the maximum frequency is fj3 = fj5, 
the average of the values in Ij3 is 24.5, the average of the values in Ij5 is 29.5 and the average of the period j is 
30. Then, we select Ij max = Ij5 because 29.5 is closer to 30 than 24.5.

 (6) Choose the representative value for the period j to be equal to the average of the values from the interval  
Ij max, and denote it by yj max.

 (7) Build the trend series that fit the regional one using y( )j j nmax 1,= .
 (8) Estimate the fitting quality, computing the mean absolute error and the mean standard error of each series i 

i m( 1, )= 34.

The mean absolute error and the mean standard error of the series i (denoted respectively by MAEi and MSEi) 
are defined by:

n
x xMAE 1 ( ) ,

(2)
i

i q

n

iq iq e
1

i

∑= | − |
=

∑= 
 − 


=n

x xMSE 1 ( ) ,
(3)

i
i q

n

iq iq e
1

2i

where ni is the number of values of the series i, xiq is the qth value of the series i, (xiq)e is the value estimated by the 
model for the qth value of the series i.

Lower MAEi and MSEi are, better the modeling quality is.

Method II. This algorithm is based on the previous one, but the selection of the interval with the maximum 
frequency is replaced by the selection of the cluster with the highest number of elements, after pruning the 
k-means clustering algorithm, for classifying the series in clusters (homogeneous and disjoint groups within 
which the patterns are similar). The number of clusters, k, is a priori specified and the algorithm k-means stores 
k centroids used to define clusters.

The clustering idea is finding groups (clusters) that minimise an error criterion, as, for example, Sum of 
Squared Error (SSE), which measures the total squared Euclidian distance of instances to their representative 
values35.

Considering Z = (z1, z2, …, zm), zi ∈ Rn, i m1,=  being the given points, the k-means clustering algorithm has 
the following steps32:

 (a) Choose the number of clusters, k.
 (b) Initialize the cluster centroids v1, v2, …, vk ∈ Rn randomly.
 (c) Compute the distance between each data point and the cluster centers.
 (d) Assign the data point to the cluster whose distance from the cluster center is the minimum of all distances 

to the cluster centers.
 (e) Compute the new cluster center by

v
c

z1 ,
(4)

i
i j

c

j
1

i

∑=
=

where ci is the number of the data points in ith cluster.
 (f) Restart from (b) till no data point will be reassigned to the cluster. Then stop.

For more information about other clustering algorithms, the reader could refer to Rokach and Maimoon36, 
Everitt et al.37, Xu and Wunsch38.

In our case, Z = X and the element zi is the column i of the matrix X.
The stages or Methods II are the following:

 (I) Similar to step (1) of the Method I.
 (II) Choose the number of clusters, k, and perform the k-means clustering.
 (III) Determine the cluster with the highest number of elements and build the matrix Xc with the columns of X 

that contain the values recorded at the observation points included in this cluster.
 (IV) Choose the representative value for the period j to be equal to the average of the values from the jth row of 

Xc. Denote it by yj C.
 (V) Build the series that fit the regional one, using =y( )j C j n1, , and estimate the fitting quality by computing 

MAEi and MSEi of each series i m1,= .

The comparison of the methods’ performances is done by computing the mean absolute error and mean 
standard error of each series and the overall the mean absolute error and mean standard error.

The overall mean absolute error is defined by:
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n
nMAE 1 ( MAE ),

(5)i
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i i
1 1
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∑

⋅
= =

and the overall mean standard error is given as:

n
nMSE 1 ( MSE ) ,

(6)i
m

i i

m

i i
1 1

∑=
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⋅
= =

where MAE is the overall mean absolute error, MSE is the overall mean standard error, MAEi is the mean absolute 
error of the series i, MSEi is the mean standard error of the series i, ni is the number of values in the series i.

Lower MAE (or MSE) is, better the modeling result is.
The modeling techniques have been applied for monthly average series collected at the study sites for 

171 month. The data series and the computation done by applying Methods I and II can be found in the 
Supplementary Dataset 1 and Supplementary Tables S1 and S2.

For Method I, n = 387, m = 171. We chose mj = 6, for all =j 1, 171 at stage (3), meaning that after detecting 
the range of the values in a given period, this interval was divided into 6 subintervals. Method II was applied using 
a number of clusters k = 6, for comparison reasons.

After performing the k - means algorithm we got the results presented in Tables 1–3.
We remark that the within-class variances, minimum, maximum and average distances to centroids are close 

to each other for the classes 2 and 3. The classes have different numbers of elements, the highest one being in the 
third one that will be selected for modeling with Method II.

The regional series obtained by applying the methods previously described are presented in Fig. 4, where 
Series I is obtained by Method I and Series II is obtained by Method II.

The corresponding errors (MAD and MSE) are presented in Figs 5 and 6. They were obtained based on the 
data provided in the Supplementary Tables S1 and S2. The values from the Supplementary Tables S1 and S2 can be 
synthetized in Table 4, where the minimum and maximum modeling error are presented.

Mean absolute deviations and mean standard error of the individual series (MADi, MSEi) vary in larger 
limits when using Method II, than when using Method I. Comparing the MADs (respectively MSEs) from 
Supplementary Tables S1, one can see that the first method better performed for 223 series (respectively 218 
series). This means that MADs (respectively MSEs) were smaller in 57.62% (respectively 56.33%) cases when 

Class 1 2 3 4 5 6

1 0 54.557 62.361 57.625 46.242 58.259

2 54.557 0 36.057 59.761 28.393 38.034

3 62.361 36.057 0 45.503 43.235 23.329

4 57.625 59.761 45.503 0 54.052 42.183

5 46.242 28.393 43.235 54.052 0 40.089

6 58.259 38.034 23.329 42.183 40.089 0

Table 1. Distances between the class centroids.

Class 1 2 3 4 5 6

Objects’ number 19 105 111 50 50 52

Within-class variance 2935.890 821.017 870.805 1950.387 1547.098 781.011

Minimum distance to centroid 36.693 17.443 19.743 24.940 19.993 17.046

Average distance to centroid 50.604 27.306 28.408 41.550 36.373 26.409

Maximum distance to centroid 95.749 61.838 59.983 77.899 82.159 51.011

Table 3. Results of the k-means clustering algorithm by class.

Central object 1 (Point 57) 2 (Point 88) 3 (Point 160) 4 (Point 242) 5 (Point 283) 6 (Point 296)

1 (Point 57) 0 62.988 74.500 72.723 55.341 67.226

2 (Point 88) 62.988 0 49.429 69.936 37.787 49.918

3 (Point 160) 74.500 49.429 0 60.791 55.932 34.831

4 (Point 242) 72.723 69.936 60.791 0 63.364 53.695

5 (Point 283) 55.341 37.787 55.932 63.364 0 49.296

6 (Point 296) 67.226 49.918 34.831 53.695 49.296 0

Table 2. Distances between the central objects.
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Method I was used. Overall MADs for the models were respectively 2.536 and 2.607. Overall MSEs for the models 
were respectively 3.547 and 3.639. Therefore, the overall mean absolute deviations and mean standard errors are 
comparable for both methods.

The study series were not highly inhomogeneous. Only some outlying means were detected and the standard 
deviations were between 8.69 and 15.25. This could be a reason for which the goodness of fit of the methods are 
similar.

Figure 5. Mean absolute error (MAD) in the models.

Figure 6. Mean standard error in the models.

Figure 4. Models obtained by Method I (Series I) and Method II (Series II).



www.nature.com/scientificreports/

7SCiENtifiC REPORtS |  (2018) 8:9571  | DOI:10.1038/s41598-018-27727-0

The Method I gave better results due to the procedure of selection of the values of the individual series that 
participate in fitting the regional one. While in the second method, all the values that participate to this process 
are taken from the same series, belonging to the cluster with the highest number of member, in Method I, the 
values taken into account at each moment can belong to different series. For example, the representative values for 
the time t = 2 could be in the subinterval 3 and those for the time t = 4 could be in the subinterval 6.

Conclusions
In this article, we presented two methods for estimating the evolution of the regional time series of the aerosols 
dimensions. Both methods are easy to use, the advantage of the second one being that the k-mean algorithm 
is implemented in many software. In both methods, the number of subintervals, respectively clusters must be 
specified from the beginning for the selection of the series that will finally participate in fitting the regional series. 
The fitting results are not significantly different (in terms of overall MADs and MSEs), but the first method gave 
a better estimation of the individual series values (223 and 218 series, respectively). For highly inhomogeneous 
series, we recommend the use of the first method, knowing that the k-mean algorithm is sensitive to the outliers’ 
existence. Therefore statistical tests for the mean homogeneity and homoskedasticity, as well as that for the outli-
ers’ existence must be performed before deciding the modeling method.

Both methods could be successfully used to estimate the regional evolution of the pollutants’ series when some 
particular series in the study area present missing values, but the neighboring series are complete. In the future 
works we shall study the sensitivity of both methods to the selection of the clusters’ number. We shall compare the 
methods’ goodness of fit for regional series of data (as precipitation, temperature, anthropic aerosol) before and 
after the seasonality removal, as well. We also aim at implementing both methods in a friendly - user software.

Methodology
Data series. Data used are monthly series containing the aerosol particle radius record from July 2002 till 
September 2016, over the Gulf Region (Fig. 7), retrieved by MODIS39. There were 1850 observation points. For 
modeling the regional evolution of the dimension of aerosol particles we selected 387 complete series (without 
missing data), each of them containing 171 values. The coordinates of these points can be found in Supplementary 
Dataset.

Method

MADi

MAD

MSEi

MSEmin max min max

I 1.584 7.111 2.536 2.040 9.629 3.547

II 1.137 7.730 2.607 1.514 10.083 3.659

Table 4. Comparison of modeling errors.

Figure 7. Observation area - inside the rectangle (https://www.google.com/mymaps/, 2018).

https://www.google.com/mymaps/
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To determine the type of aerosols, we compared the aerosols dimensions and the optical depth (AOT) down-
loaded from MODIS site39 for our series, with the results from the literature25–29. It resulted that the type of aerosol 
is mostly dust because AOT was larger than 0.3 (majority around 0.43). The aerosols’ dimensions are in the range 
of the coarse aerosols (as per the data from the Supplementary Dataset). Due to lack of space and since our main 
purpose is the modeling, we shall not insist on other characteristics of the study aerosols. We intend to dedicate 
another article to an extensive study of their properties.

Statistical analysis. Before modeling, statistical analyses of the series have been performed, at the signifi-
cance level α = 0.05. For all the tests, when the p-value associated is lower than the significance level, one should 
reject the null hypothesis H0, and accept the alternative hypothesis Ha.

In what follows we shall call individual series the series recorded a certain observation point and the regional 
series that one recorded at all the sites. Therefore, an individual series will be represented by a column vector and 
the regional series as a matrix formed by all the columns containing the individual series.

The statistical tests have been conducted using the R software.
For testing the normality hypothesis against the non-normality for the individual series, the 

Anderson-Darling40, Jarque-Bera41 and Shapiro-Wilk42 tests were performed. They are implemented in ‘fBasics’ 
package in R43.

The test statistic for the Anderson-Darling test is defined as:

A n
n

i p p1 (2 1)[ln ln(1 )],
(7)i

n

i n i
2

1
( ) ( 10)∑= − − − + −

=
− +

where

p x x s([ ]/ ), (8)i i( ) ( )= Φ −

Φ is the cumulative distribution function of the standard normal distribution, x is the mean and s is the 
standard deviation of elements in the sample, x{ }i i n1,= .

If the p-value associated to the test is less than the significance level, the normality hypothesis can be rejected.
The Jarque-Bera test statistic is defined as:
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where n is the sample volum, k3 is the sample skewness and k4 is the sample excess kurtosis, defined as:
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For large samples, the JB statistics is compared to a chi-squared distribution with 2 degrees of freedom (χ2(2)). 
The normality hypothesis is rejected if the test statistic is greater than χ2(2).

The statistic of the Shapiro-Wilk test is defined as:

W
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=

where n is the sample volume, x1, x2, …, xn are the original data, x x x, , , n1 2′ ′ ... ′  are the ordered data, x  is the 
sample mean of the data, and the constants wi are given by:

… =
−

− −w w w M V
M V V M

( , , , )
( )

,
(13)n

T

T T1 2

1

1 1 1/2

where M = …m m m( , , , )n
T

1 2  (the transposed vector (m1, m2, …, mn)) formed by the expected values of the order 
statistics of independent and identically distributed random variables sampled from the standard normal distri-
bution and V is the covariance matrix of those order statistics.

Small values of W indicate non – normality.
All software provide the p-values corresponding to this test statistics. If the p-value is less than the significance 

level, the normality hypothesis can be rejected.
For testing the multivariate normality (the normality of the regional series) against the non-normality hypoth-

esis, we used the multivariate Henze - Zirkler test44, implemented in the R package ‘MVN’45. The test is presented 
in the following.

Let X1, X2, …, Xn ∈ Rd be a random sample, where d is the dimension of Xi and n is the number of observations.
The Henze - Zirkler test is based on a nonnegative functional D that measures the distance between two dis-

tribution functions and has the property that D(Nd(0, Id), Q) = 0 if and only if Q = Nd(0, Id), where Nd(μ, ∑d) is a 
d-dimensional normal distribution.
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The test statistic Tβ(d) is defined by:
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and S is the sample covariance matrix of the matrix X formed by …X X X, , , n1 2  as columns.
In the null hypothesis, the test statistic is approximately lognormal distributed. The null hypothesis is rejected 

if the p-value associated to the test statistics is less than the significance level.
Since the regional series is not multivariate Gaussian, for testing the independence hypothesis of the regional 

series, the nonparametric dcor t-test46 of independence has been performed.
The test statistics is:
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⁎
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−
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R
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where n is the sample size, ⁎Rn  is the distance correlation statistics and ν = −n n( 3)/2.
The test rejects the null hypothesis at level α if T cn > α, where αc is the (1−α) quantile of a Student t distribu-

tion with ν − 1 degrees of freedom. For details, the reader may refer to the article of Székely and Rizzo46.
For testing the hypothesis H0: The individual series come from the same population against the alternative Ha: 

The individual series do not come from the same population, the Kruskall-Wallis test47 was performed.
The first stage all data is ranked, ignoring the group membership. The rank of the tied values is the average of 

the ranks they would have received had they not been tied.
The test statistic is defined as:

= − ∑ −

∑ ∑ −
= .

= =

H N
n r r

r r
( 1)

( )
( )

,
(19)

i
k

i i

i
k
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n

ij

1
2

1 1
2i

where N  is the total number of values, k is the number of groups, ni is the number of observations in the group i, 
rij is the rank of observation j from group i, among all observations, ri is the mean of the ranks of the observations 
in the group i, = + .r N( 1)/2

If the null hypothesis is true, H has approximately a chi-square distribution with k − 1 degrees of freedom, 
k 1
2χ .−  Therefore, the null hypothesis is rejected if χ> α −H ,k; 1

2 found in the tables of the chi-square distribution at 
the significance level α (generally set to be 0.05).

If the null hypothesis is rejected, the multiple pairwise comparisons are done using the Dunn’s test48.
Let Wi the ith group’s summed ranks and ni its sample size and =W W n/i i i. Assign any tied values the average 

of the ranks they would have received had they not been tied.
For testing the hypothesis that the group A and B come from the same population against the hypothesis that 

they don’t come from the same population, we compute

z W W
(20)i

A B

iσ
=

−

where:
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+





=

N is the total number of elements in all the k groups,
r is the number of tied ranks across all the groups,
τs is the number of elements across all the groups, with the sth tied rank.
If there are no ties, the second term in the first bracket is zero.
Denote by k the number of groups and z k1 /2α− , the (1 −α/2k) point of the standard normal distribution. If 

z zi k1 /2< α− , then the null hypothesis can’t be rejected.
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For checking the existence of outlying means of the individual series, the Mandel’s h statistic49 was used, 
implemented in ‘ILS’ package in R50.

Let k be the number of samples, x i k, 1, 2, , ,i = ...  their means and x the overall mean. The Mandel’s h test 
statistics are:

=
−

− ∑ −=

h x x

k x x[1/( 1) ( ) ] (22)
i

i

i
k

i1
2 1/2

and they have the same distribution for all i k1, 2, ,= ... .
For example, for i = k, the critical values are given by:

=
−

− +
α

α

α

−
− −

− −

h
k t

k k t

( 1)

[ ( 2) ]
,

(23)
k

k

k
;1 /2

2;1 /2

2;1 /2
2 1/2

where α− −tk 2;1 /2 is the ( α− −1 /2) quantile of the t-distribution with (k − 2) degrees of freedom51.
To test the hypothesis H0: The variances of the individual series are identical, against the alternative one Ha: At 

least one of the variances is not identical to the others, the Brown-Forsythe test52, implemented in ‘lawstat’ package 
in R53 has been performed.

Let z y y ,ij ij j= | − | where yij is the element i in the group j and yj  is the median of group j. The Brown – 
Forsythe test statistic is

=
−
−

∑ −

∑ ∑ −
= . ..

= = .

F N p
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n z z
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where N is the total number of observations, k is the number of groups, nj is the number of observations in group 
j, .z j is the mean of the elements zij in group j, and ..z  is the overall mean of the zij.

The test rejects the hypothesis that the variances are equal at the significance level α if > α − −F F k n k, 1, , where 
F k n k, 1,α − −  is the upper critical value of the F distribution with (k – 1) and (n – k) degrees of freedom at the signifi-
cance level of α. Alternatively, the null hypothesis is rejected if the p-value corresponding to the test is less than α.

Availability statement. Data are available in the Supplementary Database1.
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