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Approach-aversion in calves 
following injections
Thomas Ede, Marina A. G. von Keyserlingk & Daniel M. Weary

We assessed aversion to injections using an avoidance-learning paradigm. Holstein calves (n = 24) 
were randomly assigned to one of four routes of administration for 0.5 ml of saline: intramuscular 
(IM), intranasal (IN), subcutaneous (SC) and a null control. Calves were first trained to approach a milk 
reward of 1 L. Once the latency to approach the reward was consistent, calves received their assigned 
treatment when approaching the bottle. For the first 3 treatment sessions calves received a 1 L milk 
reward. This reward was then reduced to 500 mL, and then to 250 mL, and finally to 0 mL, each for 3 
sessions. Compared to control calves, calves receiving the intramuscular injections showed a longer 
latency to approach the milk reward, but only when the milk reward was 0.25 L (P = 0.05) and 0 L 
(P < 0.01). Calves receiving the intranasal injections showed longer latencies relative to the controls 
only for the 0 L reward (P = 0.01). Calves receiving the subcutaneous injections did not differ from 
controls for any of the milk rewards (P > 0.2). We conclude that IM injections are aversive and that SC 
and IN routes are a refinement to be considered when feasible.

Injections by needle are widely used in veterinary practice for the administration of medicine, vaccination and 
anaesthesia. The pain caused by injections has been studied in humans1–5 but little is known about how aver-
sive these procedures are to animals. Research on acute noxious stimuli in animals often relies upon physiolog-
ical indicators and behavior measures including withdrawal movements, writhing and defensive behaviors6,7. 
However, both approaches have questionable specificity7 and there are difficulties in drawing inferences regarding 
affect or motivation from such responses8.

Conditioning paradigms provide an alternative approach9. A multitude of experimental options exists10, some 
relying on the animals actively performing a behavior (such as pressing a lever, pecking a key, or jumping a bar-
rier) to avoid an aversive treatment. However, animals may find it difficult to learn active responses in a stressful 
environment11. An alternative is to implement a passive avoidance paradigm in which animals are first trained to 
carry out a motivated behavior (such as accessing a food reward) that is then associated with a negative event. The 
animal can then choose whether they are willing to pay the price of enduring the negative event to gain access to 
the reward. The animal’s reaction to this conflict provides insight regarding motivational balance; i.e. the relative 
value allocated to the reward and the negative event. If the animal begins to avoid the treatment, it is reasonable 
to infer that the animal finds the treatment more aversive than it finds the food rewarding12. By providing control 
to the animal, this design also minimises other sources of distress11.

Conditioning paradigms have been used to assess a broad range of experiences, including those induced by 
drugs13, chronic arthritis14, electric shocks15,16, mechanical hyperalgesia17 and radiation18. More recently, with 
growing public concern over animal husbandry practices19,20, conditioning has been used to assess the aversive-
ness of procedures used for euthanasia21,22, cage-cleaning23 and handling24. To our knowledge no work to date has 
addressed aversion due to injections.

The purpose of this study was to assess the aversiveness of intramuscular (IM) injections, and to compare this 
with two possible refinements: intranasal (IN) and subcutaneous (SC). Calves were first trained to approach a 
milk reward. After training was completed, accessing the reward was paired with an injection and aversion was 
measured as an increase in the approach latency. The quantity of milk provided was gradually reduced to better 
assess the motivational balance between accessing the reward and avoiding the treatment. Intramuscular injec-
tions, and to a lesser extent subcutaneous and intranasal injections, were expected to increase approach latencies 
relative to control calves that received no injection.
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Methods
This study was conducted from January to June 2017 at the University of British Columbia Dairy and Education 
Center in Agassiz, British Columbia. The study was approved by the UBC Animal Care Committee (Application 
A16-0310) and performed in accordance with the guidelines outlined by the Canadian Council of Animal Care 
(2009)25.

Animals, housing and treatments. 24 Holstein calves were enrolled into the experiment at 22 ± 11 
(mean ± S.D.) days of age. Calves were housed in groups of 10 in pens measuring 4.9 × 7.3 m bedded with 10 cm 
of sawdust. Ad libitum access to water and hay was provided through automatic feeders (RIC; Insentec B.V., 
Netherlands). A daily whole milk ration of 12 L was available through an automatic milk dispenser (CF 1000 CS 
Combi; DeLaval Inc., Sweden). Milk was not accessible in the 12 h before the test session began at 0900 h. The 
calves were returned to the group pen after the test session and received their full milk ration for the rest of the 
day.

Each calf was randomly assigned to one of four treatment groups: intramuscular (IM), intranasal (IN), 
subcutaneous (SC) or Control. Each treatment group received 0.5 mL of saline solution. IM and SC groups 
were injected in the rump with a 0.9 × 40 mm and 0.9 × 20 mm hypodermic needle respectively (Covidien 
8881251766/8881251782). The IN group received the solution in the right nostril through a vaccination nasal tip 
(HTI Plastics, A003-A00-06).

Apparatus. Figure 1. The experimental apparatus was divided in two areas: the Lobby measured 1.9 × 2.4 m 
(4.6 m2), had unpainted plywood walls and concrete flooring covered with 10 cm of sawdust, and was accessible 
through Gate 1. On the side opposite to the entrance was Gate 2, allowing access to the Test pen. At the end of the 
Test pen (opposite to Gate 2) was a milk bottle with the teat positioned 80 cm above the floor. The Test pen was 
identical to the Lobby except that walls were mounted with colored panels, either white or red depending on the 
experimental phase. After bringing the calf into the lobby, the handler stood outside the apparatus next to the 
bottle and operated the gates remotely.

Procedure and measurements.  Each calf was tested individually; calves were moved gently from their 
home pen and brought to the lobby. Once in the lobby, the gate to the test pen (Gate 2) was opened and the calf 
was allowed to enter. Approach was characterized by the latency to start drinking the milk reward after Gate 2 
was opened. If the calf did not approach the bottle within 5 min, the calf was brought back to her home pen and 
latency was recorded as 301 s.

Habituation.  During the habituation phase, 1 L of milk was placed in the bottle. Calves were allowed to 
approach and drink the reward without the administration of an injection. The panels mounted on the walls of 
the testing pen were white. Habituation ended once the calf spontaneously approached the bottle in less than 30 s 
and drank the full 1 L of milk, 3 d in a row.

Treatment phase. Once the habituation was completed, the panels in the test pen were switched from white 
to red. This visual cue was introduced to facilitate the association. Previous work on Holstein calves has success-
fully used these same colors in a discrimination learning task26. During this phase, calves received their assigned 
treatments as soon as they started to drink from the bottle. The milk reward was decreased every 3 d from 1 L for 
the first 3 sessions, to 500 ml, then to 250 ml, and finally to 0 ml for the last 3 sessions.

Statistical treatment.  The three latencies obtained for each reward quantity were averaged to create a mean 
per calf per milk reward level. Data were log-transformed to normalize residuals. The transformed data were then 

Figure 1. Experimental apparatus. Drawn by Shirley Ho.
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modeled with a linear mixed-effects model27,28 that included as fixed effects the route of injection (3 df), the vol-
ume of milk reward (1 df) and the interaction (3 df). Calves were considered a random effect.

Data availability.  All data generated or analysed during this study are included available electronically.

Results
During the last three days of habituation, calves assigned to the different treatments did not differ in latency to 
approach the bottle (F3,20 = 0.52, P = 0.7).

The latency for calves to approach the milk bottle increased as the milk reward declined, but the magnitude of 
this decrease varied with treatment (Fig. 2), as indicated by the milk reward x treatment interaction (F3,68 = 3.3, 
P = 0.02). On the basis of this interaction, we analyzed the effect of treatment separately for each level of milk 
reward, using specified contrasts to compare each injection treatment with the control. None of the injection 
methods resulted in an increased approach latency relative to the control when the milk reward was 1 L (IM: 
t1,20 = 1.4, P = 0.2; IN: t1,20 = 0.1, P = 0.9; SC: t1,20 = 1.1, P = 0.3) or 0.5 L (IM: t1,20 = 1.5, P = 0.2; IN: t1,20 = 1.3, 
P = 0.2; SC: t1,20 = 1.2, P = 0.3). For the 0.25 L reward, only calves in the intramuscular treatment showed higher 
approach latencies compared to control calves (t1,20 = 2.1, P = 0.05). When no milk reward was provided, calves 
in both the intramuscular and intranasal treatments showed longer approach latencies relative to the control 
calves (IM: t1,20 = 3.4, P < 0.01; IN: t1,20 = 2.7, P = 0.01), with three animals reaching the 5 min threshold for the 
intramuscular group and one for intranasal. In contrast, the approach latencies for calves in the subcutaneous 
treatment did not differ from that of the controls (t1,20 = 1.4, P = 0.2).

Discussion
When no treatment was administered, calves were highly and consistently motivated to access the milk reward. 
In contrast, groups receiving injections took longer to approach the reward, indicating a motivational shift from 
the approach of the milk to the avoidance of the procedure. The higher latencies recorded for the intramuscular 
treatment support our prediction that intramuscular injections are more aversive than the intranasal and subcu-
taneous routes.

The age of the animals was chosen to match that when dairy calves normally first experience injections (such 
as those associated with vaccination and disbudding). Adult animals also receive injections (for example, routine 
injections used in synchronized reproduction programs). Considering the development of thicker skin and adi-
pose tissue as animals age, a stronger needle and greater force is required to pierce the tissue, perhaps affecting the 
relative aversion associated with different techniques. Similarly, different breeds and species may require different 
needles, forces, etc. Animals are also likely to vary in nose sensitivity affecting responses to the different treat-
ments. Considering the frequent use of injections in veterinary practice, the literature is surprisingly sparse in 
regards to the aversion to the procedure and to potential refinements. Previous work has shown that 78% of dogs 
exhibit fear-related behavior on the examination table of a veterinary clinic29, and that 26% of dogs “yelp” when 
injected30, suggesting the need to consider less aversive methods. Aside from the obvious welfare implications of 
decreasing pain, better acceptance of injections may also facilitate handling, ensure a safer environment for the 
staff and likely improve the veterinary experience for the client29.

As an alternative to physical restraint, positive reinforcement techniques can be used to train animals to vol-
untary receive injections31. Although cooperation from the animal can be achieved for intramuscular injections, 
only half as many training sessions are needed for subcutaneous injections32.

In humans, verbal reports from patients show that intramuscular injections are more painful than the subcu-
taneous33–35 and intranasal alternatives36,37. Intramuscular injections cause tissue damage38,39, reach cells directly 
involved in inflammatory processes40, and may damage nerves41,42, whereas subcutaneous injections puncture 
only the epithelium. Pain is not limited to the puncture: injections of drugs such as antibiotics, anaesthetics and 
vaccines generally lead to more pain in humans when administered intramuscularly, which is thought to be 
linked to high innervation of muscle tissues43. Many species are known to have highly innervated muscle, so we 

Figure 2. Latencies of calves to approach a milk reward, depending upon size of the reward and treatment 
(IM: Intramuscular, SC: Subcutaneous, IN: Intranasal). The latencies are log transformed and presented on an 
exponential transformed y-axis. The dotted line represents the latency limit.
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expect our results with saline in calves to be consistent with various drugs and species. That said, we call for study 
of drugs on a case-by-case basis, as the aversiveness can be modulated by factors such as pH and volume of the 
solution injected43.

This study was limited to the treatment of the same volume through the different routes. However, the use 
of an alternative route might require a modified protocol to achieve similar efficacy. For example, intranasal 
treatments are not appropriate to all compounds as they must be able to cross the nasal epithelium44, but when 
applicable the intranasal route can provide higher efficacy45. A number of studies have reported similar efficacy 
when compounds were delivered via intramuscular and subcutaneous routes46–48.

The ability of avoidance paradigms to discriminate between treatments is sometimes limited by a ceiling effect 
causing “all or nothing” responses12. For example, 80% of rats have been observed to completely stop moving (i.e. 
“freeze”) when exposed to an environment associated with electric shock49. These all or nothing responses can be 
prevented through experiments eliciting conflict behaviors50, such that rather than only avoiding a negative event 
animals are also motivated to approach a positive one11. The difficulty lies in finding a conflicting situation that 
does not lean too much towards the positive (leading to the “all” response) or the negative (leading to the “noth-
ing” response). Our results indicate that starting with a highly appetitive reward and then gradually reducing 
this, while keeping the treatment (i.e. the injection) constant, allows for a sensitive test of differences in aversion 
between treatments.

Multiple pairings may be required for animals to associate treatment and location. This means a difference 
in approach latency might have been observed between the treatment groups at earlier rewards if more training 
sessions had been allowed. The current study limited the number of sessions for ethical reasons (i.e. to limit the 
number of injections delivered to each animal), but studies using less invasive treatments may wish to consider 
more sessions at each reward level tested. By confounding the declining reward with time, our design made it 
impossible to distinguish between the effects of learning and the decline in reward size. It must emphasised that 
the existence of this confound was intentional; our aim was to compare treatments, not determine the precise 
quantity of milk calves were willing to give up to avoid each kind of injection. When the goal is to assess what 
quantity of reward is needed to overcome a negative event, it may be better to keep the reward constant51.

The results of the current study suggest that subcutaneous and intranasal routes are refinements over intra-
muscular injections. Pharmacokinetics and dynamics will vary with route of administration, but where feasible 
we recommend these alternatives to minimize aversion caused by injections.
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