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Opto-thermally excited multimode 
parametric resonance in graphene 
membranes
Robin J. Dolleman1, Samer Houri1,3, Abhilash Chandrashekar2, Farbod Alijani2, Herre S. J. van 
der Zant1 & Peter G. Steeneken  1,2

In the field of nanomechanics, parametric excitations are of interest since they can greatly enhance 
sensing capabilities and eliminate cross-talk. Above a certain threshold of the parametric pump, the 
mechanical resonator can be brought into parametric resonance. Here we demonstrate parametric 
resonance of suspended single-layer graphene membranes by an efficient opto-thermal drive that 
modulates the intrinsic spring constant. With a large amplitude of the optical drive, a record number of 
14 mechanical modes can be brought into parametric resonance by modulating a single parameter: the 
pre-tension. A detailed analysis of the parametric resonance allows us to study nonlinear dynamics and 
the loss tangent of graphene resonators. It is found that nonlinear damping, of the van der Pol type, is 
essential to describe the high amplitude parametric resonance response in atomically thin membranes.

The history of parametric oscillations dates back to the 19th century and the observation of surface waves in the 
famous singing wineglass experiment of Michael Faraday1. A mechanical system can be parametrically excited 
when its stiffness is modulated at a frequency of 2ω0/n, where ω0 is the system’s resonance frequency and n an 
integer2. Above a certain modulation amplitude, the system becomes unstable and exhibits parametric resonance. 
The advent of micro and nano engineering brought to life new ideas for exploiting parametric excitation for 
enhancing force and mass sensitivity2–8, effective quality factor9, and signal to noise ratio3 of tiny resonators. To 
date, many sensors, including gyroscopes10–12, mass sensors6–8 and even mechanical memories13–16 employ para-
metric excitation for improved performance.

Resonators employing two-dimensional materials such as graphene or molybdenum disulfide have attracted 
considerable interest in the scientific community17–20. They are promising candidates for various sensing applica-
tions21–26 due to their ultra high surface to mass ratio, combined with their high strength27. However, the quality 
factor of resonance is relatively low compared to other nano-electromechanical systems18,20,28, limiting their accu-
racy as a resonant sensing element. It is thus of interest to apply parametric amplification schemes to raise their 
effective quality factor and improve their performance. Several works have successfully demonstrated such an 
amplification scheme by applying an electrostatic spring force to the membrane and modulating its strength29,30. 
It is well known that above a certain critical force of this parametric pump, the device will become unstable and 
exhibit parametric resonance2,31,32. Although such behavior has been previously observed, the nonlinear dynam-
ics involved in parametric resonance has received less attention. We demonstrate that parametric resonance holds 
important information about the nonlinear damping of graphene that has been a subject of strong debate in the 
community28,33–36.

In this work it is demonstrated that opto-thermal tension modulated single layer graphene is an ideal system 
to study parametric resonance. Despite the relatively low Q-factor of the graphene resonances (<1000), it is 
shown that a record number of 14 modes can be brought into parametric resonance2,14. The origin of the effec-
tivity of graphene for parametric resonance is the large tension modulation that can be achieved by opto-thermal 
means20,22, which is related to the large Young’s modulus of graphene. Understanding parametric resonance is 
of fundamental interest, but also provides an interesting alternative to direct excitation in future applications, 
that could reduce noise and facilitate large amplitude driving in resonators and oscillators. The parametrically 
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excited nonlinear mechanical response is analyzed and a model is proposed that can simulate both parametric 
and directly driven responses. This nonlinear Duffing response, caused by the direct drive, has previously been 
studied to obtain the stiffness properties of graphene devices37,38. In this work, we focus the analysis on dissipation 
mechanisms in graphene. Period doubling bifurcations are almost fully governed by the linear dissipation terms, 
while the saddle node bifurcation of the parametric resonance is fully governed by nonlinear dissipation terms32. 
From this analysis, we can conclude that nonlinear damping in graphene can be accurately described by a dissi-
pation term of the van der Pol type. Comparing this to the cubic stiffness term allows us to extract the mechan-
ical loss tangent of graphene which is orders of magnitude larger than expected. Tracking the period doubling 
bifurcations shows that the region of instability is asymmetric. This unexpected deviation from the theoretical 
response suggests that unconventional dynamic phenomena are governing the linewidth of graphene resonators.

Experimental Setup
Experiments are performed on single-layer chemical vapour depositied (CVD) graphene drum resonators with a 
diameter of 5 μm and a cavity depth of 300 nm. The drums have venting channels to the environment to prevent 
the trapping of gas in the cavity (Fig. 1(a,b)), see Methods section for details on the fabrication). To achieve para-
metric drive, we use the experimental setup shown in Fig. 1(c). The light from a blue diode laser is focused on the 
membrane and its intensity is modulated by an input voltage Vac,in. This periodically heats up the membrane and 
creates a parametric drive due to the thermal strain. Parametric resonance occurs if the parametric driving term 
δ exceeds a threshold δt, determined by the resonance frequency ω0 and quality factor Q of resonance3. Below the 
threshold, the parametric drive can be used for amplification, experiments on this are shown in Supplementary 
Information S3. Imperfections such as initial out-of-plane deformations, wrinkles and ripples in the membrane 
geometry enable the blue laser to directly drive the resonator by thermal expansion force, because thermal expan-
sion will enhance these deformations and thus actuate the membrane. A more detailed discussion on this mech-
anism can be found in the Supplementary Information S4.

A red helium-neon laser is used to read out the motion by the optical interference between the graphene 
membrane and the fixed substrate17,20,39. The ratio of the AC voltage amplitude generated by the photodetector 
and the AC driving voltage of the blue laser Vac,out/Vac,in is determined by a vector network analyzer (VNA). 
Homodyne and heterodyne detection can be performed in this setup, such that both direct and parametric reso-
nances can be analyzed.

Multi-Mode Nonlinear Resonance
In Fig. 2(a), the blue laser is driven at 2 f, while detecting the photodiode signal at f. When increasing the blue 
laser driving voltage Vac,in a remarkable effect is observed. One-by-one, the parametric resonances of graphene 
appear, up to 7 different modes. Each mode reaches resonance at a different threshold driving amplitude Vac,in, 
due to differences in quality factor and the frequency dependence of the parametric driving parameter δ40. The 
experiment is repeated on a different drum in Fig. 2(b). Interestingly, in this case overlap between parametric res-
onances is observed at high driving levels. When overlap occurs, a direct transition between the high-amplitude 
solution of two adjacent parametric resonances is observed, e.g. at Vac,in = 382.7 mV (RMS) between the second 
and third resonance. Moreover, in some cases transitions between the high-amplitude and low-amplitude solu-
tions are observed, e.g. at Vac,in = 489.6 mV (RMS) between the same 2 modes. This random process is attributed 
to a strong dependence of the basin of attractions of the parametric high-amplitude and low-amplitude solutions 
on the initial conditions41. Hence, the amplitude can fall into two stable solutions: either the high amplitude solu-
tion of the third mode or the zero amplitude solution of the third mode which is also observed at higher driving 
amplitudes (Vac,in = 576.2 and 707.1 mV (RMS)).

Due to the overlap of parametric resonances in this drum, some resonances are skipped and not all resonances 
are found by sweeping from low to high frequency. Instead, when sweeping the frequency backward as shown in 
Fig. 2(c), one can observe the period doubling bifurcations of the resonator. As many as 14 parametric resonances 
are observed in this system, whereas previously only 7 modes could be excited in cryogenic environments14.

For a more detailed analysis of the physics, we focus on the frequency response of the fundamental mode to 
both direct and parametric drives. Figure 3 shows direct and parametric resonance of the fundamental mode as 

Figure 1. Single layer graphene resonators and the experimental setup. (a) Single layer graphene resonator 
under a scanning electron microscope (SEM). (b) Cross section of the device (not to scale). (c) Schematic of the 
measurement setup to actuate the membrane thermally and detect its motion by interferometry.
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Figure 2. Multi-mode response of a parametrically driven graphene resonators. (a) Waterfall plot of the 
multimode response at different driving amplitudes. Each mode appears at different driving levels due to 
variations in quality factor and effective driving force between them. The scale bar indicates the root mean 
square value (RMS) of Vac,out and the labels on the right indicate the RMS driving amplitude Vac,in. (b) Waterfall 
plot for a different drum, showing more mechanical modes and modal interactions. (c) Forward and backward 
frequency sweep at the highest parametric driving amplitude for the drum in (b) revealing 14 distinct 
mechanical modes in parametric resonance.

Figure 3. Frequency response of the fundamental mode to direct and parametric drive, for forward and 
backward frequency sweeps. (a) Direct drive with the frequency swept forwards. (b) Parametric drive with the 
frequency swept forwards. Below a driving threshold near Vac,in ≈ 0.11 mV (RMS) no mechanical response is 
observed. (c) Direct drive with the frequency swept backwards. (d) Parametric drive with the frequency swept 
backwards.
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function of driving level, on a different drum than Fig. 2. The VNA is configured to detect the directly driven 
frequency response (Fig. 3(a,c)). Sweeping the frequency forward (Fig. 3(a)) and backward (Fig. 3(b)) results 
in a hysteresis, that grows as the driving level is increased. This is typical for the geometric nonlinearity of the 
Duffing-type, where the stiffness becomes larger at high amplitudes. In order to detect the parametric resonance, 
the VNA was configured in a heterodyne scheme at which Vac,out is detected at half of the driving frequency Vac,in. 
Similar to the directly driven case, a hysteresis occurs between the forward (Fig. 3(b)) and backward (Fig. 3(d)) 
sweeps in frequency. Below an RMS drive amplitude of 0.11 mV, δ < δt and no response is observed. For δ > δi the 
parametric resonance obtains two stable phases of resonance separated by 180 degrees13, an additional measure-
ment that measures this behavior is shown in the Supplementary Information S2.

Figure 4(a–d) shows both directly and parametrically driven responses at different driving levels. In order to 
eludicate the effect of nonlinearities on the observed mechanical responses, a single degree-of-freedom model is 
derived that describes the motion of the resonator (see Supplementary Information S5) and this is fitted to the 
response curves in Fig. 4(a–d) (see Supplementary Information S6). The model is a combination of the Duffing, 
van der Pol and Matthieu-Hill equation also used in other works32,34,42,43:

x x x x t x x F t( cos ) cos , (1)2 3̈  μ ν β δ ω γ ω+ + + + + =

where x is the displacement (which is approximately proportional to Vac,out), μ is the damping coefficient, ν the 
nonlinear damping coefficient, β the linear stiffness coefficient, γ the nonlinear stiffness coefficient, δ cos ωt the 
parametric driving and F cos ωt the direct driving term. By setting γ = 0 and ν = 0 one can fit the direct response 
at low drive level (Fig. 4(a)) which is used to obtain values for μ, β and F. Then, γ is used to fit the large amplitude 
direct response in Fig. 4(a,c). Finally it is found that the large amplitude parametric resonances in Fig. 4(b,d) can 
only be fitted using a non-zero value of the nonlinear damping term ν. Numerical values for the fit parameters are 
provided in the Supplementary Information S1.

Figure 4 compares the fitted model and the experimental data for the directly- and parametrically driven 
fundamental resonance. This shows excellent agreement at lower driving levels (Fig. 4(a)). We note that the fitting 
parameters μ, ν, β and γ are the same in the direct and parametric response within the error of the fitting proce-
dure (see Supplementary Information S1) and that both δ and F are nearly proportional to driving voltage VAC,in. 
The region of instability (Fig. 4(e,f)) is constructed by tracking the experimentally observed with the fitted values 
of the period doubling bifurcations as function of the driving parameter δ/β, which was extracted from the fit. 
It is observed that the region of instability is narrower and assymetric in our experiments than what is expected 
from Eq. 1.

Figure 4. Comparison of experimental mechanical responses to theory. (a) Directly driven response at 7.1 and 
250.9 mV RMS driving voltage and the fit obtained from Eq. 1. (b) Parametric response and fit at 250.9 mV RMS 
driving voltage and the fit from Eq. 1. (c) Directly driven response at 446.2 mV RMS driving level, the fit from 
Eq. 1 shows a disagreement with the backward sweep, highlighted by black arrows. (d) Parametric response 
at 446.2 mV (RMS). Black arrows highlight the disagreement between Eq. 1 and experiment. (e) Parametric 
resonance instability map for the fundamental mode of drum 2, compared to the prediction from Eq. 1. (f) 
Parametric resonance instability map for the fundamental mode of drum 1 (Fig. 2).
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Region of Instability
The asymmetry around ω0 observed in the region of instability (Fig. 4) is a surprising result: such an asymmetry 
should not arise for the equation of motion (Eq. 1) used in the analysis. Something similar is observed in the 
directly driven response, where the lower saddle node bifurcation in the downward frequency sweep is always 
found at a lower frequency than simulated (Fig. 4(c)) at high driving levels. Possibly, this indicates that the excita-
tion terms are nonlinear44. However, we find that both forcing terms δ and F extracted from the fits are linear 
with the applied modulation amplitude and the forward frequency sweeps are well-described by this model (see 
Supplementary Information S1). Also taking into consideration that the membrane reaches instability from a flat 
configuration (thus at low amplitudes), the observed deviations (e.g. in Fig. 4) can therefore not be explained by 
nonlinearities in the excitation.

The asymmetry and apparent decrease in resonance linewidth (Fig. 4) thus suggest that a more sophisticated 
model than Eq. 1 should be considered to describe the observed effect. For instance, deviations from conventional 
dissipation models have been previously found in multi-layered graphene resonators36, where it was concluded 
that the van-der-Pol term x x2ν   does not describe the nonlinear damping. Here we conclude that the van-der-Pol 
term is in agreement with the experiment, since it describes the saddle node bifurcation of the parametric reso-
nances well. However, additional dissipation or stiffness terms might be needed to account for the asymmetry and 
narrowing of the parametric stability region (Fig. 4(e,f)).

Mechanical Loss Tangent
The fit to the nonlinear response of the membrane allows us to extract a number for the Duffing (γ) and 
van-der-Pol terms (ν) in our resonators. As shown in the Supplementary Information S7, the mechanical loss tan-
gent of graphene tan δl at the resonance frequency can be determined from the ratio of these terms, tan δl = ν/γ. 
From the values of the fits we obtain tan δl = 0.34 for drum 2 and tan δl = 0.15 for drum 3. The values of these loss 
tangents are in the same range as found by Jinkins et al.45. The obtained values for the loss tangent are relatively 
high for a bulk crystalline material, therefore the observed loss tangent is likely dominated by effects related to 
the atomic thickness of graphene, such as thermodynamic fluctuations46, sidewall adhesion47 or unzipping of 
wrinkles48.

Discussion
Here we discuss the efficiency of the tension modulation for parametric excitation of the graphene membrane. 
The tension modulation Δn0(t) is given by Δn0 = αE2DΔT/(1 − ν), where α is the thermal expansion coefficient, 
E2D the 2D Young’s modulus, ν the Poisson ratio and ΔT the temperature modulation. Using approximate values 
from literature27,49, one finds that Δn0(t) ≈ 0.003ΔT Nm−1 K−1, which means that a temperature modulation of 
1 K already results in a tension modulation of the order of the intrinsic pre-tension n0 (estimated to be between 
0.003 N/m and 0.03 N/m40) of the graphene membranes studied here. One can define the relative shift of the res-
onance frequency per unit of temperature as a figure of merit for the efficiency of the opto-thermal parametric 
drive: = .
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Using the approximative values above, we estimate the temperature modulation ΔT lies between 0.13 K and 1.5 K. 
These moderate temperature modulations illustrate that the parametric driving scheme for graphene membranes 
is a very efficient method for reaching parametric resonance.

Multi-mode parametric oscillators are interesting for applications where accurate frequency tracking of mul-
tiple modes is necessary. We list here three potential applications. (1) Radio receivers in the MHz range where 
multiple radio channels need to be monitored and received simultaneously to maximize data rates, or to allow 
seamless switching between channels without having to tune the channel51. (2) Inertial imaging52, where accurate 
tracking of multiple resonances allows one to determine the mass, location and shape of a particle on top of a 
resonator, which has applications in biotechnology53. (3) Parametric oscillators can also be used to build a binary 
information and computation system14, where information is stored in the phase of the resonator. Multi-mode 
resonators have the potential of enabling parallel processing and data storage. The high resonance frequencies and 
relatively low Q of the graphene membranes can increase computation speed.

A unique feature of the demonstrated graphene system is that all of these modes can be simultaneously par-
ametrically amplified via tension modulation. The use of parametric amplification therefore has the advantage 
that no feedback loops or special filters or actuation schemes are needed to select the desired resonance mode. 
Moreover, parametric amplification effectively results in an amplitude dependent gain, which can be used to gen-
erate higher output signals than with a constant gain. Moreover, since the driving frequency is double the readout 
frequency, parametric driving is less sensitive to cross-talk that is often hampering resolving signal detection in 
directly driven resonators2.

Conclusions
In conclusion, we report on multi-mode parametric resonance and amplification in single layer graphene res-
onators by an opto-thermal tension modulation technique. It is demonstrated that the tension-dominated 
restoring force results in parametric excitation of multiple resonance modes in the system when the sys-
tem is opto-thermally driven. The parametrically and directly driven resonances are compared to a single 
degree-of-freedom model based on the Duffing, van der Pol and Matthieu equations, with good agreement at 
low driving levels. This allows simultaneous determination of nonlinear stiffness and damping coefficients and 
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results in a high-frequency determination of graphene’s mechanical loss tangent. Graphene resonators are thus an 
interesting platform to study parametric excitations and their utilization for sensors with improved performance.

Methods
Graphene resonators are fabricated by etching dumbbell-shaped cavities in a thermally grown, 285 nm SiO2 layer 
on a silicon wafer. The etching did not fully stop at the silicon layer, resulting in cavities that are 300 nm thick. 
Circular membranes are formed by transfer of single layer CVD graphene (Fig. 1(a)). During the transfer process 
one side of the dumbbell is broken while the other side remains intact, creating a circular resonator on one side 
with a venting channel to the environment (Fig. 1(b)). This prevents gas from being trapped in the cavity when 
the pressure in the surroundings changes. In the main section of this work four identical drums with a diameter of 
5 micrometer are used; results obtained on drum 1 are shown in Figs 2(a), 3 and 4(f), drum 2 in Fig. 2(b,c), drum 
3 in Fig. 4(a–e). Drum 4 and 5 were used in the Supplementary Information S2 and S3, respectively. More details 
on the fabrication and transfer process of the drum resonators can be found in ref.40.

All measurements are performed at room temperature in a high vacuum environment with a pressure less 
than 2 × 10−5 mbar to minimize the effects of gas damping. The blue diode laser (Thorlabs LP405-SP10) has 
a wavelength of 405 nm and is biased with a 32 mA current, resulting in 0.76 mW of incident power measured 
before the objective. The red laser illuminates the sample with 1.2 mW of incident power (measured before the 
objective lens). The vector network analyzer is of type Rohde & Schwarz ZNB4 with the frequency conversion 
option (k4) installed. The frequency conversion option of the VNA enables both homodyne and heterodyne 
detection, such that both direct and parametric resonances can be detected.

Data availability. The authors declare that all the data in this manuscript are available upon request.
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