
1Scientific REPORts |  (2018) 8:9152  | DOI:10.1038/s41598-018-27364-7

www.nature.com/scientificreports

Fisher Discrimination Regularized 
Robust Coding Based on a Local 
Center for Tumor Classification
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Tumor classification is crucial to the clinical diagnosis and proper treatment of cancers. In recent years, 
sparse representation-based classifier (SRC) has been proposed for tumor classification. The employed 
dictionary plays an important role in sparse representation-based or sparse coding-based classification. 
However, sparse representation-based tumor classification models have not used the employed 
dictionary, thereby limiting their performance. Furthermore, this sparse representation model assumes 
that the coding residual follows a Gaussian or Laplacian distribution, which may not effectively 
describe the coding residual in practical tumor classification. In the present study, we formulated a 
novel effective cancer classification technique, namely, Fisher discrimination regularized robust coding 
(FDRRC), by combining the Fisher discrimination dictionary learning method with the regularized 
robust coding (RRC) model, which searches for a maximum a posteriori solution to coding problems 
by assuming that the coding residual and representation coefficient are independent and identically 
distributed. The proposed FDRRC model is extensively evaluated on various tumor datasets and shows 
superior performance compared with various state-of-the-art tumor classification methods in a variety 
of classification tasks.

Microarray techniques have been used to delineate cancer groups or to identify candidate genes for cancer prog-
nosis. The accurate classification of tumors is important for cancer treatment. With the advancement of DNA 
microarray and next-generation sequencing technology1–4, various gene expression profile (GEP) data are rap-
idly obtained. Thus, we should develop novel analysis methods that can deeply mine and interpret these data to 
obtain insight into the mechanisms of tumor development. To date, a number of methods have been proposed 
for classifying cancer types or subtypes5–9. These common methods, including support vector machine10, linear 
discriminant analysis11, partial least squares (PLS)12, and artificial neural networks13, have been used to mine gene 
expression data.

Machine learning-based methods have been widely used in tumor classification. However, these meth-
ods require a predictive model to predict the labels of test samples. Predictive model selection is a complex 
training procedure that easily leads to overfitting and decreased prediction performance. Recently, given the 
non-requirement for model selection and robustness to noise, outliers, and incomplete measurements, sparse 
representation-based classifier (SRC) was proposed for face recognition14,15 and further extended to cancer clas-
sification16–18 and miRNA-disease association prediction19,20. For example, Hang et al. proposed a SRC-based 
method to classify six tumor gene expression datasets and obtained excellent performance18. Zheng et al. fur-
ther combined the idea of metasample and proposed a new SRC-based method for tumor classification called 
metasample-based sparse representation-based classifier (MSRC)16. These experiments showed that MSRC is 
efficient for tumor classification and can achieve high accuracy. Li et al. proposed a new classifier called the max-
denominator reweighted sparse representation-based classifier (MRSRC) for cancer classification5. These exper-
iments showed the efficiency and robustness of MRSRC. All SRC-based methods model a classification problem 
to identify a sparse representation of test samples, whereas the L1 sparsity constraint represents a test sample as 
the linear combination of these training samples.

In the sparse representation model, the test sample y ∈ Rm is used to represent a dictionary D = {D1, D2, … Dc}  
∈ Rm×n, that is, y ≈ Dα where the sparse representation vector α ∈ Rn only shows several large entries. Then, the 
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test samples are classified based on the solved vector αand the dictionary D. The selection of vector α and the 
dictionary D is crucial to the success of the sparse representation model. The previously described SRC-based 
methods directly regarded the training samples of all classes as the dictionary to represent the test sample and 
classified the test sample by evaluating which class leads to minimal reconstruction error. Although these meth-
ods showed interesting results, noise, outliers, incomplete measurements, and trivial information in the raw train-
ing data made this classification less effective. These naive methods also do not make maximize the discriminative 
information in the training samples. These problems can be addressed by properly learning a discriminative 
dictionary.

In general, discriminative dictionary learning methods can be divided into two categories. In the first cat-
egory, a dictionary shared by all classes is learned, whereas the representation coefficients are discriminative. 
Jiang et al. proposed that samples of the same class possesses similar sparse representation coefficients21. Mairal 
et al. proposed a task-driven dictionary learning framework that minimizes the different risk functions of the 
representation coefficients for different tasks22. In general, these of methods aims to learn a shared dictionary 
by all classes and classify test samples with representation coefficients. However, the shared dictionary loses the 
class labels of the dictionary atoms. Thus, classifying the test samples based on the class-specific representation 
residuals is not feasible.

In the second category, discriminative dictionary learning methods learn a dictionary class by class, and atoms 
of the dictionary correspond to the subject class labels. Yang et al. learned a dictionary for each class, classified 
the test samples by using the representation residual, and applied dictionary learning methods to face recognition 
and signal clustering23. Wang et al. proposed a class-specific dictionary learning method for sparse modeling in 
action recognition24. In the previously mentioned methods, test samples are classified by using the representation 
residual associated with each class, but the representation coefficients are not used and are not enforced to be 
discriminative in the final classification.

To solve the previously discussed problems, Yang et al. proposed a Fisher discrimination dictionary learning 
framework to learn a structured dictionary25. In discrimination dictionary learning, the sparse representation 
coefficients present large between-class scatter and small within-class scatter. Each class-specific sub-dictionary 
presents good reconstruction of the training samples from that class and poor reconstruction of the other classes. 
By Fisher discrimination dictionary learning, the representation residual associated with each class can effectively 
be used for classification and the discrimination of representation coefficients can be exploited.

All SRC-based methods assume that the coding residual follows a Gaussian or Laplacian distribution, which 
may not be effective for describing the coding residual in practical GEP datasets. To address this problem, Yang 
et al. proposed a regularized robust coding (RRC) method for face recognition26. The RRC model searches for 
a maximum a posteriori (MAP) solution of the coding problem by assuming that the coding residual and rep-
resentation coefficient are independent and identically distributed. However, either SRC-based or RRC methods 
or both do not take full advantage of discriminative information in representation coefficients. In the present 
study, we present RRC based on the Fisher discrimination dictionary learning method, a novel and effective 
cancer classification technique combining RRC methods and the concept of Fisher discrimination dictionary 
learning, which can maximize the use of discriminative information in representation coefficients and representa-
tion residuals. The proposed Fisher discrimination regularized robust coding (FDRRC) model extensively applies 
to various tumor GEP datasets and shows superior performance to different state-of-the-art SRC-based and 
machine learning-based methods in a variety of classification tasks.

The remainder of the paper is organized as follows: Section 2 mainly describes the experimental process and 
presents the experimental results obtained from eight tumor datasets. Section 3 discusses the proposed method, 
concludes the paper and outlines future studies. Section 4 describes the fundamentals of FDRRC.

Results
In present study, eight publicly available tumor data sets are used to evaluate the performance of FDRRC. The 
experiment is divided into four sections. In the first section, cancer datasets and dataset preprocessing are intro-
duced. In the second section, parameter selection is discussed. In the third section, describes the various samples 
used in the experiment with 400 top genes on eight datasets. In the fourth section, to make a fair performance 
comparison, cross-validation (CV) is presented. The proposed method is compared with several representative 
methods, such as SRC18, SVD + MSRC27 and MRSRC5. SRC, MSRC, and MRSRC are SRC-based methods that 
have been widely used in tumor classification in recent years. All experiments are implemented in the Matlab 
environment and conducted on a personal computer (Intel Core dual-core CPU with 2.93 GHz and 8 G RAM).

Cancer datasets and dataset preprocessing. For a more comprehensive comparison of the perfor-
mance of these methods, eight tumor GEP datasets are used to evaluate the proposed method. These datasets 
include five two-class datasets and three multi-class datasets. The summarized descriptions of the eight GEP 
datasets are provided in Table 1.

The five two-class tumor datasets are acute leukemia dataset28, colon cancer dataset29, gliomas dataset30, dif-
fuse large B-cell lymphoma (DLBCL) dataset31 and Prostate dataset32. The acute leukemia set contains 72 samples 
from two subclass. The colon cancer data set includes 62 samples, with gene expression data for 40 tumor and 
22 normal colon tissue samples. The gliomas data set consists of 50 samples from two subclasses (glioblastomas 
and anaplastic oligodendrogliomas), and each sample contains 12,625 genes. For the DLBCL data set, RNA was 
hybridized to high-density oligonucleotide microarrays to measure the gene expression. The target dataset con-
tains 77 samples of 7,129 genes. The target class has 2 states, including 58 diffuse large b-cell lymphoma samples 
and 19 follicular lymphoma samples. For the prostate tumor data set, the gene expression profiles were derived 
from tumors and non-tumor samples from prostate cancer patients, including 59 normal and 75 tumor samples. 
The number of genes is 12,600. Table 1 provides the details of the data sets.
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For multi-class datasets, the data sets include the small round blue cell tumors (ALL)33, MLLLeukemia34, 
and LukemiaGloub28. The ALL data set total contains 248 samples and 12,626 genes from six subclasses. 
The MLLLeukemia data set contains 72 samples and 12,582 genes per sample with three subclasses. The 
LukemiaGloub data set contains 72 samples with three subclasses. Each sample contains 7,129 genes. Table 4 
provides details of the data sets.

GEP data offer high dimensionality and a small sample size. Redundant and irrelevant data significantly affects 
classification. To compare the performance of FDRRC and SRC-based methods in the gene selection, the ReliefF 
algorithm is applied to the training set35. Then, the top 400 genes are selected from each dataset, thereby present-
ing a good trade-off between computational complexity and biological significance.

Parameter selection. Five parameters should be set in the FDRRC model. The dictionary learning phase 
employs two parameters: λ1 and λ2, which are both presented in Eq.(8). In general, we search λ1, λ2 from a small 
set {0.001, 0.005, 0.01, 0.05, 0.1} by five-fold CV. The classifying phase includes three parameters, namely, μ and 
δ from the weight function Eq. (21) and w from residual function Eq. (24). Parameter μ controls the decreased 
rate of the weight wi,i; we can simply set μ = s/δ, where s = 8 is a constant. Parameter δ controls the location of the 
demarcation point, which can be obtained by using the following formula:

(e) , (1)δ = π ϕ

where π(e)ϕ is the ϕth largest element of the set { }e j m, 1, 2, ,j
2

=  and ϕ = ς(τm) outputs the largest integer 
smaller than τm. According to the experiments7, τ = 0.9 can be set in the classification of tumors. Parameter w 
can balance the contributions of the representation residual and representation vector to the classification. We 
search for w from a small set {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} by five-fold VC.

Comparison of the balance division performance. Different divisions of the training set and test set can 
greatly affect the classification performance. To avoid the effects of an imbalanced training set, the balance division 
method (BDM) is designed to divide each original data set into a balanced training set and test set. For this BDM, 
Q samples from each subclass are randomly selected for use in the training set, and the remaining samples are used 
in the test set. Here, Q is an integer number. In the present study, we set Q = 5to −cmin( ) 1i  samples per subclass 
as the training set and used the remaining samples for testing to guarantee that at least one sample in each category 
can be used in the test. Q denotes the number of training samples per class, and min(|ci|) denotes the minimum 
number of subclass set of samples in the training data. Suggesting that when Qis 5, then 5 samples per-subclass are 
randomly selected and used as the training set and the rest are assigned to the test set. In this experiment, the train-
ing/testing is performed 10 times, and the average classification accuracies are presented.

The average prediction accuracies that vary with different values of Q are shown in Figs 1 and 2, showing 
that, in the case of two-class classification, FDRRC achieves the highest classification accuracy in most cases in 
the acute leukemia and Gliomas datasets. Although gliomas are difficult to classify, FDRRC can still achieve the 

Data set Classes Genes
The number 
of samples

Acute leukemia data 2 7,129 72

Colon cancer data 2 2,000 62

Gliomas data 2 1,2625 50

DLBCL data 2 7,129 77

Prostate data 2 12,600 136

ALL data 6 12,625 248

MLLLeukemia data 3 12,582 72

LukemiaGloub data 3 7,129 72

Table 1. The descriptions of eight data sets of tumor.

Dataset SRC MSRC MRSRC FDRRC

Colon cancer data 77.42 80.65 82.26 83.87

Acute leukemia data 94.44 95.83 95.83 98.61

Gliomas data 70.00 70.00 74.00 82.00

DLBCL data 90.91 92.21 89.61 96.10

Prostate data 88.24 95.10 96.08 92.16

ALL data 97.18 97.58 97.98 97.98

MLLLeukemia data 97.22 98.61 98.61 98.61

LukemiaGloub data 94.44 95.83 97.22 100

Table 2. 10-fold CV prediction accuracy of eight tumor microarray datasets by using various classification 
methods with the top 400 genes.
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highest classification accuracy when Q = 17 samples per subclass are used in training. For the prostate dataset, 
FDRRC achieves the highest classification accuracy in most cases when the samples are few per subclass. In the 
case of multi-class classification, the experimental results indicate that FDRRC obtains a significant advantage in 
the ALL and MLLLeukemia datasets. Generally, the present methods are superior to other SRC-based methods 
in prediction accuracy not only on the four two-class classification datasets but also on the three multi-class 
classification datasets.

Comparison with different numbers of genes. To compare the performance of the four models with 
different feature dimensions on eight tumor data sets, we run experiments using the ReliefF algorithm to select 
genes from 102 to 302 in increments of 5. For these experiments, the number of samples per subclass of the train-
ing set, was selected from {5, 6, 7, 8, 9, 10} by five-fold VC. The results are shown in Fig. 3.

Figure 1. Comparison of prediction accuracy on five two-class classification datasets by varying the number of 
samples from per subclass.
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Figure 3 presents the average prediction accuracy for the classification of eight tumor data sets. As shown in 
Fig. 3, FDRRC achieves the best accuracy in the five data sets in most cases, illustrating that FDRRC is robust with 
respect to the number of top genes. For Colon, Acute leukemia, DLBCL, Gliomas, Prostate and MLLLeukemia 
data sets, the accuracy of the curve increases with the increasing number of genes selected. Clearly, the selection 
of the top genes can improve the performance of all classification methods. For Acute leukemia dataset and 
ALL dataset, the best number of top genes is 400. These results suggest that the selection of the top 400 genes is 
reasonable.

Comparison of 10-fold CV performance. To evaluate the classification performance on imbalanced split 
training/testing sets, we perform a 10-fold stratified CV experiment to evaluate the classification performance 
between FDRRC and SRC-based methods. All samples are randomly divided into 10 subsets and nine subsets are 
used for training, the remaining samples are used for testing.

The 10-fold CV results are summarized in Tables 2, 3 and 4. Table 2 shows that FDRRC achieves the highest 
level of accuracy in seven datasets. Particularly in multi-class datasets, FDRRC exhibits the best classification 
accuracy in all datasets. Table 3 indicates that FDRRC achieves the highest prediction sensitivity in six datasets, 
whereas FDRRC shows the best classification sensitivity in four tow-class datasets. Table 4 shows that FDRRC 
exhibits the highest specificity in seven datasets. Particularly in multi-class datasets, FDRRC exhibits the best 
classification accuracy in all datasets. Thus, we concluded that the excellent applicability of FDRRC whether in 
two-class or multi-class datasets, exhibits the best classification accuracy, the best classification sensitivity, and the 
best classification specificity in most cases.

Discussions
The results of the present study, show that FDRRC outperforms the sparse representation-based methods (such as 
SRC, MSRC, and MRSRC) in most experiments. FDRRC outperforms the sparse representation-based methods 
probably because the representation residual associated with each class can be effectively used for classification, 
the discrimination of representation coefficients has been exploited, the coding residual is independent and iden-
tically distributed and the local center can help to distinguish outliers.

In the present, we proposed a new method, called FDRRC for classifying tumors. This method adopts the 
Fisher discrimination dictionary learning method and the concept of the local center with the RRC model. The 
FDRRC model learns a discriminative dictionary and seeks a MAP solution to the coding problem. Classification 
is achieved by a local center classifier, which takes full discriminative information in representation coefficients. 

Figure 2. Comparison of prediction accuracy on three multi-class classification datasets by varying the number 
of samples from per subclass.
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We also compare the performance of FDRRC with those of three sparse representation-based methods by using 
eight tumor expression datasets. The results demonstrate the superiority of FDRRC and validate the effectiveness 
and efficiency of FDRRC in tumor classification.

Compared with the other methods, FDRRC exhibits a stable performance with respect to various datasets. 
The properties of this FDRRC algorithm should be further investigated. Thus, we will extend the algorithm with 
a superior discriminative dictionary and consider the driver genes to tailor the algorithm in our future studies. In 
addition, FDRRC will be used to predict miRNA36 and lncRNA-disease association37 in future studies.

Figure 3. Comparison of accuracy on eight datasets by varying the number of top selected genes.
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Methods
Description of SRC problem. Assuming that X = {X1, X2, …, Xc} ∈ Rm×n is a training sample set, where c cor-
responds to the number of subclasses, and m, n are dimensionality and the number of samples, respectively. The jth 
class training samples Xj can be presented as columns of a matrix 

 X x x x R j c[ , , ] , 1, 2, ,j j j j n
m n

,1 ,2 , j
= ∈ =×  

where xj,i is a sample of jth class, and nj refers to the number of jth class training samples. Let L = {l1, l2, … lc} denote the 
label set, whereas y ∈ Rm is a test sample. Then, the SRC-based problem can be represented as follows:

α α γ α= − +α
∧ argmin y X{ } (2)2

2
1

where α α α α=∧ ∧ ∧ ∧[ , , , ]c1 2  includes the sparse representation coefficient of y with respect to X, and γ is a 
small positive constant. By obtaining representation coefficient α∧, SRC-based method assigns a label to test 
sample y according to the following equation:

α= − ∧e y X (3)i i i 2
2

where iα ∧ is the sparse representation coefficient sub-vector associated with subclass Xi. The classification rule is 
set as identity(y) = argmini{ei}.

Fisher Discrimination Dictionary Learning. Given the training samples X = {X1, X2, …, Xc}, the Fisher 
discrimination dictionary learning model not only requires that D should be highly capable of representing X 
(i.e., X ≈ Dα) but also that D can strongly distinguish the samples in X. The Fisher discrimination dictionary 
learning model can be expressed as follows:

α λ α λ α= + + . . = ∀{ }J argmin r X D f s t d n( , , ) ( ) 1, (4)D X D X n( , ) ( , ) 1 1 2 2

where f(α) is a discrimination term imposed on the coefficient matrix α, a 1 is the sparsity penalty, r(X, D, α)is 
the discriminative data fidelity term, and λ1 and λ2 are scalar parameters.

We can write αi as [ ; ; ; ; ]i i i
j

i
c1

 α α α α= , where i
jα  is the representation coefficient of Xi over Di. For 

the discriminative data fidelity term r(X, D, α), Xi could be well represented by Di but not by Dj,j ≠ i. This relation-
ship indicates that αi

i should present several significant coefficients to achieve a small α−X Di i i
i

F
2 , whereas 

α ≠j i,i
j  should include small coefficients so that αDi i

i
F
2  is small. Thus, the discriminative data fidelity term can 

be defined as follows:

Dataset SRC MSRC MRSRC FDRRC

Colon cancer data 68.18 68.18 81.82 77.27

Acute leukemia data 92.00 92.00 88.00 96.00

Gliomas data 71.43 71.43 71.43 82.14

DLBCL data 94.74 94.74 100 100

Prostate data 92.31 94.23 96.15 96.15

ALL data 80.00 86.67 93.33 86.67

MLLLeukemia data 95.83 100 100 100

LukemiaGloub data 88.89 88.89 88.89 100

Table 3. 10-fold CV prediction sensitivity of eight tumor microarray datasets by using various classification 
methods with the top 400 genes.

Dataset SRC MSRC MRSRC FDRRC

Colon cancer data 82.50 87.50 82.50 87.50

Acute leukemia data 95.74 97.87 100 100

Gliomas data 68.18 68.18 77.27 81.82

DLBCL data 89.66 91.38 86.21 94.83

Prostate data 84.00 96.00 96.00 88.00

ALL data 99.14 98.71 98.71 99.57

MLLLeukemia data 100 100 100 100

LukemiaGloub data 100 100 100 100

Table 4. 10-fold CV prediction specificity of eight tumor microarray datasets by using various classification 
methods with the top 400 genes.
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r X D X D X D D( , , )

(5)

i i i i F i i i
i

F
j
j i

c

j i
j

F

2 2

1

2
∑α α α α= − + − + .
=
≠

For the discriminative coefficient term f(α), the Fisher discrimination criterion38 is expected to minimize 
the within-class scatter of α, denoted by SW(α), and maximize the between-class scatter of α, denoted by SB(α). 
SW(α) and SB(α) are defined as follows:

∑∑ ∑α α αα = − − = − −α α
=

∈
=

m m and SB n m m m mSW( ) ( )( ) ( ) ( )( ) ,
(6)i

c

c i k i
T

i

c

i c i
T

1 1c i

where mi and m are the mean vectors of αi and α, respectively, and ni is the number of samples in class Xi. Thus, 
the criminative coefficient term can be defined as follows:

α η α= α − α +f tr tr( ) (SW( )) (SB( )) (7)F
2

where tr(⋅) means the trace of a matrix, η is a parameter, and F
2α  is an elastic term.

Finally, the Fisher discrimination dictionary learning model can be expressed as follows:

∑ α λ α λ η α





+ + α − α +





. . = ∀
=

min r X D tr tr s t d n( , , ) ( (SW( )) (SB( ))) 1,
(8)

D X
i

c

i i F n( , )
1

1 1 2
2

2

Optimization of the Fisher discrimination dictionary learning model can be divided into sub-problems, that is, 
updating α with a fixed D and updating D with a fixed α.

When α is updated, the dictionary D is fixed and can compute αi class by class. When computing αi, all αj,  
j ≠ i are fixed. The objective function expressed in Eq. (8) is reduced to a sparse representation problem and can 
be written as follows:

{ }min r X D f( , , ) ( ) (9)i i i i i1 1 2i
α λ α λ α+ +α

with

∑α α η α= − − − +
=

f M M M( ) ,i i i F
k

c

k F i F
2

1

2 2

where Mk and M are the mean vector matrices of class k and all classes, respectively. In this study, we set η = 1 for 
simplicity. Notably, all terms in Eq. (9), except for a 1, are differentiable. We rewrite Eq. (9) as follows:

{ }min Q( ) 2 , (10)i i 1i
α τ α+α

where Q(αi) = r(Xi, D, αi) + λ2 fi(αi) and τ = λ1/2. The method of FISTA39 can be employed to solve Eq. (10), as 
described in Table 5.

When updating D = [D1, D2, …, Dc], the coefficient α is fixed. We also update = 



D d d d, , ,i n1 2 i



 class by 
class. When updating Di, all Dj, j ≠ i, are fixed. The objective function expressed in Eq. (8) is reduced to:

min X D X D D s t d l n1, 1, 2, ,
(11)

D i
i

F i i i
i

F
j j i

c

i j
i

F l i
2 2

1,

2

i
∑α α α








− + − +







. . = =∼

= ≠

where α= − ∑∼
= ≠X X Dj j i

c
j

j
1,  and αj is the representation matrix of X over Di. Eq. (11) could be re-written as 

follows:

Input: σ τ > ., 0

1. Initialization: α =∧ 0i
(1)  and h = 1.

2. while convergence or the maximal itertion number is not reached do h + h = 1

( )S Q( )i
h

i
h

i
h( )

/
( 1) 1

2
( 1)α α α= − ∇τ σ σ

∧ ∧ − ∧ −

where Q( )i
h( 1)α∇ ∧ −  is the derivative of Q(αi) w.r.t α ∧ −

i
h( 1), and Sτ/σ is a component-wise soft thresholding operator defined by Wright et al.42.

S
sign otherwise

[ ( )]
0 /

( ) /j
j

j j
/ α

α τ σ

α α τ σ
=








≤

−
τ σ

3. Return α α=∧ ∧
i i

h( ).

Table 5. Update of representation coefficient α in the Fisher discrimination dictionary learning model.
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Λ − . . = =min D Z s t d l n1, 1, 2, , (12)D i i i F l i
2

2i

where Λi = [X~ Xi0 … 00 … 0], 
 α α α α α α= − +Zi

i
i
i i

i
i

i
i

c
i

1 1 1  and 0 is a zero matrix with the appropriate size 
based on the context. Eq. (12) can be efficiently solved by updating each dictionary atom one by one via the algo-
rithm of Yang et al.40. The update of dictionary D is described in Table 6.

Description of RRC. In the SRC-based method, coding residual e = y − Dα follows Gaussian distribution25. 
However, in practice, Gaussian priors on e may be invalid, especially when GEP data are corrupted and contain 
outliers. To deal with this problem, we can consider tumor classification from the view point of Bayesian estima-
tion, especially MAP estimation. Based on MAP estimation, sparse representation coefficient α can be expressed 
as follows26:

α α= |α
∧ argmax p yln ( ) (13)

Then, by using Bayesian formulation, we can obtain the following:

α α α= | +α
∧ argmax p y p{ln ( ) ln ( )} (14)

Assuming that elements ei of coding residual e = y − Dα = [e1; e2; … em] are independent and identically distrib-
uted and feature the probability density function (PDF) fθ(ei), then we can obtain the equation below:

p y f y rln ( ) ( )
(15)i

m

i i
1

∏α α| = −θ
=

Meanwhile, assuming that element αi of sparse representation coefficient α = [α1; α2; …; αn] are independent and 
identically distributed and contain the PDF fσ(αi), then we can acquire the following formula:

∏ αα = σ
=

fp( ) ( )
(16)j

n

j
1

Finally, MAP estimation of α can be expressed as follows:

∏ ∏α α α=







− +







α θ σ
∧

= =
argmax f y r f( ) ( )

(17)i

m

i i
j

n

j
1 1

Letting e f e( ) ln ( )ρ = −θ θ  and ρσ(α) = −lnfσ(α), then, the above equation can be converted into the following:

∑ ∑α ρ α ρ α=







− +







α θ σ
∧

= =
argmax y r( ) ( )

(18)i

m

i i
j

n

j
1 1

The above model is called RRC. Two key issues must be considered to solve the RRC model: determining distri-
butions of ρθ(e) and ρσ(α); and minimizing energy function.

For ρθ(e), given diversity in gene variations, predefining distribution presents difficulty. In RRC model, 
unknown PDF ρθ(e) is assumed symmetric, differentiable, and monotonic. Therefore, ρθ(e) features the following 
properties: (1) ρθ(0) is global minimal of ρθ(Z); (2) ρθ(Z) = ρθ(−Z); (3) if |Z1| < |Z2|, then ρθ(Z1) < ρθ(Z2). Without 
loss of generality, we let ρθ(0) = 0. Meanwhile, ρθ(e) is allowed to feature a more flexible shape, which adapts to 
input testing sample y, to make the system more robust to outliers. Then, by Taylor expansion, Equation (18) can 
be approximated as follows:

argmax W y D1
2

( ) ( )
(19)j

n

j
1/2

2
2

1
∑α α ρ α=








− +







α σ
∧

=

where W is a diagonal matrix and can be updated via the following formula:

Fix α and update each = ...D i C, 1, 2,i , by solving Eq. (12)

1. Let Z z z z[ ; ; ; ]i ni1 2= ...  and = 
 ... 

D d d d, ,i ni1 2 , where zj, j = 1, 2, ... ni is the row vector of zi, and dj is the jth column vector of Di.

2. Fix all ≠d l j,j , update dj. Let = Λ − ∑ ≠Y d zi l j l l. The minimization of Eq. (12) becomes

− . . =Y d z s t dmin 1dj j j F j
2

2

After some deviation, we could get the solution d Yz Yz/j j
T

j
T

2
= .

3. Then Fix D and update α like Table 5.

Table 6. Update of dictionary D in the Fisher discrimination dictionary learning model.
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W e e e( ) ( )/ (20)i i i i i, 0, 0, 0,ω ρ= = ′θ θ

Thus, minimization of RRC focuses on calculating diagonal weight matrix W. As ρθ(e) is symmetric, differentia-
ble, and monotonic, ωθ(ei) can be assumed as continuous and symmetric while being inversely proportional to ei. 
With these considerations, the logistic function which features the same properties is a good choice for ωθ(ei)41. 
Thus, we can obtain the following:

e e e( ) exp( )/(1 exp( )) (21)i i i
2 2ω μ μδ μ μδ= − + + − +θ

where parameters μ and δ represent two positive scalars. Parameter μcontrols decreasing rate from 1 to 0, and δ 
controls location of demarcation point. With Equations (20) and (21) and ρθ(0) = 0, we can formulate Equation (22):

ρ
μ

μ μδ μδ= − + − + − +θ e e( ) 1
2

(ln(1 exp( )) ln(1 exp( )))
(22)i i

2

For ρσ(α), we can assume that sparse representation coefficient αi follows a generalized Gaussian distribution 
as only the representation coefficients associated with training samples from the target class can feature high 
absolute values. As we do not know beforehand the class of the test sample, a reasonable prior can be that only a 
small percent of representation coefficients contains significant values. Then, we can used the following equation:

1. Set the initial value of iteration count t = 1.

2. Compute the coding residual:

e y Dt t( ) ( )α= −

where α = 
 ⋅ ⋅ ⋅ 

; ; ; ;m m m
(1) 1 1 1  is the initial vector, and m is the mean of all training samples.

3. Estimate weight value of each gene as follows:

ω μ μδ=


 + − −



θ ( )e e( ) 1/ 1 exp ( )i

t
i

t( ) ( ) 2

where μ and δ are estimated in each iteration, and δ is associated with residual.

4. Weighted regularized sparse representation coefficient:

{ }w y Dargmin ( ) ( ) ( )t
j
n

j
1
2

( ) 0 5
2

2
1α α ρ α= − + ∑α σ

∗ .
=

where w(t) is the estimated diagonal weight matrix with ω ρ α λ α β= = =θ σ

β
w e( , ( ) and 1i i

t
i
t

j j,
( ) ( ) .

5. Update the sparse representation coefficients:

If t = 1, α(t) = α*;

If t > 1, α(t) = α(t−1) + υ(t)(α*−α(t−1));

where 0 < υ(t) ≤ 1 is a suitable step size that can be search from 1 to 0 by the standard line-search process43.

6. Reconstruct the test sample by sparse representation coefficient and all metagenes:

α=y Drec
t t( ) ( ) and let t = t + 1.

7. Go back to Step 4 until condition of convergence W W W/t t t( ) ( 1)
2

( 1)
2 ϕ− <− − , where ϕ is a small positive scalar) is met, or maximal number of iterations is reached.

Table 7. The RRC algorithm.

Input: Training samples X = [X1, X2, ..., XC] ∈ Rm×n

Testing samples y ∈ Rm

Output: Label l of y.

1. Initialize D.

We initialize the atoms of Di as the eigenvectors of Xi.

2. Update coefficient α.

Fix D and solve αi, i = 1, 2, ... C, one by one by solving Eq. (9) with the algorithm presented in Table 5.

3. Update dictionary D.

Fix α and update each = ...D i C, 1, 2, ,i  by solving Eq. (12) with the algorithm presented in Table 6.

4. Classify test sample y.

Fix α and D, and solve the sparse representation α∧ of y with the algorithm presented in Table 7.

When the algorithm converges, we can classify the test samples as follows:

α α= − + −∧ ∧{identity y W y D wg m( ) arg min ( )i final i i i
1/2

2 2
2
,

where Wfinal is the final weight matrix, iα ∧ is the final sub- sparse representation coefficient vector associated with class i, and α∧ is the 
final representation coefficient vector.

Table 8. The FDRRC algorithm.
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Γσ
α

β

α

where Γ is the gamma function.
After determining distributions ρθ(e) and ρσ(α), minimized energy function can be used in the iteratively 

reweighted RRC (IR3C) algorithm, which was designed by Yang et al., to solve the RRC model efficiently26. The 
RRC (IR3C) algorithm is described in Table 7.

Local center classifier. Equation (3) is the classification function of SRC-based methods that only con-
sider discrimination capability of representation residuals and not the discrimination capability of representation 
vectors.

Assuming that mi is the mean sparse representation coefficient vector of class Xi, mean vector mi can be viewed 
as the center of class Xi in the transformed space comprising D. Thus, we label mi as the local center. For classifi-
cation of tumor, when y originates from class i, residual α− ∧y Di i 2

2should be small while y D j i,j j 2

2
α− ≠∧ , 

should be big. In addition, sparse representation coefficient vector α∧ should be close to mi but far from mean 
vectors of other classes. Considering the above factors, we define the following classifier:

α= − + α −∧ ∧e y D w m (24)i i i i2
2

2
2

where w is a parameter for balancing contribution of the two terms to classification. Finally, we can obtain the 
label of y according to the following formula:

=identity y e( ) argmin ( ) (25)i i

Algorithm of FDRRC. By combining the IR3C algorithm26 and Fisher discrimination dictionary learning 
model, we can obtain the algorithm of FDRRC. Table 8 shows the overall procedure of the algorithm.
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