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A random forest learning assisted 
“divide and conquer” approach for 
peptide conformation search
Xin Chen, Bing Yang & Zijing Lin  

Computational determination of peptide conformations is challenging as it is a problem of finding 
minima in a high-dimensional space. The “divide and conquer” approach is promising for reliably 
reducing the search space size. A random forest learning model is proposed here to expand the scope of 
applicability of the “divide and conquer” approach. A random forest classification algorithm is used to 
characterize the distributions of the backbone ϕ-ψ units (“words”). A random forest supervised learning 
model is developed to analyze the combinations of the ϕ-ψ units (“grammar”). It is found that amino 
acid residues may be grouped as equivalent “words”, while the ϕ-ψ combinations in low-energy peptide 
conformations follow a distinct “grammar”. The finding of equivalent words empowers the “divide and 
conquer” method with the flexibility of fragment substitution. The learnt grammar is used to improve 
the efficiency of the “divide and conquer” method by removing unfavorable ϕ-ψ combinations without 
the need of dedicated human effort. The machine learning assisted search method is illustrated by 
efficiently searching the conformations of GGG/AAA/GGGG/AAAA/GGGGG through assembling the 
structures of GFG/GFGG. Moreover, the computational cost of the new method is shown to increase 
rather slowly with the peptide length.

Structures are the basis for understanding the properties and functions of biomolecules such as peptides and 
proteins. Computational determination of peptide conformations is a challenging problem that searches minima 
in a high-dimensional space and has remained an active research topic for many years. There are various struc-
tural search methods that may be broadly characterized as systematic, stochastic and “divide and conquer”. The 
systematic structural search method is quite reliable as it considers combinations of all bond rotational degrees 
of freedom of biomolecule1. However, the computational cost of the systematic approach increases exponentially 
with the size of the molecule and it is applicable to very small peptides2,3. The stochastic approach searches the 
bimolecular structure by sampling its potential energy surface (PES) in some designated way, such as simulated 
annealing4–6, Monte-Carlo7–9, genetic algorithm10–12, and basin-hopping13,14. The stochastic approach is widely 
used due to its numerical efficiency and almost universal adoptability. However, the reliability of the stochastic 
approach is often questionable due to the vast search space of the PES. The “divide and conquer” search method 
first divides a peptide into smaller peptide fragments whose conformations may be reliably determined by, say, a 
systematic structural search method. The conformations of the constituting peptide fragments are then properly 
combined to yield the low energy conformations of the target peptide2,15,16. The “divide and conquer” method 
possess a highly desirable feature that the required computational cost increases moderately with the number 
of amino acid (AA) residues in a peptide2,17. Consequently, the “divide and conquer” approach is expected to 
be useful for the structure prediction of large peptide. In fact, the widely used fragment-based protein structure 
prediction methods18–21 share the spirit of the “divide and conquer” approach, except that the fragment structures 
in these methods are mined from the Protein Data Bank22–24.

When benchmarked with the results of the systematic search method, the “divide and conquer” method has 
been shown to be both efficient and reliable for determining the structures of small peptides2,15,16. However, the 
existing approach suffers from the following drawbacks: (1) The ensembles of the low energy conformers of the 
constituting peptide fragments are used to form the trial structures of the target peptide. When the required 
structural data are not known beforehand, they need to be determined by some systematic searches that can 
be computationally expensive. The method would be more flexible and more efficient if it only requires the 
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low-energy conformations of related but non-identical peptide fragments that are available in some database. 
(2) For numerical efficiency, the number of the low energy fragment conformations used for forming the trial 
structures of the peptide should be minimized. This is made possible by a detailed analysis of the structural fea-
tures to ensure the chosen fragment structures are capable of forming favorable inter-fragment interactions2,15,16. 
However, the complexity of the analysis increases with the number of AA residues in the peptide. Some approach 
easily generalizable to larger peptides is desired. (3) The chosen structural sets of the constituting peptide frag-
ments are joined in a combinatorial way. This is inefficient as the dihedral angles (ϕ and ψ) of the peptide back-
bone are known to follow some combination rule3. In fact, there are strong evidences that the combinations of 
the fragment structures as reflected by high order ϕ-ψ plots are highly restrictive24–28. The numerical efficiency 
of the method would be much improved by utilizing the restriction. For example, exploring the high order ϕ-ψ 
correlation may result in a dramatic reduction in the size of the peptide conformational space25,28.

The goal of this work is to establish a flexible and efficient version of the “divide and conquer” search method 
by trying to overcome the three limitations mentioned above. First, the low energy conformations of a number 
of tri- and tetra-peptides are analyzed by the random forest classification29 and the multidimensional scaling 
(MDS) method30. The analysis reveals that the peptides may be classified into a few groups with clear similarities 
in the backbone dihedral angles, indicating the possibility of circumventing the first limitation. Next, a random 
forest supervised learning algorithm29 is used to probe the rule of the ϕ-ψ combinations in the low-energy pep-
tide conformations. The machine learning approach eliminates the need of a specialized analysis of the fragment 
structural features so that the second drawback mentioned above no longer exists. The random forest algorithm 
and the learnt rule of the ϕ-ψ combinations are then used to screen the trial peptide structures constructed by 
splicing the fragment conformations. The number of the trial structures is much reduced by the screening and the 
third limitation is avoided. Applications to representative peptides show that the new method is not only efficient 
but also highly reliable as demonstrated by comparing with the systematic search results.

Results and Discussion
Classification of the ϕ-ψ units in peptide fragments. A sketch of a peptide with the notations for its 
backbone dihedral angles is shown in Fig. 1. The ϕ-ψ units for different AA residues are different by definition. 
Table 1 shows the “error rate” matrix for different ϕ-ψ units as predicted by the random forest classification algo-
rithm. The random forest prediction with a high “error rate” for two different ϕ-ψ units means that the two ϕ-ψ 
units are quite similar and not easily distinguishable. Therefore, the error rates shown in Table 1 correspond to the 
degrees of similarities among different ϕ-ψ units. As seen in Table 1, the similarity can be quite high for some ϕ-ψ 
units, while fairly low for some other ϕ-ψ units.

The “error rate” matrix of Table 1 is analyzed by the MDS method. The five largest (normalized) eigenvalues 
obtained are 1, 0.54, 0.26, 0.22 and 0.16. The two largest eigenvalues are significantly larger than all the other 
eigenvalues, justifying a dimensional reduction to two-dimension (2D) as a reasonable approximation30. The 
resulting 2D MDS map as an intuitively understandable representation of the ϕ-ψ units is shown in Fig. 2.

As seen in Fig. 2, all the ϕ-ψ units can be grouped into three classes: A = (gtg1, gvg1, gfgg1, gtgg1, gvgg1), 
B = (fgg1, mgg1, vgg1, gfgg2, gtgg2, gvgg2), and C = (fgg2, gtg2, gvg2, mgg2, vgg2, gfgg3, gtgg3, gvgg3). The ϕ-ψ 
distributions are similar for a given class, but quite distinct for different classes.

Class A shares a common feature that the AA residues neighboring the ϕ-ψ unit on both the N- and 
C-terminus sides are G31, even though the AA residue for the ϕ-ψ unit may be F, T or V. It is generally expected 
that the ϕ-ψ distribution should be affected by the AA residue and the neighboring residues of the ϕ-ψ unit. Class 
A indicates that F, T and V have similar effects on the ϕ-ψ distribution. This is possible as no substantial inter-
action between the side-chain of F/T/V and the peptide backbone is expected. This observation is supported by 
Class B that shows that F, T, V as well as M have similar effects on the ϕ-ψ distribution when serving as the N-side 
neighboring residue. Moreover, Class C further suggests the similarity of G, T and V when serving as the N-side 
neighboring residue of the ϕ-ψ unit. However, while the similarity among F, T and V is suggested by both Class 
A and Class B and partially by Class C, the similarity between G and T/V is only suggested by Class C and should 
not be over emphasized. In fact, Class A and Class B are quite different due to their difference in the combination 
of the AA residue and its N-side neighbor of the ϕ-ψ unit: (F/T/V, G) for Class A and (G, F/T/V) for Class B. It 
may be said that Class C indicates that G and F/T/V are only mildly different. The clear distinction between Class 

Figure 1. The ϕ-ψ units in a pentapeptide X1X2X3X4X5. Generally, x1x2…xni refers to the ϕ-ψ unit of the 
(i + 1)th AA residue in a peptide X1X2…Xn with n AA residues.



www.nature.com/scientificreports/

3SCieNtifiC REPORTS |  (2018) 8:8796  | DOI:10.1038/s41598-018-27167-w

A and Class B is caused by the amplified effect of the moderate differences in both the AA residue and its N-side 
neighbor of the ϕ-ψ unit. The distinction between Class C and Class A/B is quite understandable as the ϕ-ψ unit 
in Class C has no C-side neighboring AA residue.

There are tripeptides and tetra-peptides in all the three classes of A, B and C. It is reasonable to conclude that a 
ϕ-ψ unit is affected only by its nearest-neighbor AA residues, while the influence of its next nearest-neighbors is 
negligible. The grouping of the ϕ-ψ distributions in different peptides and the deduced similarities in AA residues 
provide the possibility of fragment replacement in the peptide structure construction.

Testing results on conformational searches. The similarity of the AA residues in their ϕ-ψ distribution 
is used to improve the flexibility of the “divide and conquer” conformational search method. The trial structures 
generated by splicing peptide fragments are screened by the combinational rules of the ϕ-ψ units deduced from 
the random forest supervised learning method. The method is applied to the conformational searches of GGG, 
AAA, GGGG, AAAA and GGGGG. The efficiency and reliability of the method are assessed by comparing with 
the corresponding systematic search results.

GGG and AAA. The initial trial structures for searching the conformations of GGG and AAA are generated by 
all possible combinations of gfg1 and gfg2 of the low-energy conformations of GFG. By this construction, the 
similarity between A and F is assumed and the mild difference between G and A/F is believed to be of limited 

gvgg1 gvgg2 gvgg3 gtgg1 gtgg2 gtgg3 gfgg1 gfgg2 gfgg3 gtg1 gtg2 gvg1 gvg2 vgg1 vgg2 mgg1 mgg2 fgg1

gvgg2 0.2 — — — — — — — — — — — — — — — — —

gvgg3 0.2 0.2 — — — — — — — — — — — — — — — —

gtgg1 0.4 0.3 0.2 — — — — — — — — — — — — — — —

gtgg2 0.3 0.6 0.2 0.3 — — — — — — — — — — — — — —

gtgg3 0.2 0.2 0.6 0.2 0.3 — — — — — — — — — — — — —

gfgg1 0.7 0.3 0.2 0.5 0.3 0.2 — — — — — — — — — — — —

gfgg2 0.3 0.7 0.2 0.3 0.7 0.2 0.3 — — — — — — — — — — —

gfgg3 0.2 0.2 0.7 0.2 0.2 0.7 0.2 0.2 — — — — — — — — — —

gtg1 0.4 0.3 0.2 0.5 0.3 0.2 0.4 0.2 0.2 — — — — — — — — —

gtg2 0.1 0.1 0.3 0.1 0.2 0.4 0.1 0.1 0.4 0.1 — — — — — — — —

gvg1 0.4 0.2 0.1 0.3 0.3 0.1 0.4 0.2 0.1 0.4 0.1 — — — — — — —

gvg2 0.1 0.1 0.3 0.1 0.2 0.4 0.1 0.1 0.4 0.1 0.6 0.1 — — — — — —

vgg1 0.1 0.3 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 — — — — —

vgg2 0.1 0.1 0.3 0.1 0.2 0.3 0.1 0.1 0.4 0.1 0.5 0.1 0.6 0.2 — — — —

mgg1 0.1 0.2 0.0 0.1 0.2 0.1 0.1 0.3 0.1 0.1 0.0 0.1 0.1 0.3 0.1 — — —

mgg2 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.4 0.1 0.5 0.1 0.3 0.0 — —

fgg1 0.1 0.3 0.1 0.2 0.3 0.1 0.2 0.4 0.1 0.2 0.2 0.2 0.2 0.6 0.1 0.4 0.2 —

fgg2 0.1 0.1 0.3 0.1 0.2 0.4 0.1 0.1 0.4 0.1 0.5 0.1 0.6 0.2 0.6 0.1 0.4 0.2

Table 1. The matrix of “error rate” for different ϕ-ψ units. See Fig. 1 for the notions of ϕ-ψ units.

Figure 2. 2D MDS map of all ϕ-ψ units in the low-energy conformations of 8 peptides.
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consequence. The trial structures are screened by the random forest model trained by the low-energy conforma-
tions of GTG, GVG, VGG, FGG and MGG.

The number of the GGG trial structures surviving the screening is 1,838, as compared to 3,072 generated in a 
systematic search2. Both sets of the trial structures produce the same result for the low energy conformations of 
GGG, a total of 18 conformers in an energy range of 3 kcal/mol of the global minimum.

The new search method and the systematic search method produce similar but somewhat different results 
for the conformations of AAA. The systematic search finds 18 AAA conformers that are within 3 kcal/mol of its 
global minimum, while the new method finds 20 conformers in the same energy range. Combining the results 
of both the searches and the results of the path matrix method that produced 24 conformers3, there are a total of 
25 AAA conformers in the energy range. Compared to the systematic search, the new method misses the 18th 
lowest energy conformers, while produces the new 4th, 11th and 15th lowest energy conformers compared to the 
systematic method. The path matrix method produces the new 3rd, 6th, 8th and 21st lowest energy conformers. 
The structures and relative energies of the conformations missed by the systematic search can be found in SI. 
The missing of conformers is not normally expected for the systematic search method, but has been encountered 
before3,12,16. It may be caused by the geometry optimization process as the relaxation path is not mathematically 
definite. Alternatively, it may be associated with the semi-empirical method used to optimize the initial struc-
tures. Regardless what causes the missing of conformers in the systematic search method, it is observed that 
the quality of the new method for the AAA conformational search is higher than that of the systematic search 
method.

GGGG and AAAA. The trial structures for the conformational search of GGGG and AAAA are generated by 
all combinations of gfgg12 and gfgg3 of the low-energy GFGG conformations. The trial structures are screened 
by the random forest model on the combination of the ϕ-ψ units trained with the low-energy conformations of 
GFGG, GVGG and GTGG.

The numbers of the low energy GGGG conformers found within 3 kcal/mol of the global minimum are 19 for 
both the new search method and the systematic search method. Among the combined results of the two searches, 
the new method misses the 9th lowest energy conformer, while the systematic search method misses the 15th 
lowest energy conformer. The quality of the new search results is only slightly inferior to that of the systematic 
search method. However, the total number of the trial structures used for the conformational search of GGGG 
in the new search method is 4,069. In comparison, a total of 41,472 or more trial structures were required by the 
systematic search method3,16.

The numbers of the low energy AAAA conformers found to be within 3.5 kcal/mol of the global minimum 
by the systematic search method and the new search method are 20 and 19, respectively. Among the combined 
results of 22 conformers, the new method misses the 3rd, 11th and 22nd lowest energy conformers, while the sys-
tematic search method misses the 14th and 20th lowest energy conformers (Supplementary Information Fig. S1).  
The quality of the new search results is moderately inferior to that of the systematic search method, while the 
number of the required trial structures is reduced by an order of magnitude.

GGGGG. The trial structures for the GGGGG conformational search are generated by all combinations of 
gfgg12 and gfgg23 of the low-energy GFGG conformations. This is a case that the structure of a longer peptide 
is obtained by splicing the structures of two shorter peptides. Both ggggg2 and ggggg3 thus constructed cor-
responding to gfgg2, but gfgg2 for ggggg2 and gfgg2 for ggggg3 come from different GFGG conformations in 
most cases. The 1st and 2nd ϕ-ψ units of the low-energy conformations of GFGG, GVGG and GTGG are used 
to train the random forest model. The trained random forest model is used to screen the ϕ-ψ combinations of 
ggggg23 in the trial structures of GGGGG. The number of GGGGG trial structures obtained after the screening is 
5,438, about two orders of magnitude smaller than the 497,664 trial structures generated by the systematic search 
method.

The numbers of the GGGGG conformations found within 3 kcal/mol of the global minimum are 13 and 14 
for the new search method and the systematic search method, respectively. Only the relatively unimportant 14th 
lowest energy conformer is missed by the new search method. The quality of the new search is quite satisfactory.

To provide more information about the search results in a succinct way, the energy distributions and the den-
sities of states (DOSs) for the conformations found by the two methods and the path matrix method to be within 
3.5 kcal/mol of the global minima are shown in Fig. 3. The DOS contribution of a conformation is represented by 

a normalized Gaussian, ϕ =
α π

−
α

−

e(x) 1 x E( )2
2 , where the conformational energy, E, is relative to the global mini-

mum and α = 0.24 kcal/mol. As can be seen in Fig. 3, the overall quality of the new search results is comparable 
with that of the computationally intensive systematic searches and the searches by the path matrix method.

Computational cost of the new search method. As mentioned above, the number of trial peptide 
structures required by the random forest learning assisted “divide and conquer” method increases slowly with the 
number of AA residues in the peptide. The number is 1,838 for GGG/AAA, 4,096 for GGGG/AAAA and 5,438 
for GGGGG. In comparison, the corresponding numbers for the systematic search method are 3,456, 41,472 and 
497,664, respectively3. Clearly, the computational efficiency of the new search method relative to the systematic 
search method is expected to improve dramatically with the increased number of AA residues in the peptide. 
To be more specific, Table 2 shows the computational costs of the new search method, the systematic search 
method and the recently proposed path matrix method3 for peptides with up to 10 AA residues. The numbers in 
Table 2 for the systematic search method and the path matrix method are computed analytically3. However, the 
numbers for the new search method are actually determined only for n ≤6, while estimated for n ≥7 by assuming 
the number of the low-energy conformations increases by 50 if n is increased by 1. Based on the known results 
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for 3 ≤ n ≤ 5, the increase of 50 low-energy conformers for an increase of n by 1 should be adequate. That is, the 
numbers shown in Table 2 for n ≥7 should be quite realistic.

As expected, Table 2 shows that the systematic search method is the most computational intensive for all cases. 
However, Table 2 shows that the path matrix method is the most efficient for n ≤5, while the machine learning 
based method is the most efficient for n ≥6. This is possible because that the computational cost of the former 
increases by a factor of about 4.7 with the addition of one AA residue, while the increasing factor for the latter is 
only about 1.2. Consequently, the new search method is recommended when encountering n ≥6 and becomes 
increasingly more favorable with the increase of n. Notice that n ≈ 10 is known to be the optimal fragment length 
for the structural assembly in the protein structure prediction22. Therefore, the new method should be very useful 
for improving the fragment based protein structure prediction method by providing reliable structures of peptide 
fragments in an efficient way. Admittedly, the training set used in this study is limited in size and variety, e.g., 
lacking the structures of charged residues. The testing result is also preliminary and more studies are necessary. 
Nevertheless, it is reasonable to expect that the machine learning assisted “divide and conquer” method, with 
some further improvement, can play a useful role in the structure prediction of peptides and proteins.

Conclusions
Based on a random forest classification algorithm and MDS analysis, it is found that AA residues can be classified 
into groups according to similarities in their ϕ-ψ distributions. A random forest supervised learning model is 
built to analyze the combinations of the ϕ-ψ units. It is found that the ϕ-ψ combinations in truly and not truly 
low-energy peptide conformations are clearly distinguishable. The two findings are utilized to develop a new 
“divide and conquer” method for the prediction of peptide conformations. The first finding, the similarity of 

Figure 3. Results of the new search method (in red), the conventional systematic search method (in black) and 
the path matrix method (in green) on the obtained low-energy conformations of: (A) AAA, (B) GGGG, (C) 
AAAA, (D) GGGGG.

n 3 4 5 6 7 8 9 10

Nsys 3,456 41,472 4.98E + 05 5.97E + 06 7.17E + 07 8.60E + 08 1.03E + 10 1.24E + 11

NPM 240 1,130 5,310 2.49E + 04 1.17E + 05 5.50E + 05 2.58E + 06 1.21E + 07

NRF 1,838 4,096 5,438 6,649 7,318 8,540 9,613 11,341

Table 2. Total numbers of trial structures for a peptide backbone with n AA residues required by the systematic 
search method (Nsys), the path matrix method (NPM)3 and the random forest assisted “divide and conquer” 
method (NRF).
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AA ϕ-ψ units, increases the flexibility of the “divide and conquer” method by allowing for the peptide fragment 
substitution. The second finding, the ϕ-ψ combination rule, improves the efficiency of the “divide and conquer” 
method by eliminating unfavorable fragment combinations. It also makes the existing “divide and conquer” 
method more extensible by reducing the need of dedicated human analysis. The new search method is validated 
by providing excellent results for the conformations of GGG, AAA, GGGG, AAAA and GGGGG. Moreover, a 
strong advantage of the new search method is that its computational cost increases slowly with the peptide length. 
Although the testing cases are limited and more studies are required, it is our view that the machine learning 
assisted “divide and conquer” method can play a useful role in the structure prediction of peptides and proteins.

Methods
Systematic search of peptide conformations. Reliable results for the ensembles of the low-energy 
conformations of representative peptides are needed for both the training and validation of the random forest 
learning algorithm. The low-energy conformations of the tripeptide set, (GGG, GTG, GVG, VGG, FGG, MGG), 
the tetrapeptide set, (GGGG, GVGG, GTGG, GFGG), and the pentapeptide GGGGG have been determined 
by the systematic search method2,3,16,32. Here G = glycine, T = threonine, V = valine, F = phenylalanine, and 
M = methionine. These conformational search results are used here. Notice that the conformations of GGGGG 
were determined at the level of B97D/6–311++G**/B97D/6–31+G**3. For consistency with the results for 
other peptides presented here, the GGGGG conformations are recomputed at the BHandHLYP/6–311++ G**/
BHandHLYP/6–31 G*33.

The low-energy conformational ensembles of tripeptides AAA and GFG and tetrapeptide AAAA as well as 
GGGG are determined here by following the same systematic search procedure (A = alanine). Briefly, initial 
trial structures of peptides were generated by considering all combinations of their bond rotational degrees of 
freedom. To lessen the computational burden, the trial structures were first optimized by the semi-empirical 
PM3 method34. The unique structures obtained were sorted by their HF/3–21 G* energies and the low-energy 
conformers within the range of 20 kcal/mol from their respective global minimum were then optimized at the 
HF/3–21 G* level. The structures thus determined to be within the 16 kcal/mol range of their global minima were 
further optimized at the BHandHLYP/6–31 G* level. The single point energies (SPE) for conformers thus found 
to be within 10 kcal/mol of their global minimum were finally computed at the BHandHLYP/6–311 + + G** 
level. Unless explicitly specified otherwise, a low-energy conformation in this paper means that its energy is 
within 10 kcal/mol of the global minimum.

All the geometry optimizations and energy computations were carried out using the GAUSSIAN 09 suite of 
programs35.

Characterization of the ϕ-ψ units. The random forest classification algorithm29 is used to analyze the 
ϕ-ψ distributions in the low-energy conformations of GTG, GVG, VGG, FGG, MGG, GVGG, GTGG and GFGG, 
referred as the learning set hereafter. The obtained matrix of “error rate” for different ϕ-ψ units is analyzed by the 
MDS method. Peptide fragments with the same characteristic ϕ-ψ distribution are then identified.

Rule for the combinations of adjacent ϕ-ψ units. A random forest supervised learning process is 
employed to learn the pattern of the restricted combinations of neighboring ϕ-ψ units in the low-energy peptide 
conformations. A peptide is viewed as consisting of two fragments. The ϕ-ψ units of a peptide in the learning set 
belonging to different fragments are allowed to combine with each other in a combinatorial way. A ϕ-ψ combi-
nation is labeled 1 if it is basically the same, by allowing for a noise of 3°, as that found in the low-energy confor-
mations of the peptide. Otherwise, the ϕ-ψ combination is labeled 0. All the data thus generated are randomly 
divided into two portions, typically with 60% of the data used as the sample to train and test the random forest 
classification model. The remaining 40% are used as the independent out of sample test of the learning model. 
The error rate of the random forest learning model is found to be less than 2% for both in the sample and out of 
the sample tests. Therefore, the ϕ-ψ combinations for the low-energy conformations are characteristically distinct 
from that for other structures. Moreover, tests show that changing the data portion in the sample produces the 
same results. The learning model is therefore stable for application to the peptide structure prediction.

Method for the peptide structure prediction. The conformational search of a peptide with n AA resi-
dues, X1X2…Xn (n ≥ 3), starts from the generation of its trial structures. The trial structures are obtained by all 
combinations of the low-energy conformations of one peptide with n1 AA residues (the N-side fragment) and 
another peptide with n2 AA residues (the C-side fragment). Similar values for n1 and n2 are suggested. In this case, 
the minimal n1 and n2 may be found by = +−( )n int 2n

1
1

2
 and = +( )n int 1n

2 2
, respectively. That is, the 

low-energy conformations of X1 × 2…Xn1 and Xn1−1Xn1 Xn1+1…Xn are combined to form the trial structures of 
X1X2…Xn. After the splicing, the 1st ϕ-ψ unit of Xn1−1Xn1 Xn1+1…Xn, xn1−1xn1 xn1+1…xn1, is used as the (n1 − 1)th 
ϕ-ψ unit of X1X2…Xn, x1x2…xn(n1−1). Notice the notation rule used in this work: capital letters of AA one-letter 
codes are used when referring a peptide, while small letters are used when referring ϕ-ψ unit(s) of the peptide. 
The trial structures are screened by the combination rule for the (n1 − 2)th and (n1 − 1)th ϕ-ψ units of X1X2…Xn1, 
x1x2…xn(n1 − 2)(n1 − 1), as learnt by the random forest supervised learning algorithm from the low-energy con-
formations of some peptide, …Xn1−2Xn1−1 Xn1…. Notice that larger peptides may generally be used as the frag-
ments for splicing. In such cases, the screening is performed on the combinations of the last used ϕ-ψ unit of the 
N-side peptide and the first used ϕ-ψ unit of the C-side peptide. Only the trial structures surviving the screening 
are optimized to find the low energy structures of X1X2…Xn.

In case that the conformations of a fragment peptide are unknown, they can be substituted by the conforma-
tions of a peptide belonging to the same group as the fragment peptide, as learnt by the random forest classifica-
tion model. Naturally, the side chains are replaced accordingly in the process.
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