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Cancer Characteristic Gene 
Selection via Sample Learning 
Based on Deep Sparse Filtering
Jian Liu1, Yuhu Cheng1, Xuesong Wang1, Lin Zhang1 & Z. Jane Wang2

Identification of characteristic genes associated with specific biological processes of different cancers 
could provide insights into the underlying cancer genetics and cancer prognostic assessment. It is of 
critical importance to select such characteristic genes effectively. In this paper, a novel unsupervised 
characteristic gene selection method based on sample learning and sparse filtering, Sample Learning 
based on Deep Sparse Filtering (SLDSF), is proposed. With sample learning, the proposed SLDSF 
can better represent the gene expression level by the transformed sample space. Most unsupervised 
characteristic gene selection methods did not consider deep structures, while a multilayer structure 
may learn more meaningful representations than a single layer, therefore deep sparse filtering is 
investigated here to implement sample learning in the proposed SLDSF. Experimental studies on 
several microarray and RNA-Seq datasets demonstrate that the proposed SLDSF is more effective than 
several representative characteristic gene selection methods (e.g., RGNMF, GNMF, RPCA and PMD) for 
selecting cancer characteristic genes.

Cancer is related to abnormal cell growth which has the potential to invade or spread to other parts of the human 
body. Currently there are more than 100 types of known cancers that are very detrimental for humans. According 
to the World Health Organization’s World Cancer Report 2014, about 14.1 million new cases of cancer emerged 
globally (excluding non-melanoma skin cancer). It caused about 8.2 million deaths, accounting for 14.6% of all 
human deaths1. In the United States, the average five-year survival rate for cancer is 66%2. Genetically, genes that 
regulate cell growth and differentiation could be altered to develop a normal cell into a cancer cell. These genes 
can usually be divided into two broad categories: oncogenes which promote cell growth and reproduction, and 
suppressor genes which inhibit cell division and survival3. In contemporary molecular biology, it remains a chal-
lenge to accurately identify such genes relevant to key cellular processes.

The advances of DNA microarray and deep sequencing technologies have made it possible for biologists to 
measure expression levels of thousands of genes simultaneously4,5. These genes can be detected more comprehen-
sively and more detailed than ever before. However, in each gene expression dataset, the number of genes is so 
huge (thousands or even more than 10,000) that it is extremely difficult to analyze the whole set of gene expres-
sion data. Fortunately, for an exact biological process, only a small set of genes may take part in the regulation 
of gene expression level6,7. Such a small set of genes usually are referred as characteristic genes. Identification of 
the characteristic genes associated with special biological processes of different types of cancers could provide 
important insights into the underlying genetics and prognostic assessment of cancer. Therefore, effective identi-
fication of such characteristic genes has been an important research topic, which technically is closely related to 
feature selection.

Recently, deep learning, originally proposed by Hinton et al.8 to learn a multiple hierarchical network by 
training9, has drawn increasing attention. With the obtained deep non-linear network, deep learning can provide 
a complex function approximation. Numerous deep learning methods were proposed for different learning tasks, 
such as feature learning, classification, and recognition. The most commonly used models include deep belief 
networks (DBNs)8, stacked auto-encoders (SAEs)10, and convolutional neural networks (CNNs)11. These mod-
els have been successfully applied to numerous fields (e.g., image processing, natural language processing, and 
medical data analytics) and achieved promising performances. Particularly, they have been used to analyze gene 
expression data. For example, SAE was successfully applied to enhance cancer diagnosis and classification based 
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on gene expression data by Fakoor et al.12. Liu et al. proposed the sample expansion based 1-dimensional CNN for 
classifying tumor gene expression data13. However, training DBN, SAE and CNN models is often time-consuming 
and labor expensive, since a large number of hyperparameters need to be tuned. Sparse filtering, an unsuper-
vised feature learning algorithm, works by optimizing the sparsity of the feature distribution and it is essentially 
hyperparameter-free. Since the critical idea of sparse filtering is to avoid explicit modeling of the data distribu-
tion, this can give rise to a simple formulation and permits learning effectively. Furthermore, sparse filtering 
can be extended into multi-layer networks. Deep sparse filtering can be used to learn meaningful features in 
additional layers by using greedy layer-wise stacking14. Therefore, in this paper, we employ deep sparse filtering 
to select characteristic genes.

Several deep learning methods have been explored to select cancer genes. Danaee et al. used stacked denoising 
autoencoder (SDAE) to detect breast cancer and identify relevant genes15. In their work, firstly, SDAE is used to 
extract functional features from gene expression profiles. Then, the performance of the extracted representation is 
evaluated through supervised classification models. Lastly, a set of highly interactive genes are identified by ana-
lyzing the SDAE connectivity matrices. Ibrahim et al. selected multi-level gene/miRNA by using DBN and active 
learning to enhance the classification accuracy16. The major steps of the approach are described as follows: (1) Use 
DBN to extract high level representations of the gene expression profiles; (2) Apply a feature selection method to 
rank genes; (3) Obtain the finally selected genes using active learning. Both SDAE15 and DBN16 are supervised 
methods, and can learn high level features of the gene expression data. Feature learning maps a high-dimensional 
feature space of the original data into a low-dimensional space so that the data can be better represented by the 
transformed feature space. Since each feature in the gene expression data represents a gene, if we employ tradi-
tional feature learning methods, the original feature space will be changed and we cannot specify the exact genes 
in the new feature space. Therefore traditional feature learning is not applicable to characteristic gene selection. 
In addition, since gene expression datasets generally are with high dimensional features and small sample size, 
SDAE and DBN suffer from serious overfitting when applied to gene expression data. Moreover, SDAE and DBN 
perform poorly when the unlabeled data is abundant while the labeled data is scarce, which is exactly our case. 
Considering the limited labelled data in our problem, unsupervised learning is more suitable.

To address the above concerns, different from previous feature learning methods, we propose the idea of sam-
ple learning, an unsupervised method, for selecting genes with deep learning models. Sample learning transforms 
the sample space of gene expression data and ensures that the features (or genes) can be better represented by the 
transformed sample space so that we can specify the exact characteristic genes from the transformed sample space.

In this paper, by combining sample learning and deep sparse filter, a novel unsupervised characteristic gene 
selection method, which is named as Sample Learning based on Deep Sparse Filtering (SLDSF), is proposed for 
cancer characteristic gene selection. In the proposed method, firstly, the idea of sample learning for selecting 
characteristic genes is presented. Then the applicability of sample learning using sparse filtering is explained. 
Finally, the deep sparse filtering framework is extended by using the feed-forward network. Our later tests on 
gene expression datasets demonstrate that cancer characteristic genes can be effectively selected using the pro-
posed SLDSF.

The remainder of the paper is structured as follows. In Section 2, the proposed SLDSF for selecting can-
cer characteristic genes is presented. When compared the proposed SLDSF with four unsupervised methods: 
RGNMF, GNMF, RPCA and PMD, experimental results on several cancer gene expression datasets are reported 
in Section 3. In Section 4, the conclusions are given.

Methods
Sparse Filtering.  Sparse filtering14, an unsupervised feature learning method, is easy to implement with 
only one hyperparameter. It optimizes the sparsity of the feature distribution. The main idea of sparse filtering is 
to avoid explicit modeling of the data distribution by a simple formulation and thus permits effective learning.

Denote a gene expression dataset as ∈ ×A m n, where each row represents a feature and each column repre-
sents a sample. Denote ∈ ×F d n as the feature distribution matrix over A. The entry Fij in F represents the activ-
ity of the i-th feature on the j-th sample. By imposing sparse constraints on F, a matrix ∈ ×W m d can be obtained 
which satisfies =F W AT . And each column in W can be viewed as a sparse filter. Sparse filtering involves three 
steps: normalizing F by rows, then normalizing F by columns and finally summing up the absolute values of all 
elements. Denote ∈ =×

F i d( 1, 2, 3, , )in
n1  as the i-th row of F and ∈ =×

F j n( 1, 2, 3, , )dj
d 1  as the j-th 

column of F. To be specific, each feature of F is divided by the L2-norm across all samples: =F F F/in in in 2
,which 

normalizes each feature to be equally active. Then, each sample is divided by the L2-norm across all features: 
=  F̂ F F/dj dj dj 2

 to make all samples lie on the unit L2-ball. Finally, all the normalized elements are optimized for 
sparseness by using the L1-norm. Therefore the objective function of sparse filtering can be expressed as follows:

∑ .
=

F̂min
(1)j

n

dj
1 1

The sparse filtering is implemented by the L-BFGS method, a commonly used iterative algorithm for solving 
unconstrained nonlinear optimization problems17. In the objective function Eq. (1), the feature distribution has 
shown population sparsity, high dispersal as well as lifetime sparsity, which have been investigated in18,19.

Population sparsity.  Population sparsity means that each sample should have a few active (non-zero) features. 
The term F̂dj 1

 in Eq. (1) reflects this characteristic of the features on the j-th sample. Because F̂dj is constrained to 
lie on the unit L2-ball, the objective function can be minimized when the features are sparse.
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High dispersal.  High dispersal means that the distribution should have similar statistics for different features. 
Specifically, the considered statistics are the mean squared activations of each feature by averaging the squared 
values in the feature matrix across the samples. For all features, the statistics should be roughly the same, suggest-
ing that the contributions of all features should be roughly same. In the first step of sparse filtering, each feature of 
F is divided by the L2-norm across all samples, =F F F/in in in 2

, to normalize each feature to be equally active.

Lifetime sparsity.  Lifetime sparsity means each feature should be active in a few samples, which ensures that the 
features should be discriminative enough to distinguish samples. Concretely, a few active (non-zero) elements 
should be included in each row of the feature distribution matrix. In the objective function of sparse filtering, the 
characteristic of lifetime sparsity is guaranteed by population sparsity and high dispersal. Due to the population 
sparsity, many non-zero elements can be obtained in the feature distribution matrix. These zero elements are 
roughly evenly distributed across all features due to high dispersal. Accordingly, each feature would have a great 
number of non-zero elements and thus be lifetime sparse.

Sample Learning for Characteristic Gene Selection.  Traditionally, feature learning algorithms usually 
transform the feature space to achieve dimensionality reduction. To be more specific, a high-dimensional feature 
space of the original data is mapped into a low-dimensional feature space by using feature learning methods 
which maintain the distance information between samples. In other words, feature learning is a process of repre-
senting the samples in the low dimensional feature space which is obtained by using some mapping or rescaling 
methods. Feature learning can be used for classification tasks by transforming the feature space to achieve the 
desired results.

However, direct feature learning is not applicable for characteristic gene selection. In our problem, since each 
feature represents a gene, if we use feature learning methods to process the gene expression data, the original 
feature space will be changed and we cannot identify the exact genes in the new feature space. In order to explain 
this problem intuitively, a common feature learning model is shown in Fig. 1(a).

Figure 1.  The differences between sample learning and feature learning. (a) A feature learning model for the 
lung cancer dataset. (b) A sample learning model for the lung cancer dataset.
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The lung cancer dataset, which contains 12600 genes on 203 samples, is taken as an example, where each 
row represents a gene (some names of genes are provided in Fig. 1(a)) and each column represents a sample. 
After being processed by feature learning methods, the feature space of the lung cancer dataset is changed and 
we cannot locate the exact genes in the transformed feature space. In this paper, our goal is to find a group of 
characteristic genes associated with special biological processes of different cancers which may illuminate the 
underlying genetics and contribute to the prognostic assessment. Obviously, without knowing the exact genes in 
the transformed feature space, our goal cannot be achieved. Therefore, direct feature learning is not preferred for 
characteristic gene selection.

To address this problem, sample learning is proposed to analyze gene expression data in the proposed method. 
Compared to feature learning, sample learning transforms the sample space. The illustration of a sample learning 
model for the lung cancer dataset is shown in Fig. 1(b). After being processed by sample learning, the feature 
space of the lung cancer dataset remains unchanged while the sample space is transformed. In this case, the infor-
mation of each gene can be better represented by the transformed sample space. Then we can select characteristic 
genes through some feature selection strategies from the processed matrix in Fig. 1(b). In short, sample learning 
is a process that the features are represented by a transformed sample space which is obtained via some mapping 
or rescaling algorithms.

Applicability Analysis of Sample Learning Using Sparse Filtering.  In the subsection above, the idea 
of sample learning was introduced for cancer characteristic gene selection. Particularly, we adopt sparse filtering 
for sample learning. As mentioned above, the feature learning objective function in Eq. (1) makes the feature 
distribution have three desirable characteristics. Similarly, sample learning also provides these characteristics of 
the sample distribution.

Suppose there is a sample distribution matrix over a gene expression dataset, where each row is a sample, each 
column is a gene, and the elements are the activities of samples on specific genes. A detailed explanation of how 
sample learning satisfies the three desirable characteristics of the sample distribution is as follows:

Population sparsity.  Population sparsity requires that each gene should have a few non-zero samples. Specifically, 
for each gene (one column) in the sample distribution matrix, only a small number of non-zero entries are 
required. These non-zero entries represent this gene is differentially expressed on the non-zero samples. This 
indicates that one gene is usually impossible differentially expressed on all samples. The cancer characteristic 
genes can be selected according to these differentially expressed genes.

Lifetime sparsity.  Lifetime sparsity requires each sample should be active on a few genes which ensure that the 
samples should be discriminative enough to distinguish genes. In a gene expression dataset, each sample has the 
expression levels of all genes, but only a small number of genes are differentially expressed on each sample. Since 
our purpose is to select differentially expressed genes, the samples are discriminative enough to distinguish genes. 
Here, the non-zero entries in each sample can be represented as the differentially expressed genes and the zero 
entries are represented as the non-differentially expressed genes. Therefore, each sample in the sample distribu-
tion matrix should allow limited non-zero entries.

High dispersal.  High dispersal requires that the distribution should have similar statistics on different samples 
which suggest that the contributions of all samples should be roughly same. This property prevents the same sam-
ples are always active and guarantees the extracted samples keep orthogonal19. After sample learning by enforcing 
high dispersal, the extracted samples can more effectively represent the differential expression levels of genes and 
are conducive to select characteristic genes.

The Framework of SLDSF.  In this subsection, firstly, the Sample Learning based Sparse Filtering (SLSF) 
method is presented. Then the SLSF method is expanded into SLDSF, a deep structure for learning more mean-
ingful representations14.

Denote a gene expression dataset as ∈ ×B n m, where each row means a sample and each column means a 
gene. In order to eliminate the dimensional effect between indicators, the gene expression dataset is normalized 
into X which is used to implement sample learning. Denote a sample distribution matrix over X as ∈ ×S t m. The 
element Sij in S is the activity of the i-th sample on the j-th gene. A sparse filter matrix ∈ ×Y n t which satisfies 
the soft-absolute function = + −S Y X( ) 10T 2 8  can be obtained. Each column in Y can be regarded as a sparse 
filter. Denote ∈ =×

S i t( 1, 2, 3, , )im
m1  as the i-th row of S and ∈ =×

S j m( 1, 2, 3, , )tj
t 1  as the j-th 

column of S. Similar to sparse filtering, the sample learning based sparse filtering also has three steps: normalizing 
S by rows with the L2-norm: =S S S/im im im 2

, then normalizing Sim by columns with the L2-norm: =  Ŝ S S/tj tj tj 2
 

and finally all the normalized elements are optimized for sparseness by using the L1-norm: ∑ = Ŝj
m

tj1 1
. For m 

features in the gene expression dataset B, the objective of the SLSF method can be written as

∑
=

Ŝmin
(2)j

m

tj
1 1

SLSF can also be implemented by the L-BFGS method. The SLSF method can be regarded as the first layer of 
the SLDSF method. After training a single layer of samples with SLSF, one can compute the normalized samples 
and then use these as the input to SLDSF for learning the second layer of samples. The rest multiple layers can be 
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learnt in the same manner. The framework of sample learning with SLDSF on gene expression data is described 
in Fig. 2.

Firstly, the gene expression dataset is preprocessed by the following formula

= − +X B B X
B

Xmean std
std

mean( ( )) ( )
( )

( ),
(3)

where mean(B) is the mean of gene expression data matrix B by row, std(B) is the standard deviation of gene 
expression data matrix (B) by row, std(X) is the standard deviation of the expected matrix X by row and mean(X) 
is the mean of the expected matrix X by row. Here, std(X) and mean(X) are simply set to be 1 and 0 respectively.

Secondly, the preprocessed matrix X in Eq. (3) is regarded as the input layer to implement sample learning 
with SLDSF. In Fig. 2, suppose we need k layers in SLDSF, in addition to the input layer. We denote Xn as the input 
layer which has n samples to be learned, ∆SL ( )k  as the output matrix of the k-th layer, ∆SL ( )k t  as the t-th sample in 
the output matrix ∆SL ( )k , Lk(Y) as the sparse filter matrix of the of the k-th layer and ∆YL ( )k  as the optimal sparse 
filter matrix of the k-th layer.

For Layer 1 in Fig. 2, the SLSF can be taken as the Layer 1 of SLDSF. Here, we denote = + −S Y XL L( ) ( ( ) ) 101 1
T 2 8  

as the sample distribution matrix of Layer 1, the objective function in Layer 1 can be written as L1(J), then we have
~

~∑ ∑= =
= =

ˆ
 

 

S
S

S
L J L

L
L

min ( ) ( )
( )
( )

,
(4)j

m

tj
j

m
tj

tj
1

1
1 1

1

1

1 2 1

where ŜL ( )tj1  is the normalized matrix by normalizing SL ( )1  via columns with the L2-norm: =  Ŝ S SL L L( ) ( )/ ( )tj tj tj1 1 1 2
, 

and SL ( )1  is the normalized matrix by normalizing L1(S) via rows with the L2-norm: =S S SL L L( ) ( )/ ( )im im im1 1 1 2.
In order to obtain the optimal solution of Eq. (4), we use the Back Propagation (BP) method to adjust the 

sparse filter matrix L1(Y). The gradient of L1(Y) on the objective function L1(J) in Eq. (4) can be written as

∇ =
∂
∂

.Y
Y

L J L L J
L

( )( ( )) ( )
( ) (5)YL ( ) 1 1
1

1
1

With the chain rule, Eq. (5) can be expanded into the following form

∆ = ∇ =
∂
∂

Y Y
Y

L L J L L J
L

( ) ( )( ( )) ( )
( )

,
(6)YL1 ( ) 1 1

1

1
1

where ∆YL ( )1  is the gradient of L1(Y) on L1(J) in Eq. (4). The objective function L1(J) and ∆YL ( )1  can be opti-
mized by using the L-BFGS method17 to achieve the optimal sparse filter matrix ∆YL ( )1 . The output matrix ∆SL ( )1  
of Layer 1 is obtained by using ∆YL ( )1

= + .∆ ∆ −S Y XL L( ) ( ( ) ) 10 (7)1 1
T 2 8

After training the samples of Layer 1 in SLDSF, the optimal sample distribution matrix ∆SL ( )1  is obtained as 
the output of Layer 1.

For Layer 2, we choose the feedforward network to train the samples. In Layer 2, we firstly normalize ∆SL ( )1  by 
rows, and then by columns using the L2-norm. The normalized ∆SL ( )1  is taken as the input to SLDSF for learning 
the second layer of samples. With the computation process of Layer 1, we can obtain the optimal sparse filter 

Figure 2.  The framework of sample learning with SLDSF on gene expression data.
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matrix ∆YL ( )2  and the output sample distribution matrix ∆SL ( )2  of Layer 2. The rest multiple layers can be learnt 
in the same manner. Finally, we can obtain the final output sample distribution matrix ∆SL ( )k  in Layer k. Note 
that, since SLDSF randomly initializes the sparse filter matrix, the results from running the SLDSF algorithm 
multiple times will not be exactly the same. The cancer characteristic genes are selected according to ∆SL ( )k , and 
the detail ideas are presented in the following subsection.

To summarize, the major steps of the proposed SLDSF algorithm are described in Table 1.

Cancer Characteristic Gene Selection by SLDSF.  After being processed by SLDSF, the gene expression 
dataset can be better represented by the optimal sample distribution matrix ∆SL ( )k  since ∆SL ( )k  contains the 
desirable properties of the sample distribution. Therefore, cancer characteristic genes can be selected by exploring 

∆SL ( )k  effectively. The main idea is explained as follows.
The optimal sample distribution matrix ∆SL ( )k  can be described as

�
�

� � � �
�

=





















.∆SL

s s s
s s s

s s s

( )

(8)

k

m

m

t t tm

11 12 1

21 22 2

1 2

According to Eq. (7), all elements in ∆SL ( )k  are non-negative. Then, we sum the elements by columns to obtain 
the evaluating vector

∑ ∑ ∑=











.

∆

= = =
Ŝ S S SL ( )

(9)
k

t

t

t
t

t

t
t

t

tm
1

1
1

2
1

Generally, the more differentially expressed the gene is, the larger the corresponding element in 
∆

ŜL ( )k  is. 
Hence, we can sort the items of 

∆
ŜL ( )k  in a descending order, and then take the top h genes as the characteristic 

ones.

Results and Discussion
This section reports several experimental results. We first test the proposed method on three publicly available 
microarray datasets, i.e., lung cancer dataset20, leukemia dataset21 and diffuse large B cell lymphoma (DLBCL) 
dataset22. We also test our method on two RNA-Seq datasets, i.e., esophageal cancer (ESCA) and squamous cell 
carcinoma of head and neck (HNSC). These five datasets are summarized in Table 2, and they can be found in 
Supplementary Datasets. To demonstrate the effectiveness of the proposed SLDSF method for selecting cancer 
characteristic genes, four commonly used gene selection methods: RGNMF23, GNMF24, RPCA25 and PMD26 are 
employed for comparison. The detailed method description can be found in Supplementary S1. We also provide 
the codes of all methods used in this paper in Supplementary Codes. In this paper, the programs were imple-
mented by using Matlab2014a on a PC equipped with an Intel Core i5 and 8 GB memory.

Gene Ontology Analysis.  For fair comparisons, 100 genes were selected by SLDSF, RGNMF, GNMF, 
RPCA and PMD methods. The 100 genes selected by SLDSF can be found in Supplementary S2. The GO (Gene 
Ontology) enrichment of functional annotation of the selected characteristic genes by the five methods was 
detected by ToppFun which can be used to describe characteristic genes in the input or query set and to help 
discover what functions these genes may have in common27,28. The tool is publicly available at http://toppgene.
cchmc.org/enrichment.jsp. In this paper, GO: Biological Process is the main objective to analysis.

Test on Microarray Datasets.  This subsection reports experimental results on three microarray data-
sets: lung cancer dataset, leukemia dataset and DLBCL dataset. SLDSF is a deep structure for sample learning. 
We first tested the influence of the number of layers and the number of samples. The results can be found in 
Supplementary S3. From Supplementary S3, the proposed SLDSF can obtain the best results on all three data-
sets when the numbers of layers and samples are 3 and 200, respectively. So we adopt the 3-Layer SLDSF with 
200 samples in the later comparisons. The results of five methods on lung cancer dataset, leukemia dataset and 

Input: Gene expression dataset: B.
The number of samples needs to be learned: t.
The number of layers: k.
Output: Optimal sample distribution matrix ∆SL ( )k .

Initialize YL ( )1 , YL ( )2 , 


, YL ( )k
Normalize gene expression dataset B by Eq. (3) as the input of Layer 1.
for =i 1; ≤i k; i++
Obtain L J( )i  by Eq. (4)
Calculate ∆YL ( )1  by Eq. (6)
Update ∆YL ( )i  by L-BFGS method until convergence
Obtain ∆SL ( )i  by Eq. (7)
Normalize ∆SL ( )i  by L2-norm as the input of Layer i + 1 end for
Output ∆SL ( )k

Table 1.  The SLDSF algorithm.

http://toppgene.cchmc.org/enrichment.jsp
http://toppgene.cchmc.org/enrichment.jsp
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DLBCL dataset were summarized in Tables 3, 4 and 5, respectively. In the tables, the best results among five meth-
ods were shown in bold. For simplicity, only the P-values of top 10 GO terms were shown in this paper.

Test on the lung dataset.  Lung cancer is the second most common cause of cancer-related death in women and 
the most common in men. In this paper, the lung cancer dataset presented by Bhattacharjee et al.20 was adopted 
in our experiments. In this dataset, there are 12600 genes in 203 samples. The 203 samples include histologically 
defined lung adenocarcinomas (139 samples), squamous cell lung carcinomas (21 samples), pulmonary carci-
noids (20 samples), small-cell lung carcinomas cases (6 samples), and normal lung samples (17 samples).

Table 3 shows the P-Values of top 10 closely related lung cancer GO terms corresponding to the characteristic 
genes selected by five methods: SLDSF, RGNMF, GNMF, RPCA and PMD. In this table, ‘None’ denotes that the 
method cannot select genes in the GO term. SLDSF, RGNMF, GNMF and PMD can select genes in the 10 GO 
terms while RPCA cannot. This means that the genes selected by SLDSF, RGNMF, GNMF and PMD may have 
similar biological processes. In all the 10 GO terms, the SLDSF method provides much better performances than 
other four methods.

The genes selected by SLDSF need to be further analyzed. A Venn diagram of genes selected by five methods 
is shown in Fig. 3(a). We denote the ‘unique’ characteristic gene as the gene selected only by one method. From 
Fig. 3(a), it can be seen that there are 9 genes shared by all five methods and SLDSF can select more ‘unique’ char-
acteristic genes (up to 81 ‘unique’ characteristic genes) than other methods. This explains why SLDSF can obtain 

Dataset Name

Number of

Genes Samples Classes

Microarray

Lung Cancer Lung adenocarcinomas, squamous cell lung carcinomas, pulmonary 
carcinoids, small-cell lung carcinomas cases, normal lung samples 12600 203 5

Leukemia Acute myelogenous leukemia, acute lymphoblastic leukemia 5000 38 2

DLBCL ‘Cured’ patients, ‘fatal/refractory’ patients 7129 58 2

RNA-Seq
ESCA Diseased samples, normal samples 20502 192 2

HNSC Diseased samples, normal samples 20502 418 2

Table 2.  Summary of gene expression datasets.

ID Name

SLDSF RGNMF GNMF RPCA PMD

P-Value P-Value P-Value P-Value P-Value

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-
mediated decay 5.05E-72 2.16E-16 3.16E-16 None 5.24E-15

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 7.03E-72 2.77E-16 4.04E-16 None 6.58E-15

GO:0006613 cotranslational protein targeting to membrane 1.69E-71 4.47E-16 6.53E-16 None 1.02E-14

GO:0045047 protein targeting to ER 9.22E-71 7.09E-16 1.04E-15 None 1.56E-14

GO:0072599 establishment of protein localization to endoplasmic reticulum 4.68E-70 9.91E-16 1.45E-15 None 2.12E-14

GO:0070972 protein localization to endoplasmic reticulum 4.61E-67 5.15E-15 7.50E-15 None 9.63E-14

GO:0019080 viral gene expression 5.18E-64 3.47E-14 5.19E-14 None 4.49E-13

GO:0044033 multi-organism metabolic process 4.62E-63 6.77E-14 1.01E-13 None 1.01E-13

GO:0019083 viral transcription 6.96E-63 3.91E-13 5.66E-13 None 5.14E-12

GO:0006415 translational termination 5.27E-62 5.94E-15 8.91E-15 None 8.79E-14

Table 3.  The P-Values of GO terms corresponding to different methods on the lung cancer dataset.

ID Name

SLDSF RGNMF GNMF RPCA PMD

P-Value P-Value P-Value P-Value P-Value

GO:0006955 immune response 2.69E-18 4.14E-12 2.76E-11 3.45E-15 1.83E-11

GO:0001775 cell activation 8.94E-18 1.40E-14 1.35E-13 5.14E-19 8.60E-13

GO:0045321 leukocyte activation 2.28E-16 5.89E-13 5.34E-11 4.72E-16 4.01E-11

GO:0007159 leukocyte cell-cell adhesion 5.86E-16 3.56E-13 4.58E-15 6.05E-14 4.07E-11

GO:0046649 lymphocyte activation 8.59E-16 3.13E-12 2.63E-09 2.95E-15 2.43E-11

GO:0016337 single organismal cell-cell adhesion 1.11E-15 2.86E-12 2.02E-09 4.44E-12 2.10E-12

GO:0034109 homotypic cell-cell adhesion 2.11E-15 1.05E-12 1.34E-09 1.26E-14 1.05E-10

GO:0070486 leukocyte aggregation 2.43E-15 1.60E-12 2.40E-09 2.00E-14 1.82E-10

GO:0098602 single organism cell adhesion 4.87E-15 1.01E-12 7.14E-10 1.42E-11 7.25E-13

GO:0050776 regulation of immune response 9.00E-15 7.66E-11 4.01E-09 1.13E-12 5.59E-11

Table 4.  The P-Values of GO terms corresponding to different methods on the leukemia dataset.
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much better performance than other methods in the GO terms in Table 3 and indicates that the 81 ‘unique’ genes 
are closely associated with these GO terms. The ‘unique’ characteristic genes selected by SLDSF should be further 
investigated to determine whether they are associated with lung cancer.

We studied the ‘unique’ genes selected by SLDSF according to the existing literature. The top 5 ‘unique’ char-
acteristic genes selected by SLDSF are analyzed and they are shown in bold in the following explanations. For 
gene GAPDH (35905_s_at), it was shown that the levels of GAPDH protein were significantly up-regulated in 
lung squamous cell carcinoma tissues by clinical tissue studies29. MAPK1, SRC, SMAD4, EEF1A1 (1288_s_at), 
TRAF2 and PLCG1 might be involved in smoking-induced lung cancer by interacting with each other which 
indicated that they might be responsible for the development of smoking-induced lung cancer30. IGHV4-31 
(37864_s_at) has been detected as a candidate gene in peripheral blood mononuclear cells (PBMC) and tumor 
tissue groups of non-small cell lung cancer31. CYAT1 (33273_f_at) is one of the most frequently ranked genes 
responsible for that clustering through the method proposed by Mondal et al.32 on the lung dataset. Czajkowski 
et al. reported perfect classification accuracy with only 3 genes: 37947_at, 33499_s_at (IGHA2) and 36528_at on 
the lung cancer dataset, indicating that these 3 genes are very crucial for lung cancer33.

Test on the leukemia dataset.  The leukemia dataset has already become a benchmark dataset in cancer gene 
selection. It consists of 11 cases of acute myelogenous leukemia and 27 cases of acute lymphoblastic leukemia21. 
The leukemia dataset is summarized by a 5000 × 38 matrix (5000 genes in 38 samples) for further study.

The P-Values of the top 10 closely related leukemia GO terms corresponding to the characteristic genes 
selected by five methods are shown in Table 4. From Table 4, it can be found that, for 9 GO terms, the SLDSF 
method outperforms RGNMF, GNMF, RPCA and PMD methods. RPCA has the lowest P-value in the term 
GO:0001775.

To further study the selected genes by these methods on the leukemia dataset, a Venn diagram is shown in 
Fig. 3(b). In Fig. 3(b), we can observe that there are 41 genes shared by all five methods. The SLDSF method can 
select 7 ‘unique’ characteristic genes which are neglected by the other methods.

Moreover, we verified these ‘unique’ genes according to the existing literature to determine whether these 
genes are associated with leukemia or not. The top 5 ‘unique’ characteristic genes selected by SLDSF are analyzed 
and they are shown in bold in the following explanations. LAPTM5 (J04990_at) decreased autophagy activity 

ID Name

SLDSF RGNMF GNMF RPCA PMD

P-Value P-Value P-Value P-Value P-Value

GO:0006614 SRP-dependent cotranslational protein targeting to 
membrane 1.70E-93 4.29E-90 3.66E-91 1.94E-35 2.65E-92

GO:0006613 cotranslational protein targeting to membrane 5.05E-93 1.23E-89 1.05E-90 3.03E-35 7.62E-92

GO:0045047 protein targeting to ER 4.13E-92 9.48E-89 8.10E-90 7.19E-35 5.87E-91

GO:0072599 establishment of protein localization to endoplasmic 
reticulum 3.07E-91 6.65E-88 5.69E-89 1.65E-34 4.12E-90

GO:0000184 nuclear-transcribed mRNA catabolic process, 
nonsense-mediated decay 1.30E-90 2.72E-87 2.32E-88 2.46E-36 1.68E-89

GO:0070972 protein localization to endoplasmic reticulum 1.46E-87 2.51E-84 2.15E-85 5.78E-33 1.56E-86

GO:0006414 translational elongation 1.47E-82 1.84E-79 1.26E-80 2.02E-30 1.57E-80

GO:0006415 translational termination 2.12E-81 2.51E-78 2.16E-79 2.61E-30 2.80E-80

GO:0019080 viral gene expression 4.89E-81 5.62E-78 4.33E-79 7.12E-31 2.67E-79

GO:0044033 multi-organism metabolic process 6.33E-80 6.82E-77 5.27E-78 3.02E-30 3.40E-79

Table 5.  The P-Values of GO terms corresponding to different methods on the DLBCL dataset.

Figure 3.  Venn diagram of genes selected by five methods on (a) lung cancer dataset, (b) leukemia dataset and 
(c) DLBCL dataset.
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and might represent a potential target modulating autophagy activity to increase sensitivity to chemotherapy in 
treatment of leukemia34. FOS (J04130_s_at) has a significant function in regulating cell proliferation, cell differ-
entiation and cell transformation in leukemia and it was detected and validated in the paper35. Immune-related 
gene LYZ (U49835_s_at) were highly expressed in THP1 cells in leukemia36. According to37, as a direct target of 
activated NOTCH1, CCND3 (M21624_at) is up-regulated in T-cell acute lymphoblastic leukemia. By mediating 
JUNB (X60486_at), miRNA-149 promotes cell proliferation and inhibits apoptosis in T-cell acute lymphoblastic 
leukemia38.

Test on the DLBCL dataset.  Diffuse large B cell lymphoma (DLBCL) is the most common lymphoid malignancy in 
adults. Here, we adopt the DLBCL dataset presented by Shipp et al.22. This dataset contains 7129 genes in 58 cancer sam-
ples. DLBCL study patients were divided into 2 discrete categories: 32 ‘cured’ patients and 26 ‘fatal/refractory’ patients.

Table 5 lists the P-Values of the top 10 closely related DLBCL GO terms corresponding to the characteristic 
genes selected by five methods. From Table 5, it can be seen that SLDSF provides better performances than that 
of other methods for all 10 terms.

To further study the genes selected by these methods on the DLBCL dataset, a Venn diagram is shown in 
Fig. 3(c). From Fig. 3(c), we can find that there are 56 genes shared by all five methods. SLDSF, RGNMF and 
GNMF have no ‘unique’ characteristic genes, and PMD has only 2 ‘unique’ characteristic genes. This suggests that 
the results of SLDSF, RGNMF, GNMF and PMD in Table 5 are very similar. There are 30 ‘unique’ characteristic 
genes are selected by RPCA, this may explain why RPCA has worse performance in Table 5.

Test on RNA-Seq Datasets.  The Cancer Genome Atlas (TCGA) plan attempts to apply genomic analysis 
techniques, especially the use of large-scale genome sequencing, to draw all human cancers genome variation 
map. In this section, we choose two kinds of RNA-Seq datasets, i.e., esophageal cancer (ESCA) and squamous cell 
carcinoma of head and neck (HNSC), which can be downloaded from TCGA (http://tcgadata.nci.nih.gov/tcga/). 
Here, we also adopt the 3-Layer SLDSF with 200 samples. Since RGNMF and GNMF cannot select genes in the 
GO terms on the two datasets, we only compared SLDSF, RPCA and PMD. The results of SLDSF, RPCA and PMD 
on ESCA dataset and HNSC dataset are summarized in Tables 6 and 7, respectively. In the tables, the best results 
among three methods are shown in bold. For simplicity, only the P-values of top 10 GO terms for each method 
are shown in this paper.

Test on the ESCA dataset.  The ESCA data are the RNA-Seq data of esophageal cancer. It includes 192 samples 
and 20502 genes. There are 9 normal samples and 183 diseased samples.

Table 6 shows the P-Values of the top 10 closely related ESCA GO terms corresponding to the characteristic 
genes selected by three methods: SLDSF, RPCA and PMD. In this table, ‘None’ denotes that the method cannot 
select genes in the GO term. SLDSF outperforms RPCA and PMD in 5 GO terms. In GO:0043588, SLDSF has the 
best performance, same as RPCA. In GO:0007010 and GO:0034109, SLDSF has the best performance, same as 
PMD. In GO:0022610 and GO:0007155, RPCA has the lowest P-Values.

A Venn diagram of genes selected by three methods is shown in Fig. 4(a). We denote the ‘unique’ characteris-
tic gene as the gene selected only by one method while neglected by other methods. From Fig. 4(a), there are 63 
genes shared by all methods and SLDSF can select 8 ‘unique’ characteristic genes. The ‘unique’ characteristic genes 
should be further investigated to determine whether they are associated with ESCA.

We studied the ‘unique’ genes selected by SLDSF according to the existing literatures. The top 5 ‘unique’ char-
acteristic genes selected by SLDSF are analyzed, and they are shown in bold in the following explanations. Shen 
et al. have performed the first GWAS (Genome-wide Association Study) of esophageal squamous cell carcinoma 
in the MHC (Major Histocompatibility Complex) region on the subjects from high risk areas in northern China 
and found three important independent susceptibility loci containing three biologically interesting candidate 
genes, i.e., HLA-DQA1, TRIM27 and DPCR139. Li et al. found that DRD2/PPP1R1B (also known as DARPP-32) 
expression is associated with tumor progression and that DRD2/ PPP1R1B expression may help predict progno-
sis in patients with esophageal squamous cell carcinoma40. In41, MUC17, MUC5B and MUC6 gene mutations in 
tumor region T4A of esophageal squamous cell carcinoma predict the perturbation of O-glycan biosynthesis and 

ID Name

SLDSF RPCA PMD

P-Value P-Value P-Value

GO:0042060 wound healing 7.30E-16 8.20E-13 7.56E-12

GO:0009611 response to wounding 1.38E-12 4.01E-10 4.01E-10

GO:0022610 biological adhesion 2.01E-12 5.40E-14 3.37E-13

GO:0006955 immune response 3.37E-12 9.95E-11 9.95E-11

GO:0007155 cell adhesion 9.34E-12 2.71E-13 1.63E-12

GO:0043588 skin development 1.06E-11 1.06E-11 None

GO:0007010 cytoskeleton organization 8.65E-11 1.39E-08 8.65E-11

GO:0050776 regulation of immune response 9.56E-11 6.12E-10 3.70E-09

GO:0034109 homotypic cell-cell adhesion 1.92E-10 1.59E-08 1.92E-10

GO:0098609 cell-cell adhesion 5.20E-10 3.04E-09 3.04E-09

Table 6.  The P-Values of GO terms corresponding to different methods on the ESCA dataset.

http://tcgadata.nci.nih.gov/tcga/
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processing. The presence of activating mutations within EGFR in esophageal adenocarcinomas defines a previ-
ously unrecognized subset of gastrointestinal tumors in which EGFR signaling may play an important, biological 
role42. According to an analysis of genes strongly up-regulated in both esophageal adenocarcinoma and Barrett’s 
esophagus, REG4 might be of particular interest as an early marker for esophageal adenocarcinoma43.

Test on the HNSC dataset.  The HNSC data are the RNA-Seq data of squamous cell carcinoma of head and neck. 
It includes 418 samples and 20502 genes. There are 20 normal samples and 398 diseased samples.

Table 7 shows the P-Values of the top 10 closely related HNSC GO terms corresponding to the characteristic 
genes selected by three methods. SLDSF outperforms other methods in 8 GO terms. In GO:0043588, PMD has 
the best performance. In GO:0045104, RPCA is a little better than SLDSF.

To further study the genes selected by these methods on HNSC dataset, a Venn diagram is shown in Fig. 4(b). 
There are 43 genes shared by all three methods. SLDSF can select 13 ‘unique’ characteristic genes. We verified 
these ‘unique’ genes according to the existing literature to determine whether these genes are associated with 
HNSC or not.

Here, the top 5 ‘unique’ characteristic genes selected by SLDSF are investigated. Kinoshita et al. demonstrated 
that LAMB3 functions as an oncogene and strongly contributes to cancer cell migration and invasion in HNSC44. 
CD44 isoforms mediate migration, proliferation, and cisplatin sensitivity in HNSC. Furthermore, expression of 
certain CD44 variants may be important molecular markers for HNSC progression45. HSP90AA1 and CTSD are 
down-regulated in HNSC after the combination treatment of cilengitide and cisplatin when compared to cisplatin 
alone46. CTL1 was identified as an up-regulated gene in HNSC47.

Global Cancer Genes Selected by SLDSF.  We have used SLDSF to selected characteristic genes for dif-
ferent cancer types and subtypes. However the results of using our method for global cancer genes selection 
(independent of type/subtype) have not been discussed yet. These global genes may play an important role in the 
development of multiple cancers.

ID Name

SLDSF RPCA PMD

P-Value P-Value P-Value

GO:0042060 wound healing 9.46E-16 5.38E-11 1.69E-11

GO:0031581 hemidesmosome assembly 6.00E-14 2.27E-09 None

GO:0009611 response to wounding 1.80E-12 1.09E-08 2.88E-08

GO:0022610 biological adhesion 2.78E-12 5.73E-09 9.48E-10

GO:0034330 cell junction organization 4.26E-12 5.69E-10 1.25E-07

GO:0043588 skin development 1.24E-11 7.65E-18 7.50E-27

GO:0007010 cytoskeleton organization 1.88E-11 2.56E-07 6.43E-07

GO:0034329 cell junction assembly 3.16E-11 5.69E-10 1.19E-06

GO:0045104 intermediate filament cytoskeleton 
organization 6.83E-11 5.75E-11 8.77E-11

GO:0007155 cell adhesion 6.85E-11 2.21E-08 7.91E-10

Table 7.  The P-Values of GO terms corresponding to different methods on the HNSC dataset.

Figure 4.  The Venn diagram of genes selected by three methods on (a) ESCA dataset and (b) HNSC dataset.
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For microarray datasets, 3 global cancer genes (CD74, FTL and HLA-DRA) are selected by SLDSF from lung 
cancer dataset, leukemia dataset and DLBCL dataset. The functional description of these genes is as follows. The 
protein encoded by CD74 associates with class II major histocompatibility complex (MHC) and is an important 
chaperone that regulates antigen presentation for immune response. It also serves as a cell surface receptor for the 
cytokine macrophage migration inhibitory factor (MIF) which, when bound to the encoded protein, initiates sur-
vival pathways and cell proliferation. This protein also interacts with amyloid precursor protein (APP) and sup-
presses the production of amyloid beta (Abeta). FTL encodes the light subunit of the ferritin protein. Variations 
in ferritin subunit composition may affect the rates of iron uptake and release in different tissues. A major func-
tion of ferritin is the storage of iron in a soluble and nontoxic state. Defects in this light chain ferritin gene are 
associated with several neurodegenerative diseases and hyperferritinemia-cataract syndrome. HLA-DRA is one 
of the HLA class II alpha chain paralogues. Class II molecules are expressed in antigen presenting cells (APC: B 
lymphocytes, dendritic cells, macrophages).

For RNA-Seq datasets, there are 63 global cancer genes are selected by SLDSF from ESCA and HNSC datasets. 
This may indicate that ESCA and HNSC have many identical characteristic genes. For simplicity, the functional 
descriptions of 3 global genes (ACTB, COL1A1 and KRT13) are reported as follows. ACTB encodes one of six dif-
ferent actin proteins. Mutations in this gene cause Baraitser-Winter syndrome 1, which is characterized by intel-
lectual disability with a distinctive facial appearance in human patients. COL1A1 encodes the pro-alpha1 chains 
of type I collagen. Mutations in this gene are associated with osteogenesis imperfecta types I-IV, Ehlers-Danlos 
syndrome type VIIA, Ehlers-Danlos syndrome Classical type, Caffey Disease and idiopathic osteoporosis. 
Reciprocal translocations between chromosomes 17 and 22, where this gene and the gene for platelet-derived 
growth factor beta are located, are associated with a particular type of skin tumor called dermatofibrosarcoma 
protuberans. The protein encoded by KRT13 is a member of the keratin gene family. Mutations in this gene and 
keratin 4 have been associated with the autosomal dominant disorder White Sponge Nevus. It is worth noting that 
FTL can be selected by SLDSF on all five datasets.

It would be interesting to see how SLDSF performs for selecting genes that are already well-known and 
validated oncogenes and/or suppressors. SLDSF can successfully select oncogenes when tested on five gene 
expression datasets. For example, three oncogenes: FOS, LCK, MYB are selected in the leukemia dataset. Four 
oncogenes: ERBB2, LCN2, EGFR and CCND1 can be selected in the ESCA dataset. SLDSF can also select sup-
pressors from five gene expression datasets, for instance, RPL10 in the lung cancer, EGFR and ERBB2 in ESCA, 
and EEF1A1 in lung cancer, DLBCL, ESCA and HNSC. Note that EGFR and ERBB2 in ESCA data are both 
oncogenes and suppressors.

Conclusions
Identifying cancer characteristic genes is important to understand the underlying genetics and the prognostic 
assessment of cancer. In this paper, we proposed a novel unsupervised characteristic gene selection method, 
SLDSF, based on sample learning and deep sparse filtering. Using sample learning to transform the sample space 
of the gene expression data, the genes can be better represented in the transformed sample space. By using sparse 
filtering to implement sample learning to avoid explicit modeling of the data distribution, sample learning can 
be achieved in a simple formulation effectively. Furthermore, for the gene expression data, we provide a detailed 
explanation of how sample learning satisfies three desirable characteristics of the sample distribution (population 
sparsity, high dispersal and lifetime sparsity) in sparse filtering. While traditional unsupervised characteristic 
gene selection methods do not take the deep structure into account, the proposed SLDSF explores deep sparse 
filtering to implement sample learning, with the advantage that multi-layers may learn more meaningful rep-
resentations than a single layer.

In summary, the main contributions of this paper are described as follows:
- A deep learning structure, deep sparse filtering, is proposed for selecting cancer characteristic genes for the 

first time in the literature.
- We propose a novel idea, sample learning, for transforming the sample space of the gene expression data to 

select genes with deep learning. This enables us to better understand feature representations by the transformed 
sample space.

We investigated the number of layers and the number of samples in the proposed SLDSF method on five 
real gene expression datasets: lung cancer dataset, leukemia dataset, DLBCL dataset, ESCA dataset and HNSC 
dataset. The results of SLDSF were compared with four characteristic gene selection methods: RGNMF, GNMF, 
RPCA and PMD. Experimental studies on gene expression datasets consistently suggest that, SLDSF is more 
effective than other four methods for selecting cancer characteristic genes. Especially on the lung cancer dataset, 
the proposed SLDSF method significantly outperforms other four methods. The ‘unique’ genes selected by SLDSF 
are shown closely associated with the specific cancer dataset according to the current literatures. Furthermore, 
global cancer genes selected by SLDSF are analyzed. It is observed that SLDSF can find many oncogenes and/or 
suppressors from the studied five datasets.

The main limitation of this paper is its related biological explanations of the selected cancer character-
istic genes. In this paper, we use GO analysis to evaluate the effectiveness of SLDSF and justify the selected 
genes based on the existing literature. Although GO analysis may not be a strong authentication way to val-
idate an algorithm, it is recommended as an approach to evaluate the method in many papers6,23. However, 
the selected genes should be verified in biological experiments by biologists to find more meaningful bio-
logical explanations. In future, we will explore more on biological meanings of the selected cancer charac-
teristic genes.
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