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Uneven-Layered Coding 
Metamaterial Tile for Ultra-
wideband RCS Reduction and 
Diffuse Scattering
Jianxun Su1, Huan He1, Zengrui Li1, Yaoqing (Lamar) Yang2, Hongcheng Yin3 & Junhong Wang4

In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar 
cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two 
kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° 
(±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation 
between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating 
from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the ‘0’ 
and ‘1’ elements to cover an object, and diffuse scattering pattern can be realized by optimizing 
phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The 
metamaterial tile can achieve −10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth 
of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate 
the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS 
reduction and diffuse scattering.

In recent years, there have been abundant researches on manipulating electromagnetic waves in order to real-
ize the stealth of targets. As a new category of metamaterials, metasurfaces1,2 are widely utilized in many fields 
because of their low profiles and potential abilities of controlling electromagnetic (EM) waves, such as polar-
ization converter3, ultra-thin metalenses4,5, low scattering6–8, wave plates for generating vortex beams9,10, and 
electromagnetic interference and shielding11.

To reduce the RCS of a structure, the method of devising the well-known radar absorbing metamaterials 
(RAMs) to the surface of the objects is introduced. The RAM is capable of transforming electromagnetic energy 
into heat12. It is easy to manufacture and can efficiently suppress the RCS of the targets. However, most of RAMs 
usually have narrow bandwidth because of operating in the vicinity of resonance frequency13,14. Another method 
is to exploit the cancellation effects arising from the well-known 180°phase-difference between the corresponding 
reflection coefficients. The basic way is to employ the perfect electric conductor (PEC) and artificial magnetic 
conductor (AMC) together to design metasurface. The backscattering field can be effectively cancelled by redi-
recting it along other angles. However, the bandwidth is really limited due to the narrow in-phase reflection 
bandwidth of the AMC15. Then, a planar chessboard-like metasurface is proposed to reduce RCS. Two AMC 
cells based on Jerusalem Cross configuration16 have been used to obtain −10 dB monostatic RCS reduction over 
41% frequency bandwidth. The dual electromagnetic band-gap (EBG) surfaces are adopted to obtain −10 dB 
RCS reduction over 60% frequency bandwidth17. Non-absorptive two-layered miniaturized-element frequency 
selective surfaces of a chessboard-like configuration was proposed for wideband RCS reduction18. The −10 dB 
RCS reduction bandwidth of 50% is achieved at the normal incidence. A planar chessboard structure consisting 
of saltire arrow and four-E-shaped unit cells is presented in the design19. A broad bandwidth of 85% is obtained 
for −10 dB RCS reduction. A combination of absorptive and phase gradient metasurfaces was presented in20, 
and the −10 dB RCS reduction was realized in dual-band covering 2.7–3.5 GHz (25% bandwidth) in S band and 
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10.5–18 GHz (52.63% bandwidth) in X and Ku band. Then, the dual wideband checkerboard surfaces are pre-
sented21, and the −10 dB RCS reduction, in the frequency bands of 3.94–7.40 GHz and 8.41–10.72 GHz is about 
61% and 24% bandwidths by utilizing two dual-band EBG structures. Furthermore, the multi-resonance method 
is also employed in22. The metasurface consisting of four subarrays randomly distributed reflection phases at four 
specific frequencies achieves 52.63% bandwidth for −10 dB RCS reduction. Another method is to utilize the 
polarization conversion metasurface to realize wideband RCS reduction. An ultra-wideband polarization reflec-
tive surface with a periodic array of quasi-L-shaped patches is presented in23, which obtains about −5 dB RCS 
reduction in the frequency band of 6–19 GHz (104% bandwidth). In24, the metasurface is composed of square and 
L-shaped patches, which can convert the polarization of the incident wave to its cross-polarized direction, repre-
senting the plasmon cloaking of an object. A −10 dB RCS reduction is achieved over an ultra-wideband of 98%.

Recently, coding or digital metasurface has been proposed for wideband RCS reduction25–27. In25, the 1-bit, 
2-bit and 3-bit coding metasurfaces composed of digital elements have been proposed and obtains −10 dB RCS 
reduction bandwidth of 66.67%. A 3-bit coding metasurface based on multi-resonant polarization conversion 
elements is presented in26. The bandwidth of −10 dB RCS reduction is 89.9%. A broadband and broad-angle 
polarization-independent random coding metasurface for RCS reduction is proposed in27. The −10 dB RCS 
reduction bandwidth of 84.75% is realized.

The aim in this paper is to present a novel uneven-layered metamaterial tile for ultra-wideband RCS reduc-
tion. Two unit cells with 180° (±37°) phase difference in ultra-wide frequency band are exactly designed to build 
the metamaterial tile, resulting in ultra-wideband phase cancellation. Metamaterial tile with small size is universal 
and easy to be modularized in production and processing. Furthermore, it can be encoded as digital element to 
cover objects and obtain diffuse scattering pattern, leading to low bi-static RCS. The simulated and measured 
results show that −10 dB RCS reduction is achieved over an ultra-wide frequency band from 6.2 to 25.7 GHz 
(ratio bandwidth of 4.15:1). The proposed uneven-layered metamaterial tile can greatly expanding the bandwidth 
for RCS reduction and diffuse scattering and may find potential applications in stealth technology.

Results
Unit cell design. Square ring metallic patch is chosen as the basic shape of the unit cell. The square ring patch 
has side length of L and width of W as depicted in the inset of Fig. 1. It is printed on the F4B-2 substrate with 
thickness of h and a relative permittivity of 2.65. The unit cells are simulated by Frequency Domain Solver of CST 
Microwave Studio with unit cell boundary conditions to achieve the reflection coefficients. In simulation, the side 
length L of unit cell varies from 0.8 to 7.8 mm with a step width of 0.1 mm and the thickness h of substrate varies 
from 1 to 6 mm with a step size of 1 mm. The width W of square ring is 0.3 mm and the period p of the unit cell is 
8 mm. The reflection phase versus frequency for the maximum and minimum values of L and h is illustrated in 
Fig. 1. For the unit cell of any size, the reflection phase curves are within the four curves.

The RCS reduction for the metamaterial tile is dependent on the phase difference between two unit cells 
according to25

RCSreduction e e10 lg
2 (1)

j j
21 2

= |
+

|
ϕ ϕ

where ϕ1 and ϕ2 are the reflection phases of the two unit cells. To achieve −10 dB RCS reduction, reflection phase 
difference between two unit cells must vary from 143° to 217° while the magnitude of the reflection coefficient is 
unity because the PEC ground plane is infinite. We look for two unit cells with 180° (±37°) phase difference in 
the largest possible frequency band.

Finally, this searching process results in two dimensions. The thickness h1 and side length L1 of one unit cell 
are 3 mm and 7 mm, respectively. The other is with thickness of h2 = 6 mm and side length of L2 = 2.6 mm. The 
reflection phases of two unit cells and the phase difference between them are illustrated in Fig. 2. Apparently, we 
can obtain 180° (±37°) phase difference from 5.88 GHz to 23.25 GHz (up to a ratio bandwidth of 4:1), and the 
phase difference is exactly 180° at 6.16 GHz, 9.8 GHz, 16.13 GHz and 22 GHz. Therefore, an ultra-broadband RCS 
reduction of the proposed metasurface is expected.

Figure 1. Four reflection phase versus frequency curves for the maximum and minimum values of thickness h 
and side length L.
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Metamaterial tile design. In order to approximately satisfy the unit cell boundary condition used in sim-
ulation, a lattice consists of 7 × 7 unit cells. A metamaterial tile with overall dimension of 112 mm × 112 mm 
contains 2 × 2 lattices and two different lattices are distributed alternately as depicted in Fig. 3(a). To observe 
the scattering behavior, the metamaterial tile is simulated by the Transient Solver of CST Microwave Studio. The 
scattering pattern of the metamaterial tile has four main lobes deviating from the normal direction as shown in 
Fig. 3(b). An equal-sized PEC ground plane is also simulated as a reference. The RCS of the metamaterial tile and 
an equal-sized PEC ground plane are separately simulated first. Then, subtraction is made between their values to 
get the RCS reduction. The analytical and simulated RCS reductions of the metamaterial tile under normal inci-
dence are in good agreement, as shown in Fig. 4. There are some derivations between the simulated and analytical 
results because Eq. (1) doesn’t consider the coupling effect between neighboring lattices and edge diffraction at 
the open boundary. The simulated RCS reduction at 6.8 GHz declines slightly. The metamaterial tile can achieve 
the simulated RCS reduction less than −8.5 dB from 6.1 GHz to 26 GHz with a ratio bandwidth of 4.26: 1.

Figure 2. The reflection phases of two unit cells and phase difference between them. (a) Reflection phases. (b) 
Phase difference.

Figure 3. The metamaterial tile and its scattering characteristics. (a) The geometry of the metamaterial tile. (b) 
The bi-static scattering pattern.

Figure 4. The simulated and analytical RCS reductions of the metamaterial tile for normal incidence.
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It should be mentioned that the RCS reduction can be approximated by Eq. (1), which provides a good guide-
line for RCS reduction of the metamaterial tile compared to that of a PEC ground plane.

Diffuse scattering of electromagnetic waves. This section introduces how to use metamaterial tiles as 
encoding elements to cover an object and achieve diffuse scattering of electromagnetic waves. The metamaterial 
tile has four scattering beams directing to (θ, 45°), (θ, 135°), (θ, 225°) and (θ, 315°). The elevation angle θ is cal-
culated by25

θ λ
=







D

arcsin
2 (2)

where λ and D are the working wavelength and the length of a lattice, respectively. The values of the angle θ at 
5 GHz, 10 GHz, 15 GHz, 20 GHz and 25 GHz are 49.25°, 22.26°, 14.63°, 10.92° and 8.72° respectively. Total 20 field 
probes are set in CST to probe the electric fields in far field for four scattering beams at these five frequencies. 
Figure 5 shows the simulated phase difference and magnitude ratio of reflection coefficients between the metama-
terial tile and its 90-degree rotation. It is noting that the scattering fields of each beam between the metamaterial 
tile and its 90-degree rotation are approximate equal amplitude and opposite phase. Small deviations are attrib-
uted to the theoretical scattering angles obtained by Eq. (2) deviating from that of the simulation, resulting in the 
field probe not pointing to the beams exactly. Thus, the metamaterial tile and its 90-degree rotation are nominated 
as “0” and “1” elements, respectively. These two encoding elements can be used to cover an object of any shape 
and achieve the diffuse scattering through optimizing the phase layout. The metamaterial tile with the small size 
is easy to be modularized and in mass production for commercial application.

To illustrate the mono- and bi-static scattering characteristics, here we design a metasurface as an example 
composed of 4 × 4 metamaterial tiles with total dimension of 448 mm × 448 mm. As expected, the bi-static scat-
tering pattern of chessboard-like metamaterials can be analyzed by array theory28. For a metasurface consisting 
of M × N lattices, the lattices are spaced with dx in the x direction and dy in the y direction. The scattering pattern 
of the metasurface at angle θ and ϕ is given by

EP AF( , ) ( , ) ( , ) (3)σ θ ϕ θ ϕ θ ϕ= ⋅

where EP and AF are the element pattern, namely, the scattering pattern of the metamaterial tile, and array factor, 
respectively. θ and ϕ are the elevation and azimuth angles of an arbitrary scattering direction, respectively. In our 
model, we assume that the EP is fixed. According to the array theory, the AF can be expressed by
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Figure 5. The phase difference and magnitude ratio of electric fields of four main scattering beams between the 
metamaterial tile and its 90-degree rotation. (a) ϕ = 45°. (b) ϕ = 135°. (c) ϕ = 225°. (d) ϕ = 315°.
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φ(m, n) is the initial phase of the element, which has two phase values 0 or π to be chosen. To obtain the diffuse 
scattering pattern, the array theory together with particle swarm optimization (PSO) algorithm is adopted to 
optimize and find the best phase layout29. The flowchart of the hybrid array pattern synthesis (APS) and parti-
cle swarm optimization (PSO) method is shown in Fig. 6. The PSO module updates the particle speed and the 
population location (i.e. the phase arrangements) in each iteration, and then sends the information to the APS 
module. The latter gives the scattering pattern of the optimized metasurface based on array pattern synthesis and 
calculates the maximum RCS and monostatic RCS. The fitness is then scored and returned to the PSO module 
and the PSO module evaluates the fitness. After a number of iterations, we can get the optimal phase arrangement 
for the metasurface with a lowest RCS as required. The kernel of this flowchart is that the PSO module determines 
various combinations of basic metamaterial tile, whose performances are judged by the APS module to find the-
best solution. Particle swarm optimization is a high-performance optimizer that is very easy to understand, easy 
to implement and highly robust. It is similar in some ways to genetic algorithms, but requires less computational 
bookkeeping and generally only a few lines of code. Finally, the coding matrix of elements is obtained as shown 
in Fig. 7.

RCS can be divided into two types: monostatic RCS and bi-static RCS. Bi-static radar is the name given to a 
radar system which comprises a transmitter and receiver which are separated by a distance that is comparable 
to the expected target distance. Conversely, a radar in which the transmitter and receiver are collocated is called 
a monostatic radar. Therefore, the monostatic RCS represents the RCS value only in one direction, the normal 
direction. It is not related to other angle factors. The simulated monostatic RCS reduction of the metasurface is 
shown in Fig. 8. Less than −9.6 dB RCS reduction is achieved from 6.0 GHz to 25.5 GHz and there are four dips 
in the curve corresponding to four frequencies with exact 180° phase difference. The optimal metasurface can 
produce diffuse scattering with numerous lobes, leading to a great reduction of bi-static RCS. According to the 
Eq. (3), the bi-static RCS is related to two angle factors: θ and ϕ. The three-dimensional bi-static RCS patterns 
of the metasurface under normal incidence at 6 GHz, 10 GHz, 16 GHz and 22 GHz are depicted in Fig. 9, where 
θ ranges from 0° to 90° and ϕ ranges from 0° to 360°. Obviously, the bi-static RCSs are dramatically suppressed 
compared to that of the PEC ground plane.

Figure 6. The flowchart for hybrid APS and PSO algorithm.
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As for the maximum or minimum value of RCS at a certain frequency, there are two methods usually used. 
One approach is to search the maximum value of RCS directly from the simulated RCS results in CST Microwave 
Studio. Another way is to output the bi-static RCS result from CST Microwave Studio and then select the maxi-
mum or minimum value by computer programming with MATLAB.

Figure 7. The coding matrix of elements of the metasurface and the details of the two encoding elements: “0” 
element and “1” element.

Figure 8. The simulated result of RCS reduction of the metasurface for normal incidence.

Figure 9. The bi-static RCSs of PEC ground plane and metasurface at four frequencies for normal incidence. 
(a) 6 GHz. (b) 10 GHz. (c) 16 GHz. (d) 22 GHz.
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Measured results. To further study the predicted scattering characteristics, a metamaterial tile with the dimen-
sion of 112 mm × 122 mm is fabricated and measured. There are some reasons to adopt the sample with the 
dimension of 112 mm × 112 mm. First of all, the metamaterial tile with dimension of 112 mm × 112 mm is an 
uneven-layered coding element. A single metamaterial tile has realized the excellent monostatic RCS reduc-
tion. Multiple metamaterial tiles can be used to constitute lager experimental sample by optimizing the arrange-
ment of the layout, which aims at reducing the bi-static RCS rather than the monostatic RCS. Furthermore, 
a high-precision RCS measurement is conducted using the compact antenna test range (CATR) system of the 
Science and Technology on Electromagnetic Scattering Laboratory in Beijing, China. The measurement accu-
racy is in line with the military standard, so the measured results are precise enough. Finally, taking the cost into 
account, the sample with the dimension of 112 mm × 112 mm is fabricated in the measurement. The dielectric 
substrate is PTFE woven glass substrate (Model: F4B-2, Wangling Insulating Materials, Taizhou, China) with 
a dielectric constant εr = 2.65 (loss tangent tanδ = 0.001). The metal patches and ground are 0.035 mm-thick 
copper layers. The sample is depicted in Fig. 10(a). The measurement setup of compact range system is shown in 
Fig. 10(b). Two identical horn antennas are utilized as transmitting and receiving devices, respectively. The spher-
ical waves emitted by the horn antenna are reflected by the parabolic metal reflector and become plane waves. 
Short test distance between metamaterial tile sample and reflector is easy to meet the far field conditions. Four 
pairs of standard linearly polarized horn antennas are used to cover four frequency bands of 4–8 GHz, 8–12 GHz, 
12–18 GHz and 18–26.5 GHz, respectively. The RCS of an equal-sized metallic surface is also measured as refer-
ence. The measured RCS of the metamaterial tile normalized to the equal-sized metallic surface is illustrated in 
Fig. 11. Less than −10 dB RCS reduction is achieved over an ultra-wide frequency band of 6.2–25.7 GHz. The 
analytical and simulated results are also depicted in Fig. 11. It is noted that the measured result coincides with 
the analytical and simulated results. Some deviation between them is attributed to the fabrication and measure-
ment errors. Table 1 presents a comparison between our results and previous researches. It is found that the pro-
posed metamaterial tile shows a great benefit in extending the bandwidth of RCS reduction. The ratio bandwidth 
reaches 4.15:1, and the relative bandwidth is up to 122.3%. Overall, the excellent performance of the proposed 
metamaterial tile has been confirmed.

Figure 10. The fabricated metamaterial tile and the measurement setup. (a) The sample. (b) The schematic view 
of compact range system for the monostatic RCS measurement.

Figure 11. The analytical, simulated and measured RCS reductions of the metamaterial tile for normal 
incidence.
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Conclusion
In this paper, the uneven-layered coding metamaterial tile is designed, fabricated and measured for 
ultra-wideband diffuse scattering and RCS reduction. The proposed metamaterial tile consists of two kinds of 
square ring unit cells with different layer thickness. The analysis and simulation results are consistent with the 
measurement results. The proposed metamaterial tile can achieve −10 dB RCS reduction over an ultra-wide 
frequency band from 6.2 to 25.7 GHz with a ratio bandwidth of 4.15:1. The metamaterial tile with the small size 
has the scattering pattern of four lobes deviating from normal direction. The metamaterial tile and its 90-degree 
rotation can be encoded as ‘0’ and ‘1’ elements, respectively. Both encoding elements can be used to cover objects, 
and diffuse scattering can be realized by optimizing the phase distribution, leading to low monostatic and bi-static 
RCSs simultaneously. This work is very helpful in the stealth and other microwave applications.
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