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Polarization-independent circulator 
based on ferrite and plasma 
materials in two-dimensional 
photonic crystal
Xiang Xi  , Mi Lin, Wenbiao Qiu, Zhengbiao Ouyang, Qiong Wang & Qiang Liu

We propose a type of polarization-independent circulator based on ferrite and plasma materials in 
a two-dimensional photonic crystal (PhC) slab. First, on the basis of analyzing the wave equations 
in ferrite and plasma materials, TE and TM circulators are realized with ferrite and plasma in PhCs, 
respectively. Then, by properly combining these two types of circulators together, a polarization-
independent circulator is achieved and investigated. The results show that, for both polarizations, the 
insertion loss and isolation for the polarization-independent circulator are less than 0.15 dB and more 
than 20 dB, respectively. Finite-element method is used to calculate the characteristics of the circulators 
and Nelder-Mead optimization method is employed to obtain the optimized parameters. The idea 
presented here may have potential applications in integrated photonic circuits and devices.

Circulators are nonreciprocal devices that only allow waves to be transmitted along a specific direction and are 
widely used in modern communications technology in several critical applications. These devices can be used to 
protect source signals from the effects of harmful reflections, can extract feedback signals for use in diagnostic or 
detection systems, and can be used to design add-drop multiplexers or optical band pass filters1–3.

Following the development of photonic crystals (PhCs), circulators based on PhCs4–7 have been studied 
actively because of their compactness, suitability for applications, and efficiency. Many high quality circulators 
have been fabricated based on PhCs. For example, several types of PhC circulators with high isolation and low 
insertion loss made from bismuth-iron-garnet (BIG) have been proposed8–10. In refs8–10, the researchers used BIG 
to construct magneto-optical (MO) cavities and successfully designed three-port, four-port and even six-port 
circulators for operation at optical frequencies. A type of compact W-format PhC circulator with modulated MO 
cavities was also proposed11 that required only one single-direction external magnetic field and no rotational 
symmetry. In addition, yttrium-iron-garnet (YIG) has also been used to realize PhC circulators12–17. Several cir-
culators with different shapes were fabricated based on the MO effect provided by YIG-based materials, including 
T-type, Y-type and cross-type circulators. However, all the PhC circulators described above can only operate with 
a specific polarization type (i.e., TE or TM polarization only), which may greatly restrict their potential appli-
cations. In practice, e.g., in biosensing applications, a single-polarization incident wave may produce reflected 
or transmitted waves that have both TE and TM polarization components. It is therefore necessary to perform 
further research to produce polarization-independent circulators (PIC) for higher signal processing efficiency.

Up to now, several types of PICs have been proposed. Matsumoto’s group18 proposed a kind of optical PIC by 
using components such as YIG crystals, polarization prisms, compensating plates, and magnet rings. They proved 
that their circulator obtained 3.7 dB insertion loss and 10–20 dB isolation. Then, Sugimoto et al.19 proposed a type 
of waveguide PIC based on the nonreciprocal Mach-Zehnder interferometer. Waveguide rotators, half waveplates 
and planar 3-dB couplers were used to compose that interferometer. The insertion loss and isolation of their 
circulator were 3 dB and 20 dB, respectively. After that, a 4-port PIC was fulfilled by the careful assembly of holo-
graphic spatial walk-off polarizers20, which were built based on the coupled-wave theory. In addition, another 
waveguide PIC suitable for monolithic integration was proposed21 where multimode interferometers, half-wave 
plates, and rotators in waveguide form were used and 25 dB of isolation and 1.3 dB of insertion loss were obtained 
in optical regime.
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In this paper, a type of PIC that is based on both ferrite and plasma materials22–30 in a two-dimensional (2D) 
triangular-lattice PhC slab is proposed. First, the wave equations in these ferrite and plasma materials are stud-
ied. Then, we use the ferrite materials to build a TE PhC circulator, and use the plasma materials to build a TM 
PhC circulator. Finally, we combine these two circulators together to realize a PIC. The finite-element method 
(FEM)31–33 is then used to calculate the output properties of these structures and the Nelder-Mead optimization 
method (NOM)34,35 is used to optimize the circulator parameters. The greatest advantage of the proposed struc-
ture is that it is polarization-independent, which makes it highly efficient in practical applications. For example, in 
processing mixed-polarization signals in communication systems or circular-polarized signals in biosensors, PIC 
can decrease the loss or promoting the sensitivity. As another example, in polarization logic systems, PIC is nec-
essary for the operation of both polarizations in the systems. Comparing with the PICs mentioned above, most of 
the PICs consist of multiple components so that our structure is more compact in size. Besides, the insertion loss 
of our circulator is much lower. In addition, all the air holes and ferrite or plasma material regions in our PhC slab 
are cylindrically shaped, which means that the structure is easy to fabricate and feasible in practice.

To the best of our knowledge, it is the first time to realize the PIC in PhC structure with both the ferrite and 
plasma materials. However, due to the limit of materials at present stage, the circulators studied in this paper are 
designed for microwave frequencies using experimentally feasible ferrite and plasma materials. Our design can 
be extended to optical regime when the needed materials become available in the future.

Theoretical Analysis - Wave Equations in Ferrite and Plasma Materials
Ferrite Material. First, we consider electromagnetic (EM) waves propagation in the ferrite material. In a 
source-free region, the wave equations can be deduced based on Maxwell’s differential equations:

ωε ε∇ × =jH E, (1)r0

ωµ µ∇ × = − .jE H (2)r0

By considering the vector identity ∇ × ∇ × = ∇ ∇ ⋅ − ∇H H H( ) 2 , the wave equation for H can be 
obtained from Eqs (1) and (2),

ω ε ε µ µ∇ − ∇ ∇ ⋅ + ⋅ = .H H H( ) 0 (3)r r
2 2

0 0

Under an external direct-current (DC) magnetic field, the relative permittivity of the ferrite material εr  is 
known to be constant, while its relative permeability has the following tensor form
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It is assumed that the electric field and the magnetic field in the ferrite material take the forms of 
= − ⋅E E E eE ( , , )x y z

jk r and = − ⋅H H H eH ( , , )x y z
jk r, respectively, where = + +k k kk e e ex x y y z z is the wave vector, 

= + +x y zr e e ex y z is the position vector, and e e e( , , )x y z  is the unit vector. The following matrix form of Eq. (3) 
can then be derived:
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where = + +k k k kx y z
2 2 2  is the propagation constant of the ferrite material and ω ε µ=k0 0 0  is the propaga-

tion constant of air.
Equation (5) describes the properties of the magnetic field H in the ferrite material. In the following, we solve 

this equation under several different conditions to enable discussion of the behaviour of the EM wave. For sim-
plicity, we assume that the wave propagates along the x-y plane at an angle θ and that the external DC magnetic 
field is applied along the z-direction as shown in Fig. 1.

TE waves propagation (non-magnetized ferrite). When a TE wave propagates along the x-y plane at an angle θ, 
the electric field is oriented parallel to the z-axis while the magnetic field is along the x-y plane. We therefore have 

= − ⋅E eE (0, 0, )z
jk r, = − ⋅H H eH ( , , 0)x y

jk r, and = +k kk e ex x y y, where kx = k cosθ and ky = k sinθ.
When no external DC magnetic field is applied, the ferrite material is un-magnetized and its relative permea-

bility can be simplified to the following form36
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where μC is a constant that is dependent on the type of ferrite materials used.
Under these conditions, Eq. (5) can be written in a simplified form as:



www.nature.com/scientificreports/

3SCIeNTIfIC REPORTS |  (2018) 8:7827  | DOI:10.1038/s41598-018-26189-8

θ ε µ θ θ

θ θ θ ε µ









− −

− −



















 = .

k k k

k k k

H
H

sin cos sin

cos sin cos
0

(7)

r C

r C

x

y

2 2
0
2 2

2 2 2
0
2

By solving Eq. (7) and using the differential equation that relates H to E in Eq. (1), we obtain the following 
relationships:

ε µ=k k , (8)r C
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Traditionally, the polarization is regarded as the direction of the electric vectors and it is thus also called the elec-
tric polarization. However, to outline the behaviour of the wave more clearly here, we also use the magnetic polari-
zation, i.e., the direction of the magnetic vectors. From Eq. (8), we obtain ε µ ω ε µ ε µ ω= = =k k n c/r C r C0 0 0 , 
where c is the speed of light in a vacuum and ε µ=n r C  is the effective refractive index of the ferrite materials. On 
the one hand, from Eqs (9–11), we find that there is only the Ez component for the electric field and both Hx and Hy 
components for the magnetic field, which means that the TE wave can propagate in the un-magnetized ferrite mate-
rial; on the other hand, H H/x y obviously has a real form, which means that there is no phase difference between Hx 
and Hy. Therefore, the magnetic field H is linearly polarized. As a result, the wave propagation direction will remain 
unchanged. The un-magnetized ferrite material acts as an isotropic material and will not provide a rotation effect for 
the TE wave.

TE waves propagation (magnetized ferrite). Similarly, in this case we start with = − ⋅E eE (0, 0, )z
jk r, = HH ( ,x

− ⋅H e, 0)y
jk r, and = +k kk e ex x y y. When an external DC magnetic field is applied in the z-direction, the ferrite 

material becomes magnetized and its relative permeability can then be expressed as36
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where µm and µk are frequency-dependent and affected by the intensity of the external magnetic field (their detail 
expressions are given in the next section). The signs ± and  indicate the external fields in the +z and −z direc-
tions, respectively.

Using these conditions, Eq. (5) can then be reduced as follows:

Figure 1. The schematic diagram of the coordinate system, where the directions of the wave vector k and the 
external magnetic field H0 are indicated.
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From Eq. (13) and the differential equation of Eq. (1), we then have
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Equation (14) is the mode-equation of the TE wave in the magnetized ferrite material. The mode equation is 
a function of frequency that is dependent on the parameters of the ferrite material and takes an identical form for 
the external magnetic fields in both the +z and −z directions. From Eqs (15–17), we find that the electric field 
has only one component, Ez, while the magnetic field has both Hx and Hy components, so the TE wave can also 
propagate in the magnetized ferrite material. However, unlike the magnetic field in the un-magnetized scenario, 
Eq. (15) also shows that Hx/Hy takes complex forms so that Hx and Hy have different phases, i.e., now the magnetic 
field H is elliptically polarized. Therefore, the wave propagation direction will change by noting that the direction 
of electric field will fix at the z-direction but the direction of magnetic field will change along the elliptical path 
within the x-y plane. The magnetized ferrite material provides the rotation effect for the TE wave.

On the other hand, we note that the imaginary part of Hx/Hy is negative or positive for external fields in the 
+z and −z directions, respectively, and as a result, the phase of Hx is behind or ahead of that of Hy. Therefore, 
the resultant magnetic fields H are left-hand or right-hand elliptically polarized around the z-axis, respectively. 
Therefore, according to the right-hand law, the wave propagation directions will change along the clockwise or 
anti-clockwise directions, respectively, in these two situations. That is the reason why we can always change the 
circulation direction of a circulator by simply changing the direction of the external magnetic field.

TM waves propagation (non-magnetized ferrite). For a TM wave propagating along the x-y plane at an angle θ, 
the magnetic field is oriented parallel to the z-axis and the electric field is along the x-y plane, i.e., we have 

= − ⋅E E eE ( , , 0)x y
jk r, = − ⋅H eH (0, 0, )z

jk r and = +k kk e ex x y y. The relative permeability of the un-magnetized 
ferrite material is the same as that used in Eq. (6). Using these conditions, we solve Eq. (5) and obtain the follow-
ing expressions:
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From the above expressions, it is obvious that ε µ− =k k1 / 0r C
2

0
2  and Hz ≠ 0 otherwise H = E = 0, which is a 

trivial or useless solution of the above equations. The magnetic field H has only one component, Hz, while the 
electric field E has components Ex and Ey, so the TM wave can propagate in the un-magnetized ferrite material. In 
addition, it can easily be found that Ex/Ey has a real form, which means that the electric field is linearly polarized. 
Therefore, the wave propagation direction will remain unchanged. The un-magnetized ferrite material cannot 
provide a rotation effect for the TM wave in this case.

TM waves propagation (magnetized ferrite). In this case, we begin with = − ⋅E E eE ( , , 0)x y
jk r, = − ⋅H eH (0, 0, )z

jk r 
and = +k kk e ex x y y. Based on the relative permeability of the magnetized ferrite material from Eq. (12), we 
obtain the following relationships based on Eqs (1) and (5):
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From these equations, we find that all components of H and E in the magnetized ferrite material are the same 
as the corresponding components in the un-magnetized material case. A TM wave can propagate in the magnet-
ized ferrite material but the direction of this wave will remain unchanged. These results also indicate that when 
the wave propagation direction is perpendicular to the external DC magnetic field, neither the magnetized ferrite 
nor the un-magnetized ferrite material will provide a rotation effect for the TM wave.

Overall, we found that the un-magnetized ferrite material acted as an isotropic material and it could not pro-
vide a rotation effect for both polarizations. The magnetized ferrite material, however, could only provide a rota-
tion effect for the TE wave, and not for the TM wave. Therefore, we will use the ferrite material under a specific 
external magnetic field to fabricate the TE PhC circulator.

Plasma Material. We noted that the ferrite material, which has a tensor form for its relative permeability, 
can provide a rotation effect for TE waves. Based on the symmetry of Maxwell’s wave equations in electric and 
magnetic vectors37, it is a reasonable deduction that the plasma material, which has a tensor form for its relative 
permittivity, can provide a rotation effect for TM waves. The idea can also be obtained through analysis of the 
wave equations in the plasma material28,30. We omit the detailed steps of this analysis here because they can be 
easily obtained by a similar way as that in ferrite material. In the following, we will use the plasma material to 
build our TM PhC circulator.

It should be pointed out that the rotation effect mentioned in this paper refers to the Voigt effect38. We only 
discuss the Voigt effect in MO materials in which the wave propagation direction is perpendicular to the applied 
DC magnetic field, different from that in Faraday Effect39 where the propagation direction is parallel to the 
applied DC magnetic field.

Results and Discussions
In the following, we describe the fabrication of the TE, TM, and polarization-independent PhC circulators. While 
TE and TM PhC circulators have been studied in the published literature8–17, we still show these two circulator 
types here for two reasons. The first is for purposes of comparison. We can compare the performance of the PIC 
with that of the TE and TM circulators to provide a better understanding of the mechanisms behind these cir-
culators. The second reason is because this approach allows us to present our complete set of design steps for the 
final PIC.

TE PhC Circulator. Based on the analyses above, we first use ferrite materials to build a PhC circulator for 
TE polarization operation.

Schematic of the TE PhC circulator is shown in Fig. 2. The 2D triangular-lattice PhC structure is formed 
by drilling holes in a silicon slab. The pink and red cylinders represent the air holes and the ferrite cylinders, 

Figure 2. (a) Schematic of the TE PhC circulator, and (b) magnified view of the centre region.
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respectively. In this case, a large ferrite cylinder (denoted by r1) is introduced into the centre region to provide the 
rotation effect and the air holes around the central ferrite cylinder are also modulated to a small size (denoted by 
r2) to adjust the coupling conditions of the centre micro-cavity. Three additional small ferrite cylinders are also 
inserted into the waveguides (denoted by r3) for two reasons. The first reason is that they provide an additional 
rotation effect; the second reason is that they can be used to adjust the coupling conditions between the centre 
micro-cavity and the waveguides. It should be noted here that we can also use the other shapes of ferrite material 
rather than the ferrite cylinders shown in the waveguides to attain our goals; however, the cylinder is the simplest 
one and much easier to fabricate.

YIG is chosen as ferrite material here, and is the same as that used in refs12–17. The relative permittivity of YIG 
is given as εr = 12.9. In the microwave range, the relative permeability of YIG takes the form of a second-rank 
tensor under an external DC magnetic field applied in the +z-direction36:

µ

µ µ
µ µ

µ
=
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j
j[ ]

0
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0 0 (26)
r

m k

k m

C

where µ ω ω αω ω αω ω= + + + −i i1 ( )/[( ) ]m m 0 0
2 2 , µ ω ω ω αω ω= + −i/[( ) ]k m 0

2 2  and µ = 1C  with ω =0
µ γH0 0, ω µ γ= Mm s0 , and γ = . ×1 759 1011 C/kg. Saturation magnetization of = . ×M 2 39 10s

5 A/m and a loss 
coefficient of α = × −3 10 5 are considered. The applied magnetic field is set here to be = . ×H 3 7 100

5 A/m.
In this paper, the refractive index of the silicon slab is set at n0 = 3.4. It is well known that there is no complete 

bandgap if the silicon rods are arranged in an air background to form the triangle-lattice PhC structure. However, 
a triangular-lattice PhC structure composed of air holes embedded in a silicon slab can have a complete bandgap 
because the high-ε regions of this structure are isolated to a considerable degree, and the triangle-lattice structure 
has a more circle like Brillouin zone in which the gaps are more likely to open across all the symmetry points7,40–42. 
Here, we select the radius of the air holes r0 = 0.48a with a lattice constant of a = 10 mm to obtain the largest com-
plete bandgap. As shown in Fig. 3, the normalized frequency range of complete bandgap is from 0.454 to 0.538 
(ωa/2πc), corresponding to 1.362 × 1010~1.614 × 1010 Hz in the microwave band. In the following, we will focus 
on this frequency range.

Obviously, the structural parameters of the centre ferrite cylinder, the small ferrite cylinders in the wave-
guides, and the air holes around the central ferrite cylinder are crucial to the properties of our TE PhC circulator. 
Therefore, we use the NOM optimization method to optimize these parameters. The radii of them are obtained 
to be r1 = 0.3229a, r2 = 0.0480a, and r3 = 0.2533a, respectively, while the distance from the small ferrite cylinder 
to the centre point is 2.0861a, and the distance from the modulated air hole to the centre point is 0.9907a. Using 
these parameters, the resulting frequency response and field distributions are shown in Fig. 4. It should be noted 
here that we plot the field distributions only in the centre region in order to show the details.

Because of the rotational symmetry of the structure, any arbitrary port can be selected as the input port. Here 
we select P1 as the input port, and P2 is then the output port while P3 is the isolated port. The insertion loss 
and the isolation can be calculated using the expressions ‘Insertion Loss (dB) = 10 log10 (1/Pout)’ and ‘Isolation 
(dB) = 10 log10 (1/Piso)’, where Pout, and Piso are powers that are normalized with respect to the input power meas-
ured at the output and isolated port, respectively. Figure 4(a) shows the insertion loss and isolation for the TE 
PhC circulator. The best insertion loss is obtained as low as 0.03 dB and the isolation is 26.80 dB at a normalized 
frequency of 0.48895 (ωa/2πc), corresponding to 1.467 × 1010 Hz. The field distributions at this frequency are 
also plotted, as shown in Fig. 4(b–d). The TE PhC circulator works quite well as expected. The waves launched 
from the input port are transmitted to the output port, almost without any power to the isolated ports. The field 
distributions prove that the ferrite material provides a rotation effect for the TE polarization and these results fit 
well with our analysis of the wave equations in the ferrite material.

Figure 3. The band structure of the triangle-lattice PhC with air holes embedded in silicon slab for r0 = 0.48a, 
where the yellow region is the complete bandgap from 0.454 to 0.538 (ωa/2πc).
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The TM PhC Circulator. After obtaining the TE PhC circulator, we then use the plasma materials to build a 
PhC circulator for the TM polarization.

The schematic of the TM PhC circulator is shown in Fig. 5. The 2D PhC structure is also formed using an array 
of air holes in a silicon slab. The pink and blue cylinders represent the air holes and the plasma cylinders (denoted 
by r4), respectively. Here, the air holes that are located behind the plasma cylinders are removed to form three 
resonant cavities. In this way, we can promote interaction between the waves and the plasma materials and thus 
enhance the rotation effect to improve the circulator’s performance. It should be noted here that we could also 
improve the coupling conditions between the central micro-cavity and the waveguides through the similar way 
with that in TE PhC circulator by inserting additional plasma cylinders into the waveguides. However, because 

Figure 4. (a) The insertion loss and isolation for the TE PhC circulator, and distributions of electric field Ez in 
the centre region for (b) input from P1, (c) input from P2, and (d) input from P3.

Figure 5. (a) Schematic of the TM PhC circulator, and (b) magnified view of the centre region.
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our ultimate purpose here is to build a PIC and the ferrite cylinders have been inserted into the waveguides, we 
will not insert any additional plasma cylinders into the waveguides in the TM PhC circulator.

So called plasma material is the full name of plasma, which is a kind of dispersive medium consisting of 
positive (and negative) ions and elections as well as neutral species. The plasma can be obtained by parallel-plate 
dielectric barrier excitation, multicapillary electrode discharging, cold cathode fluorescent lamp discharging, gas 
discharging, and so on. Also, heavily doped semiconductor materials can be regarded as plasma materials25,43–46. It 
is noted that plasma materials have been used for bandgap devices22,25, PhC waveguides44 and PhC filters45 in the-
ory and experiment where characteristic parameters of some plasma materials can be found. When an external 
magnetic field is applied, the magnetized plasma becomes anisotropic, dispersive, and dissipative, which depends 
mainly on the external magnetic fields. In this paper, the relative permeability of the plasma material is 1. Under 
an external DC magnetic field applied in the + z-direction, its relative permittivity can be expressed as46:
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2 2 2 ,  ε ω ω ω ω ω= − − −jv/ (( ) )k c p c

2 2 2  and ε ω ω= −1 /p p
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ω − jv( ). In these expressions, ω ε= e n m( / )p e
2

0
1/2 is the plasma frequency, where e, m, ne, and ε0 represent elec-

tron charge, electron mass, plasma density, and dielectric constant in vacuum, respectively; ω = eB m( / )c  is the 
cyclotron frequency of electron; and v is the plasma frequency. The parameters in [εr] are decided by H0, ne, and 
v. H0 can be taken according to practical condition. From refs25–29,44,45, ne can be taken as 1 × 1011 ~ 5 × 1013 cm−3 
and v = 1 × 106 ~ 1 × 1010 Hz. Here we take the external magnetic field as H0 = 3.7 × 105 A/m, ne = 1013 cm−3 and 
v = 1 × 10−5ωp, which are carefully chosen according to the above mentioned literatures.

Under these conditions, the frequency responses and the field distributions of the TM PhC circulator are 
obtained as shown in Fig. 6, in which all field distributions are only plotted in the centre region to show the details 
more clearly. Here, the radius of the plasma cylinders is r4 = 0.2395a, while the distance from the plasma cylinder 
to the centre point is 1.001a. Figure 6(a) shows that an insertion loss as low as 0.13 dB can be achieved and the 
isolation is 24.57 dB at a normalized frequency of 0.4892 (ωa/2πc), corresponding to 1.468 × 1010 Hz. The field 
distributions at this frequency indicate that this structure realizes near complete transmission from the input port 

Figure 6. (a) The insertion loss and isolation for the TM PhC circulator, and distributions of magnetic field Hz 
in the centre region for (b) input from P1, (c) input from P2, and (d) input from P3.
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to the output port and almost zero transmission to the isolated port, which shows that the plasma material fulfils 
its role very well and that the TM PhC circulator performs as expected. This fact demonstrates our analysis that 
the plasma material provides the rotation effect for the TM polarization.

Combined Structure: Polarization-Independent Circulator. In this section, we will combine the TE 
and TM circulators to realize a PIC using both the ferrite and plasma materials.

The schematic of the PIC is shown in Fig. 7, in which the pink, red, and blue cylinders represent the air holes, 
the ferrite cylinders, and the plasma cylinders, respectively. The material parameters of the ferrite and plasma 
materials are chosen as per the previous sections. Because of the changes in the structure, the structural param-
eters have to be adjusted slightly. We also use the NOM optimization method to obtain the parameters here, and 
the optimized parameters are r1 = 0.3210a, r3 = 0.0365a, and r4 = 0.2428a; the distance from the small ferrite 
cylinder to the centre point is 2.0946a; and the distance from the plasma cylinder to the centre point is 0.9980a.

The insertion loss and the isolation are calculated as shown in Fig. 8. For the TE polarization, the lowest 
insertion loss obtained is 0.05 dB and the isolation reaches a highest value of 25.94 dB; for TM polarization, the 
optimized insertion loss and the corresponding isolation are 0.14 dB and 21.0 dB, respectively. It should be note 
here that the performance of this circulator is slightly worse than that in the TE or TM PhC circulator because we 
should balance the performance for both polarizations in PIC.

We note from Fig. 8 that the insertion loss and isolation for both TE and TM modes have frequency depend-
ence. Such frequency dependence is an integrated result of the dispersions of ferrite, plasma, the cavity and wave-
guides in the system.

If we define the insertion loss less than 0.5 dB and the isolations greater than 15 dB as the operation condition, 
the normalized operation bandwidth of our circulator is from 0.4887 to 0.4892 (ωa/2πc) for both polarizations, 
corresponding to 1.466 × 1010~1.468 × 1010 Hz in the microwave band. The bandwidth of the proposed PIC is not 
so wide compared to that of single-polarization circulators reported in literature13,14. However, some measures 
can be taken to increase the bandwidth. First, some methods, such as inserting air holes and dielectric cylinders 
in the waveguides and central cavity, and using MO materials in triangle shape or hollow cylinders in the cavity, 
can be adopted to achieve better impedance matching between the waveguides and the central cavity. As a result, 
the quality factor of the central cavity will be decreased and thus the bandwidth will be increased. Besides the 
influence of the cavity quality factor on the bandwidth, the balance between the responses of ferrite for TE circu-
lation and plasma for TM circulation also has influence on it. For this, we can apply different external magnetic 

Figure 7. (a) Schematic of the PIC, and (b) magnified view of the centre region.

Figure 8. The insertion loss and isolation of the PIC for (a) the TE polarization, and (b) the TM polarization.
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fields to the ferrite and plasma materials respectively for better balance and thus the common bandwidth of TE 
and TM waves can be increased. This method, however, requires more sophisticated technique to control the 
applied magnetic field. Furthermore, with the development of modern technology, new MO materials with more 
powerful rotation effect can be expected in the future and then the bandwidth of the circulator can be improved 
accordingly.

To verify the feasibility of the proposed PIC, the field distributions in the centre region of the PIC are plotted at 
the operating frequency of 0.48895 (ωa/2πc), corresponding to 1.467 × 1010 Hz, as shown in Fig. 9. Figure 9 shows 
that the structure does realize the expected function. For both polarizations, the input waves are launched from 
the input port and are transmitted almost completely to the output port, with almost no power being transmitted 
to the isolated port. The ferrite and plasma materials used provide rotation effects for the TE and TM polariza-
tions, respectively. By comparing Fig. 9(a–c) with Fig. 4(b–d), it can be found that most of TE wave from the input 
port is rotated by the centre ferrite material, and outputs from the output port. Only a small part of the wave is 
distributed among the three resonant cavities. As a result, these three resonant cavities and the plasma materials 
have only a slight effect on the TE wave, in that the field distributions of the TE wave in the PIC are similar to that 
in the TE PhC circulator. Similarly, comparing Fig. 9(d–f) with Fig. 6(b–d), the field distributions of the TM wave 
in the PIC are similar to that in the TM PhC circulator. These results demonstrate that the proposed PIC works 
quite well for both polarizations.

Conclusion
In conclusion, we have proposed and investigated a type of PIC based on plasma and ferrite materials in 2D PhC 
slab. By analyzing the wave equations in ferrite and plasma materials, we get the idea to build the TE PhC cir-
culator with ferrite and the TM PhC circulator with plasma, respectively. Then, the PIC is designed by properly 
combining these two types of circulators together. For the TE-polarization circulator, the lowest insertion loss 
obtained is 0.05 dB and the isolation can reach 25.94 dB; for the TM-polarization circulator, the lowest insertion 
loss and corresponding isolation obtained are respectively 0.14 dB and 21.0 dB. For the PIC, the insertion loss and 
isolation obtained are slightly worse than that in the TE and TM PhC circulators, but they are respectively more 
than 20 dB and less than 0.15 dB for both polarizations. Such a structure is useful for improving the efficiency and 
reliability in polarization-independent devices for large-scale integrated photonic circuits.

Method
Numerical simulations are performed by using finite-element method in the RF module included in COMSOL 
Multiphysics. The band structure in Fig. 3 is obtained by the study of Eigen-frequency in the triangle-lattice PhC. 
The transmission characteristics and field distributions in Figs 4, 6, 8 and 9 are obtained by the frequency-domain 
analyses of our model. All the parameters are optimized by the Nelder-Mead optimization method.

Figure 9. Distributions of electric field Ez in the centre region of PIC circulator for TE wave (a) input from P1, 
(b) input from P2, (c) input from P3; distributions of magnetic field Hz for TM wave (d) input from P1, (e) input 
from P2, (f) input from P3.
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