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Invisible light inside the natural 
blind spot alters brightness at a 
remote location
Marina Saito1, Kentaro Miyamoto2,3,4, Yusuke Uchiyama1 & Ikuya Murakami1

The natural blind spot in the visual field has been known as a large oval region that cannot receive any 
optical input because it corresponds to the retinal optic disk containing no rod/cone-photoreceptors. 
Recently, stimulation inside the blind spot was found to enhance, but not trigger, the pupillary light 
reflex. However, it is unknown whether blind-spot stimulation also affects visual perception. We 
addressed this question using psychophysical brightness-matching experiments. We found that a 
test stimulus outside the blind spot was judged as darker when it was accompanied by a consciously 
unexperienced blue oval inside the blind spot; moreover, the pupillary light reflex was enhanced. These 
findings suggested that a photo-sensitive mechanism inside the optic disk, presumably involving the 
photopigment melanopsin, contributes to our image-forming vision and provides a ‘reference’ for 
calibrating the perceived brightness of visual objects.

The blind spot (BS)1–4 corresponds to the optic disk on the retina, where blood vessels and ganglion-cell axons 
converge to form the optic nerve, which leads away from the eyeball to the brain. For this reason, the optic disk 
contains no photoreceptors (rods or cones), and thus no visual events can be received within the blind spot. To 
compensate for the lost visual information, our visual system has a mechanism for perceptual filling-in5,6, which 
creates the visual scene inside the BS by referencing the surrounding information. Hence, we experience a seam-
less visual world. Recently, we found that, even though the BS has no rods/cones, the involuntary pupil reflex—
known as the short-latency pupillary light reflex (PLR)7,8—in response to light increments outside the BS was 
enhanced by concurrent light exposure within the BS8. This enhancement was not related to perceptual filling-in; 
instead, direct light stimulation inside the BS was the key factor. Moreover, the enhancement was more marked 
when the BS was illuminated by blue rather than red light, suggesting that the mechanism is more sensitive to 
shorter wavelengths. However, it is unknown whether and how incident light within the optic disk influences our 
perceptual judgement.

Results
Blind-spot illumination causes darkening of a visual stimulus outside the blind spot. To exam-
ine whether light stimulation inside the BS affects the brightness of a visual stimulus elsewhere in the visual field, 
we conducted psychophysical brightness-matching experiments. In Experiment 1, two white arcs, were sequen-
tially flashed (Fig. 1a). Observers were asked to judge whether the second arc (‘test’) was brighter or darker than 
the first arc (‘reference’). In half of the trials, the test arc was accompanied by a blue oval inside the BS, hereafter 
called the ‘BS illumination’, whereas the reference arc was never accompanied by BS illumination. We examined 
whether BS illumination affected the point of subjective equality (PSE) in brightness, i.e., the luminance of the 
reference arc that appeared just as bright as the test arc (Fig. 1b). Paradoxically, the test arc was judged as darker 
(t7 = −3.41, p = 0.0113) with the BS illumination than without it (Fig. 2a). In contrast, the slope of psychometric 
function remained similar regardless of BS illumination (t7 = −1.26, p = 0.248; Fig. 2b). Thus, BS illumination 
shifted brightness without influencing discriminability. The test arc was always presented after the reference arc, 
to ensure that any sluggish effects caused by BS illumination could not have influenced the results. The test arc 
disappeared 300 ms after the onset of the reference arc—much earlier than the PLR latency (mean ± standard 
error: 422 ± 30.6 ms), so pupil constriction could not have influenced the brightness judgement.
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Local light misalignment or scatter outside the blind spot does not account for the darkening effect.  
Due to possible leakage of the BS illumination outside the BS, the observers may have perceived the blue light. 
Therefore, to confirm that no such leakage had contributed to brightness perception, we conducted Experiment 2 
(Fig. 3a). A bright red annulus surrounding the BS was presented simultaneously with both the test and reference 
arcs. The procedure was otherwise the same as that of Experiment 1—the reference arc was initially presented 
without BS illumination, followed by the test arc accompanied by BS illumination in half of the trials. Because the 
luminance of the red annulus (11.19 cd/m2) was much higher than that of the blue light of the BS illumination, 
the luminance outside the BS could only decrease, even if the BS stimulus had undergone misalignment (Fig. 3b). 
Even with this modification in Experiment 2, we still found that the test arc was judged as darker (t8 = −2.94, 
p = 0.0188) with the BS illumination than without it (Fig. 4a), whereas the slope of psychometric function was 
similar (t8 = −1.33, p = 0.222; Fig. 4b).

In Experiment 3, we presented the BS with a large blue-light stimulus whose outer radius (5 deg) was suf-
ficiently larger than that of the BS (approximately 1.5 deg) to mimic possible misalignment and/or local scat-
tering of the blue light within the optic disk used in Experiment 2 (Supplementary Fig. 1a). We found that the 
test stimulus appeared brighter, rather than darker, possibly because of the response bias when the observers 
perceived light around the BS and/or apparent motion across the hemifields. Nevertheless, this result is con-
trary to the findings of Experiment 2. To compare Experiments 3 and 2, we calculated the difference in PSE 
(‘ΔPSE’) between the ‘Illumination’ and ‘No illumination’ conditions for each observer (Supplementary Fig. 1b). 
We then performed a t-test between the ΔPSEs from Experiments 3 and 2, revealing that they differed signifi-
cantly (t10 = 6.60, p < 0.0001). Furthermore, the ΔPSE in Experiment 3 was significantly greater than 0 (t2 = 6.28, 
p < 0.05 by two-tailed paired t-test with Bonferroni-correction) whereas the ΔPSE in Experiment 2 was less than 
0 (t8 = −2.94, p < 0.05; Bonferroni-corrected). These results suggested that the shift in brightness in Experiment 
2 was not due to the misaligned and/or scattered light received by a normal retinal region.

Illumination inside the blind spot is perceptually undetectable. In Experiment 4, we delivered the 
BS illumination together with the reference arc in half of the trials, and together with the test arc in the remaining 
trials, and examined whether the observers could discriminate between these two conditions. In cases of perfect 
positional alignment, a uniformly filled red oval would be perceived in both conditions, because of perceptual 
filling-in induced by the red annulus. Indeed, the observers could not discriminate between these two conditions 
(d’ = 0.449 ± 0.469 [mean ± standard error], t8 = 0.956, p = 0.367). Thus, while the BS illumination influenced 
brightness perception elsewhere in the visual field—in the opposite hemifield, to be more precise—the BS illu-
mination itself was not consciously accessible. The shift in brightness due to BS illumination was not correlated 
with d’ across observers (r = 0.166, p = 0.646), suggesting that the results of the brightness matching are unlikely 
to have been affected by inadvertent detection of the BS illumination due to misalignment.

Flickering illumination inside the blind spot does not alter brightness. In Experiment 5, we exam-
ined whether the darkening of a remote stimulus by BS illumination was produced by a mechanism that could 
keep track of luminance modulation at a high temporal frequency. Two white stimuli (3.14 cd/m2) located in the 
second and third quadrants of the visual field were alternated at 10 Hz. The observers were asked to judge which 
of the two stimuli appeared brighter. In one condition, a white high-intensity rectangle (49.28 cd/m2) covering 
a large portion of the right hemifield was flickering at 10 Hz in synchronization with either the upper or lower 

Figure 1. Procedure of Experiment 1 to determine brightness with and without the illumination of the blind 
spot (BS). (a) Brightness-matching task. Observers were asked to judge whether the test arc was brighter or 
darker than the reference arc. In half of the trials, a blue oval was presented within the blind spot when the 
test arc appeared. (b) Psychometric functions of a representative observer. The proportion of trials in which 
the reference arc appeared brighter than the test arc is plotted as a function of relative luminance (reference 
arc luminance/test arc luminance), with (blue) and without (black) BS illumination. Note that the function 
of the ‘No BS illumination’ condition was not necessarily centred at 1 along the abscissa. This was because the 
experiment allowed a constant error to originate from the fixed spatiotemporal setup, wherein the reference arc 
was first presented in the right hemifield, followed by the test arc in the left hemifield. Under BS illumination, 
the psychometric function shifted leftward from the control condition, indicating that the test arc had become 
darker.
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stimulus (Supplementary Fig. 2a, left). In the other condition, we illuminated inside the BS with the same blue 
oval as used in Experiments 1 and 2 (3.01 cd/m2) but with flickering at 10 Hz (Supplementary Fig. 2a, right). We 
calculated the discriminability index (d’) for the in-phase and anti-phase stimuli; if the brightness-alteration effect 
involved a mechanism that could not resolve the flicker, the d’ would be negligible. The results indicated that the 
observers could barely discriminate the in-phase and anti-phase stimuli with the rectangular flicker but never 
with the BS flicker (Friedman test, p = 0.0433) (Supplementary Fig. 2b). Moreover, three of four observers were 
able to discriminate the in-phase and anti-phase stimuli significantly better than chance with the rectangular 
flicker (chi-square test, p < 0.0019 for each of the three observers), whereas none of the observers could discrim-
inate the in-phase and anti-phase stimuli with the BS flicker (chi-square test, p > 0.13 for each of the observ-
ers) (Supplementary Fig. 2c). These results indicated that the light projected onto a normal region of the retina 
affected brightness elsewhere via some mechanism that was sensitive to high temporal frequency; optical scatter 
is the most likely candidate mechanism. However, the mechanism sensitive to BS illumination was inadequate for 
resolving the 10 Hz flicker to establish synchronized brightness modulation, suggesting that optical scatter did not 
account for the darkening effect observed in Experiments 1 and 2.

Figure 2. Results of Experiment 1 demonstrating brightness decrease by illumination inside the blind spot 
(BS). (a) Results of the brightness matching. Point of subjective equality (PSE) (n = 8; mean ± standard error) 
is plotted as an index of brightness in the two conditions. The right-hand panel depicts an interobserver 
scattergram, as well as a histogram of the difference in PSE between the two conditions; negative values indicate 
that the test arc appeared darker with BS illumination than without it. *p < 0.05. (b) Slope of the psychometric 
function plotted for the two conditions. The right-hand panel shows an interobserver scattergram, as well as a 
histogram following the same convention as in (a). n.s.: not significant.
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Brightness change correlates with PLR enhancement by blind-spot illumination. Finally, we 
examined whether short-latency PLR in response to the arc stimuli was enhanced by BS illumination applied 
simultaneously with the test arc. To this end, we separately analysed the pupil diameter data, which had been 
recorded during Experiment 1 with and without BS illumination. In accordance with our previous research, the 
amplitude of the PLR was greater when the test arc was presented with BS illumination than when it was pre-
sented alone (Fig. 5a). The latency of the enhancement (mean ± standard error: 519 ± 54.9 ms; Fig. 5a right) was 
longer than the latency of the initial contraction (Fig. 5a left), suggesting that the PLR is enhanced by a biological 
mechanism distinct from the rods/cones, and that this mechanism involves light reception within the BS. In each 
observer, the amount of PLR recorded during the brightness-matching experiment increased in proportion with 
the luminance of the reference arc (Fig. 5b), as predicted from previous studies7. In trials involving BS illumina-
tion, the PLR was generally enhanced, i.e., there was a significant difference between the midpoints of the linear 
regression lines for the two conditions (‘BS illumination’ and ‘No BS illumination’; t7 = 3.05, p = 0.0185; Fig. 5c, 
left); and conversely, the slopes did not differ significantly (t7 = 0.383, p = 0.713; Fig. 5c, right). These findings 
indicated that the BS illumination-mediated enhancement of PLR to the test arc acts substantially to the conven-
tional PLR.

Discussion
In summary, we found that blue light illumination inside the BS is invisible, but reduces the brightness of a white 
light outside the BS (Figs 2 and 4). One possible explanation for this phenomenon is that the blue light was 
scattered out of the BS and detected by rods/cones nearby. Indeed, myelinated axons within the optic disk have 
a higher reflectance than the pigment epithelium. Thus, the optic disk may scatter light back into the eyeball, 
in addition to diffusion of incident light within the vitreous humour. However, this light-scattering hypothesis 
is unlikely for the following three reasons. First, if light projecting onto the optic disk were scattered by 100% 
and uniformly spread over a circular area with a radius of 15 deg, the scatter would have led to an effect that was 
comparable to a 0.03 cd/m2 increase in background luminance; such a small difference would not explain the 
observed shift in brightness. Second, even if the light projecting onto the optic disk were spread within a smaller 
retinal area—e.g., twice as large as the estimated optic disk—the stimulation would have been ineffective, at least 
in Experiment 2, because the border of the BS would have been masked by the much brighter, red annulus stim-
ulus (see Fig. 3). Third, when the small blue light inside the BS was replaced by a large blue light covering an area 
outside the BS, apparent brightening rather than darkening occurred (Supplementary Fig. 1). This stimulation 
mimicked local scatter, but diffusive scatter was also included since the stimulation occurred through the ocu-
lar media. If either local or diffusive scattering had a role in the apparent darkening, the same darkening effect 
is expected. Thus, it is unlikely that reduced brightness perception by illumination inside the BS observed in 
Experiments 1 and 2 was caused by scattering.

We propose that the collective results could be explained based on the key role of a photopigment, mel-
anopsin9 (Fig. 6a). Melanopsin has been found in intrinsically photosensitive retinal ganglion cells (ipRGCs), 
whose activation is considered essential for ‘non-image-forming vision’, such as the PLR10, as well as for the 
regulation of the circadian rhythm11. Anatomical studies have identified immunostained melanopsin not only 

Figure 3. Stimuli used in Experiment 2 examining whether the darkening effect is due to light leakage outside 
the blind spot (BS). (a) Stimulus configuration. A red annulus surrounding the blue BS illumination was 
presented simultaneously with the test and reference arcs. (b) Schematic of the rationale for this control. If BS 
illumination was not properly confined within the BS, the total luminance available to the visual system would 
decrease.
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in the ipRGC somas, but also along the plasma membranes in the optic-fibre and ganglion-cell layers11. Axons 
containing melanopsin have been reported to extend across the retinal surface and converging at the optic disk, 
indicating that melanopsin is expressed wherever incoming light strikes the retina (both inside and outside the 
BS), and not after the optic nerve leaves the retina and enters the brain. We propose that melanopsin activation 
at the optic disk impacts visual processing in ipRGCs. It is known that the somas of ipRGCs are located out-
side the BS, receive light on their own, and also process visual signals originating from the rods/cones10,12–14. 
Excitation of the ipRGC axons in the optic disk may contribute to brightness perception via neural pathways of 
the ‘image-forming vision,’ in addition to contribution to non-image-forming vision, as reported in our previous 
study related to PLR enhancement8. Moreover, melanopsin has peak light absorption at 482 nm15, indicating 
that it is most responsive to blue light16. Meanwhile, the rods and S-cones have peak light absorption at around 
498 nm and 420 nm, respectively17. Thus, photoreceptors such as rods and S-cones along the border of the BS 
may cause the stimulus outside the BS to appear darker. However, this scenario is unlikely because we confirmed 
that deliberately stimulating nearby rods/cones did not induce the same effect but rather caused the stimulus to 
appear brighter (Supplementary Fig. 1). Moreover, when we illuminated inside the BS with blue light flickering 
at 10 Hz, no evidence of brightness modulation was found, suggestive of the possible involvement of melanopsin 
(Supplementary Fig. 2). This result is consistent with the report that melanopsin-based visual responses are too 
sluggish to be sensitive to luminance modulation at frequencies higher than 4 Hz18. These collective observations 
point to a biological mechanism that is distinct from conventional photoreceptors and specifically responsive to 
light inside the BS.

Figure 4. Results of Experiment 2 confirming brightness decrease by the blind-spot illumination despite the 
control of light leakage. (a) Point of subjective equality (n = 10; mean ± standard error). Conventions are the 
same as those in Fig. 2a. *p < 0.05. (b) Slope of the psychometric function. Conventions are the same as those in 
Fig. 2b. Also see Supplementary Fig. 1.
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Figure 5. Relationship between brightness perception and enhanced pupillary light reflex (PLR) in the 
presence of illumination inside the blind spot (BS). (a) Left. Average time course (n = 8) of pupil diameter 
in response to the reference and test arcs with BS illumination (blue) and without BS illumination (black). 
Right. Average difference (n = 8; mean ± standard error) in pupil diameter between the conditions plotted as 
a function of time. *p < 0.05 (t-test against zero). (b) Amplitude of the maximum pupil contraction as a linear 
function of the luminance of the reference arc in a representative observer (relative to the test arc luminance, 
which was fixed at 3.14 cd/m2). (c) Differences between the midpoints (left) and between slopes (right) of the 
linear regression lines for the two conditions (mean ± standard error). *p < 0.05 (t-test against zero).

Figure 6. Proposed mechanism of the darkening effect. (a) Schematic view of ipRGCs in the retina. The axons 
of conventional RGCs and ipRGCs converge into the optic disk. Each ipRGC contains melanopsin within its 
soma and axon. (b) Schematic of the proposed mechanism for the BS illumination-mediated darkening effect of 
a remote stimulus. Because the luminances of both the stimulus and its background are interpreted as greater, 
the ratio of the interpreted luminance of the stimulus to that of its background becomes smaller.
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The remaining question is why illumination inside the BS should make another remote stimulus darker. We 
propose that BS illumination uniformly influences perception within the entire visual field outside the BS. In 
our previous report8, BS illumination cannot by itself trigger the PLR but is able to enhance the amount of PLR 
activated by abrupt uniform increment of luminance outside the BS. Thus, BS illumination facilitates ocular 
‘photometry’ of the entire visual field. If the same biological mechanism applies to image-forming vision, it may 
be that the system considers the whole visual field to have higher luminance with BS illumination, as compared 
to that with no BS illumination (Fig. 6b). In an internal representation, not only the light stimulus outside the BS 
but also the background will be interpreted to have a higher luminance. Therefore, the ratio of interpreted target 
luminance to background luminance will become smaller, and in keeping with classical Fechnerian scaling, the 
stimulus will appear darker, as compared to that under the condition of no BS illumination.

Our study revealed that the rod/cone-free optic disk, which has been believed to be a totally ‘blind’ spot, 
actually serves visual functions that influence our perception. Furthermore, melanopsin in the retina outside the 
BS, presumably expressed in the cell bodies of the ipRGCs, may contribute to image-forming vision18–21. Several 
studies have reported that each ipRGC can also encode spatiotemporal information at low spatial and temporal 
frequencies22,23. However, it is unknown how melanopsin expressed along the axons of the ipRGCs might con-
tribute to our visual experience. The present study suggested that the BS serves as a reference for environmental 
illumination in the brightness scaling of objects around us, and that it does so by influencing image-forming 
vision via ipRGC excitability.

Methods
General methods. This study conformed to the Declaration of Helsinki guidelines and was approved by 
the institutional ethics committee of the Graduate School of Humanities and Sociology, University of Tokyo. The 
methods were carried out in accordance with the approved guidelines. Informed consent was obtained from all 
observers. Seventeen healthy adults who were naïve to the purpose of the experiment, and three of the authors 
(MS, KM, and YU) participated (21–32 years old, 5 females and 15 males). All observers had normal or correct-
ed-to-normal visual acuity. In each observer, 18–36 trials were carried out at each point constituting a psycho-
metric function.

Experiments were conducted in a dark room. All stimuli were displayed on an LCD monitor (VIEWPixx/3D 
Lite; VPixx Technologies; 1.5 arcmin/pixel, 49.0 deg × 31.7 deg) with a refresh rate of 120 Hz under the con-
trol of a computer (Apple Mac Pro). As a programming environment, we used Matlab (MathWorks), with the 
Psychophysics Toolbox24–26, Eyelink Toolbox27, and Palamedes Toolbox28 extensions. Each observer’s head was 
constrained using a chin rest. The viewing distance was fixed at 52 cm. The left eye was completely occluded using 
an opaque eye patch (CoMo Good non-pressure black type). The pupil diameter and gaze position of the right eye 
were always recorded with an eye tracker (SR Research Eyelink II) at a sampling rate of 250 Hz.

Prior to the main experiments, the blind spot (BS) of each observer’s right eye was mapped using the method 
reported previously8,29. First, an oval stimulus was presented to the right of a fixation point located at the centre of 
the screen. Each observer then adjusted the location and size of the oval using a computer mouse and keys. Next, 
the oval stimulus was turned off, and a small spotlight (24.5 arcmin in diameter) was displayed near the oval bor-
der. The observers pressed a key as soon as they detected the spot. Fifty-six spots (combinations of seven distances 
from the border and eight radial directions from the centre of the oval) were displayed in random order during 
each session. This spotlight perimetry around the border was repeated for at least eight sessions. The position that 
corresponded to a 50% detection rate was taken as the detection threshold in each radial direction, and adjacent 
points were connected by straight lines to create a polygon. The largest oval that fitted just inside the polygon was 
determined geometrically; this oval was then further shrunk to 90% of its original size to avoid unintended mis-
alignment due to fluctuations in gaze fixation. In this way, BS illumination in the brightness-matching experiment 
was confined within the actual BS.

Procedure of Experiment 1: brightness matching with and without the illumination of the blind spot.  
Observers (n = 10) performed a two-alternative forced choice (2AFC) task for brightness judgement (Fig. 1). 
We used two white stimuli (CIE [x, y] = [0.322, 0.357] as measured using a spectroradiometer [Konica Minolta 
CS-2000]), namely the reference and test arcs. The reference arc was a semicircle covering the right perifovea 
(eccentricity: 5–10 deg); the test arc was a semicircle covering the left perifovea; the reference and test arcs were 
symmetrical about the vertical meridian. The test arc was confined within the left hemifield to prevent any phys-
ical interaction with the simultaneous illumination in the right-eye BS, which is located in the right hemifield. 
Each trial began after the observers had maintained fixation to within ±0.955 deg about the central fixation point 
for at least 500 ms.

First, the reference arc was presented for 50 ms in the right hemifield. After an inter-stimulus interval of 
200 ms, the test arc was presented for 50 ms in the left hemifield. In half of the trials, the BS, which had been 
determined using the above procedure, was illuminated by blue light (3.01 cd/m2; CIE [x, y] = [0.138, 0.0501]). 
The spectral distribution was restricted using a band-pass filter (Fuji Film BPB-45; wavelength peak: 462 nm; full 
width at half maximum: 19 nm) for 100 ms. Its onset was 50 ms prior to the test arc onset, while its offset was syn-
chronized with the test arc offset. A beep was delivered 800 ms after the stimulus presentation, and the observers 
reported whether the test arc appeared brighter or darker than the reference arc by pressing one of two computer 
keys. An inter-trial interval was randomly chosen within a range of 2.5 ± 0.5 s.

The luminance of the test arc was fixed at 3.14 cd/m2, whereas the reference arc had various levels of luminance 
predetermined for the method of constant stimuli. In four out of the 10 observers, both the test and reference arcs 
were accompanied by another blue oval as large as the BS. This oval was located to the right of the BS by 1.5× the 
BS width; its onset was 50 ms prior to the arc onset, and its offset was synchronized with the arc offset. It was used 
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as a mask to discourage observers from searching for hints in the BS illumination. We confirmed that the presence 
or absence of the mask did not affect behavioural results.

Procedure of Experiment 2: brightness matching with a red annulus surrounding the blind 
spot. To confirm that the rods/cones outside the BS had not contributed to the behavioural data, we con-
ducted Experiment 2 in 11 observers. The only procedural difference from Experiment 1 was the presence of a 
red annulus (CIE [x, y] = [0.681, 0.303]; Fig. 2) surrounding the BS. This annulus had the same area as the blue 
BS illumination; as such, the inner and outer perimeters of the annulus were 100% and 141%, respectively, as 
large as the estimated BS border. The annulus was presented 50 ms before the test and reference arcs, regardless of 
whether BS illumination was presented, and was extinguished together with the arc offset. The luminance of the 
red annulus (11.19 cd/m2) was much higher than that of the blue BS illumination (3.01 cd/m2).

Procedure of Experiment 3: simulated local scatter. We mimicked the possible scattering of the blue 
light projected inside the BS (observers n = 3, all of whom also participated in Experiment 2; Supplementary 
Fig. 1). The sequence of each trial was the same as in Experiment 2. In half of the trials, instead of actual BS illumi-
nation, but following the same time course, we presented a large blue-light stimulus (0.56 cd/m2) centred at the BS 
centre. This stimulus had an annular shape with its inner perimeter overlapping the estimated BS border and its 
outer perimeter with a radius of 5 deg. The total energy of blue light illumination outside the BS in this experiment 
was set as almost equivalent to that inside the BS in Experiment 2.

Procedure of Experiment 4: detectability of the illumination inside the blind spot. To confirm 
that the observers in Experiment 2 could not consciously detect the BS illumination, they were asked to perform 
a detection task (n = 11). The sequence of each trial was the same as in Experiment 2. However, in every trial, the 
BS illumination was delivered together with either the reference or test arc. The observers were asked to judge, in 
a 2AFC paradigm, which arc was accompanied by BS illumination. We collected data from 84 trials and carried 
out a signal-detection-theory analysis.

Procedure of Experiment 5: brightness modulation by flickering illumination inside or outside the  
blind spot. Observers (n = 4) performed a 2AFC task for brightness judgement of flickering stimuli 
(Supplementary Fig. 2a). Two white arc stimuli (3.14 cd/m2; CIE [x, y] = [0.322, 0.357]) located in the second 
and third quadrants of the visual field were turned on and off with a duty cycle of 1:1 at 10 Hz, antiphase to each 
other. The total duration was 300 ms. The upper and lower arcs subtended 10–12 o’clock and 6–8 o’clock, respec-
tively (eccentricity: 5–10 deg). In one condition, a white rectangle (49.28 cd/m2; CIE [x, y] = [0.3056, 0.3360]), 
subtending 5–24.5 deg horizontally and ±15.85 deg vertically with respect to the fovea, was flickering with a duty 
cycle of 1:1 at 10 Hz in phase with either the upper or lower arc with equal probability, for the 300 ms duration. In 
the other condition, the rectangle was replaced by the same blue oval inside the BS as used in Experiments 1 and 
2 (3.01 cd/m2; CIE [x, y] = [0.138, 0.0501]), flickering in phase with either arc. The observers were asked to judge 
which arc appeared brighter. Responses were collected for 200–240 trials for each condition.

Quantification and statistical analysis. We obtained a psychometric function by fitting the proportion 
of the reference arc that was judged as brighter with the cumulative binomial function. The midpoint of the 
best-fit function was taken as the point of subjective equality (PSE) and the slope around the PSE as an index 
of sensitivity. Trials that included blinks or large eye movements (>1 deg) during stimulus presentation were 
removed from the analysis. Observers were excluded from the analysis as poor performers if their ordinate pro-
portion values corresponding to the highest and lowest abscissa values differed by <0.6 in the psychometric 
function in the ‘No BS illumination’ condition (one of the nine observers in Experiment 1, and two out of the 11 
observers in Experiments 2 and 4). However, when we included these observers in the analysis, our main conclu-
sions did not change.

In an off-line analysis, the pupil diameter in each trial was normalised as a fraction of the baseline diameter 
averaged over the 500 ms before stimulus onset. Trials that included blinks within 1 s of the stimulus onset were 
removed. For each combination of stimulus conditions (nine reference arc luminances × two BS illumination 
conditions [with and without]), we averaged the pupil diameter time course across all trials within observer to 
identify the time at which the pupil diameter became minimal. Next, we plotted the PLR amplitude at maximum 
contraction against reference arc luminance, for each observer and for both ‘BS illumination’ and ‘No BS illumi-
nation’ conditions (see Fig. 5b). As predicted from previous studies7, the size of PLR increased linearly—or the 
pupil diameter decreased linearly—with reference arc luminance. We confirmed that there was no significant 
interaction between BS illumination and reference arc luminance. Therefore, we fitted the data with a linear 
regression line and took its midpoint—where reference arc luminance was equivalent to test arc luminance—as 
an index of the PLR size for each of the BS illumination conditions. We also calculated, in each observer, the 
second-order derivative (acceleration) of the averaged pupil diameter as a function of time. The time from stim-
ulus onset to minimum (i.e., the most negative) acceleration was taken as the PLR latency.

Data Software Availability. The data and code that support the findings of this study are available from the 
corresponding author upon reasonable request.
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