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Roles of Enhancer RNAs in RANKL-
induced Osteoclast Differentiation 
Identified by Genome-wide Cap-
analysis of Gene Expression using 
CRISPR/Cas9
Yukako Sakaguchi1,2,3, Keizo Nishikawa1,2,3, Shigeto Seno  4, Hideo Matsuda  4, Hiroshi 
Takayanagi5 & Masaru Ishii1,2,3

Bidirectional transcription has been proposed to play a role associated with enhancer activity. 
Transcripts called enhancer RNAs (eRNAs) play important roles in gene regulation; however, their 
roles in osteoclasts are unknown. To analyse eRNAs in osteoclasts comprehensively, we used cap-
analysis of gene expression (CAGE) to detect adjacent transcription start sites (TSSs) that were distant 
from promoters for protein-coding gene expression. When comparing bidirectional TSSs between 
osteoclast precursors and osteoclasts, we found that bidirectional TSSs were located in the 5′-flanking 
regions of the Nrp2 and Dcstamp genes. We also detected bidirectional TSSs in the intron region of 
the Nfatc1 gene. To investigate the role of bidirectional transcription in osteoclasts, we performed 
loss of function analyses using the CRISPR/Cas9 system. Targeted deletion of the DNA regions 
between the bidirectional TSSs led to decreased expression of the bidirectional transcripts, as well 
as the protein-coding RNAs of Nrp2, Dcstamp, and Nfatc1, suggesting that these transcripts act as 
eRNAs. Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional 
eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene 
regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that 
control osteoclast differentiation.

Bone-marrow-derived monocyte-macrophage precursor cells (BMMs) differentiate into osteoclasts when 
stimulated with macrophage-colony-stimulating factor (M-CSF) and the receptor activator of the NF-κB 
ligand (RANKL)1. They are also activated by the cytokines interleukin 17, interferon γ, and tumour necrosis 
factor α2. The RANKL/RANK interaction with M-CSF/c-Fms activates the nuclear factor of activated T cells 
calcineurin-dependent 1 (Nfatc1)3–5, as well as the transcription factors NF-κB6,7, c-Fos8,9, and JunD3. The tran-
scription factors originate downstream of the signalling pathways, and cooperatively facilitate expression of oste-
oclastogenic genes10,11.

Recent studies have identified the expression of various non-coding RNAs during osteoclastogenesis, includ-
ing circular RNAs, microRNAs, and long non-coding RNAs (lncRNAs)12. The genome is pervasively transcribed 
by a large number of lncRNAs13–15, and their expression profiles are tissue specific and alter during various stages 
of cell differentiation12. The length of lncRNA transcripts ranges from 200 base pairs (bp) to 100 kilobase pairs 
(kbp), and most lncRNAs have a low abundance and lack typical signatures for selective restrictions12. Transcripts 
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that originate from regulatory enhancer elements (eRNA) show a distinct signature3,16,17. Furthermore, the 
enhancers can potentially initiate bidirectional RNA synthesis, often in proportion to the transcripts around the 
transcriptional start site (TSS) of protein-coding RNAs16. Recent studies have proposed important roles for the 
MyoD1 and Snai1 genes17,18, the negative elongation factor complex19, and 17β-oestradiol (E2)-dependent gene 
activation as cis-acting enhancer elements20.

Nascent eRNAs contain a 7′-methylated cap with a rate of synthesis and levels comparable to neighbouring 
protein-coding RNAs16,20,21. Genome-scale 5′ rapid amplification of cDNA ends (cap analysis of gene expression 
[CAGE]) to detect TSSs has been used to investigate eRNAs with bidirectional expression patterns22. This tech-
nique enables global analyses of gene expression from both promoter and eRNA regions.

The function of eRNAs in regulation of gene expression during osteoclast differentiation is still unclear. To 
identify putative eRNAs involved in osteoclast differentiation, we performed comprehensive gene expression 
analyses using CAGE to detect bidirectional TSSs with characteristics of enhancer activities during osteoclast 
differentiation. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we 
identified the eRNA regions of the Nrp2, Dcstamp, and Nfatc1 genes, which regulate protein-coding transcription 
of these genes, and further identified the roles of these eRNA regions during osteoclast differentiation.

Results
Genome-wide identification of TSSs by CAGE in osteoclasts. To identify TSSs that were activated 
during osteoclast differentiation, we prepared CAGE libraries from BMMs stimulated with or without RANKL 
(Fig. 1a). We obtained BMMs cultured with M-CSF as osteoclast precursors and stimulated them with RANKL 
for osteoclasts. In addition, we mapped CAGE tags from samples of RANKL-treated and -untreated (control) 
BMMs in quadruplicate in the mouse genome (mm10) and identified 2,948,135 cluster TSSs (CTSSs). CAGE tag 
counts per CTSS showed higher correlations (0.98–1.00) during replication and lower correlations (0.90–0.96) 
under different conditions, demonstrating the reproducibility of the analyses (Fig. 1b). Next, we clustered and 
aggregated CAGE tags into a set of 132,744 TSSs. We then performed differential expression analyses between 
control and RANKL-treated BMMs and found that expression of 6,933 TSSs was significantly increased in 
RANKL-stimulated BMMs, while that of 6,413 TSSs was significantly decreased (Fig. 1c).

Using transcript-related features from the University of California, Santa Cruz (UCSC) Genome 
Bioinformatics data resource, the CAGE data identified RANKL-induced TSSs that were usually in known TSS 
regions (Fig. 1d). We analysed the distribution of RANKL-induced TSSs in important genomic locations such as 
promoters, downstream sequences of genes, 5′ and 3′ untranslated regions, protein-coding exons, introns, and 
distal intergenic regions. Approximately 70% of the TSSs were located in proximal promoter regions (within 
3,000 bp of known TSSs), 9% in introns, and approximately 6–8% in distal intergenic regions (Fig. 1e). Overall, 
the CAGE data provided extremely valuable information about genome-wide transcripts during osteoclast 
differentiation.

Identification of bidirectional transcripts increased in osteoclasts. To identify eRNA candidates, 
we set a threshold of 300 bp between reverse (−strand) and forward (+strand) TSSs for bidirectional transcribed 
loci and detected 19,171 sites. After RANKL stimulation, when compared with the control, we made selections 
based on a difference >10, then confirmed these selections using significant differences. The putative eRNAs 
showed 188 sites with + strands, 205 sites with −strands, and 87 sites with bidirectional expression. The sites 
with bidirectional transcription expression were assessed based on location, distance from the protein-coding 
transcription site, and the predicted permissive enhancer using FANTOM5 analyses and reports associated with 
osteoclastogenesis (Fig. 2a and Table 1)23.

Using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we confirmed 
RANKL-induced bidirectional transcription expression in RAW 264.7 cells. Among the 87 sites, we first selected 
seven sites based on previous reports3–5,10,24,25 in association with osteoclasts. These bidirectional transcripts 
increased in RAW 264.7 cells following RANKL stimulation, and were usually generated at the 5′-flanking regions 
of the Nrp2, Dcstamp, Rap1b and Sbno2 genes. In contrast, the bidirectional transcripts of Nfatc1, Acp5 and 
Sema4d were located in introns (Fig. 2b). In time-course studies following RANKL stimulation, gene expression 
levels increased in proportion to the increase in bidirectional transcription expression of the + and − strands 
(Fig. 2c). Protein-coding RNA levels were measured by qRT-PCR using primers unrelated to the putative eRNA 
sequences. The results showed that the RANKL-dependent increase in expression of these seven transcripts was 
accompanied by bidirectional transcription in RAW 264.7 cells. The bidirectional transcripts increased at the 
same time as the expression of the protein-coding RNAs after RANKL stimulation. These results imply that these 
regions act as eRNAs in the regulation of protein-coding RNA expression.

eRNAs are necessary for induction of protein-coding RNAs. To investigate the role of eRNAs, we 
deleted eRNA regions in RAW 264.7 cells using the CRISPR/Cas9 genome editing system26 (Supplementary 
Figure S1). The schema shows that single cells were sorted and expanded to obtain DNA for sequencing. In 
the putative Nrp2 eRNA region of approximately 200 bp, we deleted the 39 bp eRNA regions for bidirectional 
transcription (#1 Nrp2) (Fig. 3a). The #1 Nrp2 mutant cells showed marked decreases in both eRNA and Nrp2 
protein-coding RNA levels (Fig. 3b).

The role of the putative eRNA region for the Dcstamp gene was examined by partial deletion mutants. We 
obtained three deletion mutant clones. One clone (#2 Dcstamp), which had deletions at both the − and + strand 
regions, showed a significant decrease in bidirectional transcript expression and a decrease in protein-coding 
Dcstamp RNA level (Fig. 3c). Clone #3 Dcstamp, deleted at the − strand RNA region, and clone #4 Dcstamp, 
deleted at the + strand RNA region, showed similar effects (Supplementary Figures S2a,b). These effects 
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on the protein-coding RNAs showed that the bidirectional transcripts play a role as eRNA during osteoclast 
differentiation.

The role of the intronic putative eRNA in Nfatc1 gene expression. Enhancer regions have been 
detected not only in the 5′ flanking region but also in other genomic regions, including intronic regions22. Because 
we identified TSSs in the genomic region between exons 6 and 7 of the Nfatc1 gene, we investigated the function 
of intronic putative eRNA by generating a knockout of the putative intronic eRNA region of the Nfatc1 gene (#5 
Nfatc1) (Fig. 4a). #5 Nfatc1 cells showed a marked decrease in the levels of intronic putative eRNAs, demonstrat-
ing the role of the intronic eRNA region in bidirectional transcription (Fig. 4b). The #5 Nfatc1 mutant had two 

Figure 1. Cap-analysis of gene expression (CAGE) analyses of transcripts during osteoclast differentiation. 
(a) Schematic of the methodology for osteoclast differentiation. (b) Pairwise scatter plot of CAGE tag counts 
per cluster transcription start site (CTSS) and correlations between all possible pairs of samples (four RANKL-
stimulated samples and four control samples). Numbers in the boxes represent the values of the correlation 
coefficients. (c) Summary of the pipeline of CAGE transcriptomes for identification of RANKL-induced genes. 
Among nearly 3 million CTSSs, 132,744 sites were identified as CAGE-detected transcription start sites (TSSs), 
and 6,933 and 6,413 sites were defined as increased or decreased TSSs, respectively, by differential expression 
analyses. (d) Comparison of the distances between identified TSSs and known promoters. (e) Pie charts 
representing genomic annotations of increased and decreased TSSs.
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Figure 2. Identification of enhancer RNA (eRNA) candidates induced by RANKL stimulation. (a) A summary 
of the pipeline for bidirectional transcription and the selection of highly altered (>10-fold) RNA levels, 
confirmed using the significance test. A Venn diagram of bidirectional transcription for the selection of putative 
eRNA regions associated with osteoclasts. (b) Schematic diagram of the genomic loci of Nrp2, Dcstamp, Nfatc1, 
Acp5, Rap1b, Sema4d, and Sbno2. Quantitative RT-PCR (qRT-PCR) analysis of the relative expression levels 
of protein-coding RNAs, as well as the − and + strand RNAs following RANKL stimulation for 2 days in RAW 
264.7 cells. Data are the mean ± standard error of the mean (SEM); n = 3 biological replicates with 3–4 technical 
replicates each. *P < 0.05 (Student’s t-test) (c) Time-course analyses of RANKL-induced alterations in protein-
coding RNAs, as well as the − and + strand RNAs of Nrp2, Dcstamp, Nfatc1, Acp5, Rap1b, Sema4d, and 
Sbno2. Analyses were performed on total RNAs. Data are the mean ± SEM; n = 3 biological replicates with 3–4 
technical replicates each.
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separate site deletions of 13 bp and 2 bp (Fig. 4a; deletions are designated by red letters). Using JASPAR software, 
it was determined that the DNA sequence in the eRNA regions contained a motif for the transcription factor, 
NF-κB (Fig. 4c). To determine the function of the intronic eRNA region, we next determined whether an NF-κB 
inhibitor7 would suppress bidirectional transcription. Similar to the results obtained for the #5 Nfatc1 cells, treat-
ment with NF-κB inhibitor decreased the expression level of bidirectional transcripts generated from the putative 
intronic eRNA region of the Nfatc1 gene (Fig. 4d), similar to the decrease in Nfatc1 protein-coding RNA level 
following NF-κB inhibitor treatment.

To confirm the role of putative intronic eRNAs, we prepared a retroviral vector construct containing small 
hairpin RNA (shRNA) against the + strand of the Nfatc1 intronic transcript (Fig. 4e). Knockdown by shRNA 
showed decreased expression of bidirectional transcripts and Nfatc1 protein-coding RNA, compared to the 
scrambled control shRNA (Fig. 4f). Collectively, the results imply that intronic Nfatc1 eRNA is functionally 
important for RANKL-induced transcription of the Nfatc1 gene.

eRNA is required for osteoclast differentiation. To investigate the role of eRNAs in osteoclast dif-
ferentiation further, we evaluated osteoclast differentiation in vitro following RANKL stimulation by counting 
multinucleated cells (MNCs) positive for the osteoclast marker tartrate-resistant acid phosphatase (TRAP). 
RAW 264.7 cells or BMMs were cultured for 3 days with RANKL27. Compared to control cells, the cells with 
eRNA-region deletions of Nrp2, Dcstamp, and Nfatc1 showed remarkably impaired formation of TRAP‐positive 
MNCs (Fig. 5a,b and Supplementary Figures S2c and 2d). Knockdown of Nfatc1 intronic eRNA also decreased 
TRAP-positive cells compared to the scrambled shRNA control cells (Fig. 5c,d). These results imply that expres-
sion of the eRNAs for the Nrp2, Dcstamp, and Nfatc1 genes positively regulates osteoclast differentiation.

Discussion
Cell-stage-dependent eRNAs with highly dynamic and transient expression may play critical roles in the differ-
entiation of various cells18,20. Here, we investigated the eRNA regions that generate bidirectional transcription in 
RANKL-stimulated BMMs. CAGE data showed that the 5′ eRNA regions of the Nrp2 and Dcstamp genes were 
distantly located from the annotated promoter regions and that the intronic eRNA regions were located between 
exons 6 and 7 of the Nfatc1 gene.

Enhancers were initially described as short DNA regions with the ability to drive target gene expression inde-
pendently of the genomic distance and orientation of the gene promoters. Enhancers were defined by their hyper-
sensitivity to DNase treatment, ability to bind transcription factors, and their epigenomic markers. Annotated 
putative enhancers amount to an extremely large number in humans (>400,000 to ~1 million). A large-scale 
transcriptome profile defined by CAGE analyses showed that enhancers associated with transcriptional activity 
still yielded an abundant number of non-coding RNAs in humans (40,000–65,000)22. eRNAs generally display 
low stability and abundance22; thus, an early report hypothesized that non-coding transcripts including eRNAs 
are transcriptional noise, and this hypothesis has been examined for many eRNAs22,28. Enhancers often gener-
ate bidirectional transcripts and functional interaction mediated by the formation of enhancer–promoter loop-
ing29,30. Our study initially clarified the functions of candidate eRNAs by identifying their roles in transcriptional 

SYMBOL aannotation
gene 
strand

bdistance 
to TSS

FDR cpermissive 
enhancer 
(FANTOM5)+strand −strand

Sbno2 Promoter (2–3 kb) − −2769 8.93.E-09 9.12.E-59 −

Jdp2 3′ UTR + 38448 2.08.E-58 2.09.E-08 −

Nrp2 Distal Intergenic + −11851 2.78.E-03 3.39.E-42 −

Egr2 Promoter (2–3 kb) + −2178 1.59.E-19 4.39.E-02 −

Nfatc1 Intron − 51979 8.21.E-10 2.92.E-14 +

Dcstamp Distal Intergenic + −8165 4.62.E-12 3.90.E-03 +

Zbtb7a Distal Intergenic + −7039 4.80.E-12 1.19.E-03 −

Fosl2 Intron + −83707 2.00.E-07 3.40.E-10 +

Zbtb7a Intron + 5049 1.66.E-08 1.31.E-03 −

Nrp2 Distal Intergenic + −7217 3.64.E-08 1.44.E-02 −

Rap1b Distal Intergenic − −21278 2.00.E-07 1.94.E-04 +

Acp5 Promoter (<=1 kb) − 370 5.44.E-07 6.07.E-02 −

Fos Distal Intergenic + 36547 3.33.E-04 2.14.E-05 −

Sema4d Promoter (<=1 kb) − 579 6.92.E-05 2.11.E-02 +

Rnf19b Intron + 9719 3.50.E-04 1.88.E-02 −

Nrp2 Distal Intergenic + −24014 1.01.E-03 3.62.E-02 −

Ltbp1 Intron + 93668 2.11.E-02 4.15.E-02 −

Fos Distal Intergenic + 12780 3.22.E-02 3.91.E-02 −

Table 1. List of candidate eRNA regions in response to RANKL stimulation. aAnnotation of gene segments 
defined by edgeR. bThe distance to the transcription start site (TSS) measured from the TSS of protein-coding 
measured by edgeR. cThe enhancer regions were classified into robust and permissive, based on the read counts. 
The permissive enhancer was defined by FANTOM5 mouse permissive enhancer phase 1 and 223.
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enhancer activities in cognate gene control and cell differentiation, while characterization of their mechanisms of 
action remains for a later study.

Several models of the functions of eRNAs have been proposed. eRNA may regulate the chromatin accessibility 
of target promoters and RNA polymerase II binding, although the mechanism of the functional interaction of 
widely separated enhancers and promoters remains unclear. Alternatively, the enhancer–promoter interaction 
could be a consequence rather than a cause. A recent report proposed a simple mechanism for eRNA called 
“transcription factor trapping”, which involved a general role for a large group of eRNAs in facilitating binding of 
transcription factors31. eRNA has generally been analysed in terms of cis-acting effects on target genes, but sev-
eral reports have demonstrated the effects of eRNAs on the expression of many genes, including those on other 
chromosomes32. In addition, eRNAs and transcribing enhancers may affect the target gene, based on the spatial 
proximity of the three dimensional genome33.

The role of the intronic enhancer may vary, depending on enhancer or repressor activity over the coding 
transcripts. It may also depend on splicing events. Recent reports have shown that two intronic transcribed 
enhancers modulate the isoform decision of overlapping sense-coding genes by transcription interference34. 
However, our study showed that the intronic enhancer plays a crucial role in enhancing Nfatc1 transcription 
during RANKL-induced osteoclast differentiation. #5 Nfatc1 cells, which lack the function of the enhancer region 
located in the intronic region of the Nfatc1 gene, would provide a suitable genetic model to study how this results 
in local enhancer activity, and whether this activity has a global effect.

The CRISPR/Cas9 system has been used to identify endogenous enhancer elements and to characterise 
domains essential for their activity35. Here, we applied the CRISPR/Cas9 system to characterise the functions of 

Figure 3. The effect of deletions in the 5′ putative eRNA regions of Nrp2 and Dcstamp using CRISPR/
Cas9. (a,c) Schematic diagram of the genomic loci with the CAGE profile and the deleted regions (deletions 
are marked with red letters) in RAW 264.7 cells. (b,d) qRT-PCR analysis of the relative expression levels of 
protein-coding RNAs as well as the putative − and + strand eRNAs following RANKL stimulation of the #1 
Nrp2 putative eRNA region-deletion mutant and the targeted deletion of the #2 Dcstamp mutant. Control 
cells (Ctrl) were transfected with the scrambled sequence shown in Supplementary Table S3. Data denote the 
mean ± SEM from independent biological replicates; #1 Nrp2 (n = 3), Ctrl (Nrp2, n = 3–4), #2 Dcstamp (n = 3), 
Ctrl (Dcstamp, n = 7) with 3–4 technical replicates each. Analyses were performed on total RNAs. *P < 0.05 
[Student’s t-test for (b); Dunnett’s test for (d) to evaluate with other clone, #3 and 4. The results of #3 and 4 are 
shown in Supplementary Figure S2].
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eRNA regions in the expression of protein-coding RNAs associated with osteoclast differentiation. Nfatc1 plays 
a pivotal role in osteoclast activation through induction of β3 integrin and c-src, and via upregulation of vari-
ous genes in a series of differentiation processes36. The 18-bp deletion in the eRNA region in #5 Nfatc1 mutant 
cells shows the importance of this region in the expression of bidirectional eRNAs and Nfatc1 protein-coding 

Figure 4. The effect of intronic putative eRNAs on Nfatc1 protein-coding RNA expression. (a) The effect 
of deletions in the intronic putative eRNA region of Nfatc1 using CRISPR/Cas9. Schematic diagram of the 
genomic locus and the deleted regions (deletions are marked with red letters) in RAW 264.7 cells. (b) qRT-PCR 
analysis of the relative expression levels of protein-coding RNAs as well as the − and + strand eRNAs following 
RANKL stimulation. Data are the mean ± SEM; n = 3–4 biological replicates with 3–4 technical replicates 
each. Ctrl cells were transfected with the scrambled sequence shown in Supplementary Table S3. (c) Motif 
analyses of the deleted eRNA region. The high score motif (NF-κB) of the deleted sequence was analysed using 
JASPAR. (d) The effect of the NF-κB inhibitor (Merck #481406) on eRNA levels in RAW 264.7 cells. Data are 
the mean ± SEM; n = 3 biological replicates with 3–4 technical replicates each. (e) Suppression of the + strand 
eRNA by small hairpin (shRNA) transfection. Schematic of the genomic locus with the CAGE profile and 
the deleted regions in monocyte-macrophage precursor cells (BMMs). (f) qRT-PCR analysis of the relative 
expression levels of protein-coding RNAs, as well as the − and + strand eRNAs following RANKL stimulation 
in shRNA-transfected BMMs. Analyses were performed on total RNAs. Data denote the mean ± SEM; n = 6 
biological replicates with 3–4 technical replicates each. *P < 0.05; NS, not significant [Student’s t-test for (b) and 
(d); Dunnett’s test for (f)].
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RNA. Moreover, this mutant showed impaired osteoclastogenic differentiation, as measured using TRAP stain-
ing. NF-κB inhibition also suppressed bidirectional transcription from this eRNA region, indicating the role of 
NF-κB-mediated signalling in regulation of intronic enhancer activity.

The eRNA regions for the Nrp2, Dcstamp, and Nfatc1 genes play similar roles as enhancers for protein-coding 
RNA expression, and deletions of their partial sequences impaired osteoclast differentiation. This implies that the 
RANKL-induced signalling network interacts with eRNA expression.

In conclusion, RANKL-induced eRNAs were functionally active in enhancing expression of protein-coding 
RNAs, which play important roles during osteoclast differentiation. These results emphasise the involvement of 
non-coding eRNAs in regulation of functional genes via an orchestrated mechanism during cell differentiation.

Material and Methods
Cell culture. In vitro osteoclast differentiation has been described previously27,37. C57BL/6J mice were pur-
chased from CLEA (Tokyo, Japan). The animal protocols were approved by the Institutional Animal Care and Use 
Committee of Osaka University, and all experiments were performed in accordance with the relevant guidelines 
and regulations. Briefly, bone-marrow-derived cells from C57BL/6J mice cultured with M-CSF (10 ng/mL) for 
2 days were used as osteoclast precursors, and were further cultured with RANKL (50 ng/mL) in the presence of 
M-CSF (10 ng/mL) for 2 days to obtain osteoclasts. Total RNAs were prepared using an RNeasy Mini Kit (Qiagen, 

Figure 5. The effect of eRNA on osteoclast differentiation. (a) Tartrate-resistant acid phosphatase (TRAP)-
stained cells showing osteoclast differentiation in control and knockout cells. (b,d) The numbers of 
TRAP-positive cells with more than three nuclei were counted. (c) TRAP-stained cells showing osteoclast 
differentiation mediated-knockdown with sh-scrambled (Scr) and sh-Nfatc1 eRNA as in Fig. 4d. Scale bars, 
100 μm. Data denote the mean ± SEM from three independent biological replicates (n = 3) for each group. 
**P < 0.01 [Dunnett’s test for (b) together with #3 and 4 Dcstamp mutants; the rest of the results are shown in 
Supplementary Figure S2d; Student’s t-test for (d)]. The experiments were carried out three times.
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Hilden, Germany) and subjected to CAGE analyses. RAW 264.7 cells obtained from the American Type Culture 
Collection (Rockville, MD, USA) were cultured in α-minimal essential medium containing 10% foetal bovine 
serum and 1% penicillin-streptomycin solution. The NF-κB inhibitor was Merck #481406.

RNA isolation and qRT-PCR analyses. Total RNA and cDNA were prepared using the RNeasy Mini 
Kit and Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) according to the manufacturers’ 
instructions. qRT-PCR was performed using a TP800 Thermal Cycler Dice Real Time System (TaKaRa, Shiga, 
Japan). The expression of every sample was calculated relative to that of the β-actin housekeeping gene. The 
primer sequences are listed in Supplementary Tables S1 and S2.

TRAP staining. For TRAP staining38, RAW 264.7 cells were cultured in a 48-well plate at a density of 1 × 104 
cells/well, and BMMs were cultured in a 48-well plate at a density of 2 × 104 cells/well. Three days after RANKL 
stimulation, the cells were fixed in 4% paraformaldehyde for 15 min and stained using an acid phosphatase, leu-
kocyte (TRAP) kit (Sigma-Aldrich, St. Louis, MO, USA). The numbers of TRAP-positive and multinucleated cells 
(>3 nuclei) were counted.

Vector preparation for the CRISPR/Cas9 system. pX330-U6-Chimeric_BB-CBh-hSpCas9 was 
purchased from Addgene, (Cambridge, MA, USA). The single guide RNA sequences targeting the Nrp2, 
Dcstamp, and Nfatc1 eRNA regions were designed using Optimized CRISPR Design39. The guide sequences 
are listed in Supplementary Table S3. The universal negative control containing a scrambled sequence was 
5′-GCACTACCAGAGCTAACTCA-3′40. The targeting vector of each eRNA region was transfected together with 
the pmaxGFP® vector (Lonza, Basel, Switzerland) into RAW 264.7 cells using the Amaxa Cell Line Nucleofector 
Kit V (Lonza). The transfected cells were cultured for 2 days, and single-cell sorted using an SH800 cell sorter 
(Sony, Tokyo, Japan). The knockout clones used in these studies were validated by sequencing.

Retroviral gene transfer. The retroviral vector, pSIREN-shNfatc1 eRNA, was constructed by inserting 
annealed oligonucleotides into RNAi-Ready pSIREN-RetroQ (BD Biosciences, San Jose, CA, USA). The oligonu-
cleotide sequences are listed in Supplementary Table S4. The pSIREN-shControl was constructed as previously 
described27. Retroviral packaging was performed by transfecting the plasmids into Plat-E cells using FuGENE® 6 
Transfection Reagent (Promega, Madison, WI, USA) as previously described41. Ten hours after inoculation with 
retroviruses, BMMs were stimulated with RANKL (50 ng/mL) for 2 days.

CAGE library preparation and data processing. CAGE libraries were prepared from 5 µg of total RNA 
purified from primary cells stimulated with RANKL (four samples) or without RANKL (control, four samples). 
We used the protocol for the construction of no-amplification non-tagging CAGE libraries for Illumina sequenc-
ers (nAnT-iCAGE)42. Prior to sequencing eight libraries, different barcodes were pooled and applied to the same 
sequencing lane. The resulting 8-plex nAnT-iCAGE libraries were sequenced using single end reads of 50 bp 
using HiSeq 2500® (Illumina, San Diego, CA, USA). CAGE tags were mapped to the mouse genome (mm10) 
using Bowtie2 version 2.2.543. CTSSs, which corresponded to promoter candidates, were identified using the 
Bioconductor package, CAGEr, version 1.14.044 and BSgenome.Mmusculus.UCSC.mm10, version 1.4.045. CAGE 
tag counts per CTSS were plotted as scatter plots and Pearson correlations between all possible pairs of samples 
were calculated. To compare genome-wide transcriptional activities across samples, individual CTSSs were clus-
tered into tag clusters from all eight samples into a single set of TSSs (non-overlapping consensus clusters). The 
CAGE data have been deposited in the Sequence Read Archive (SRA) database (accession numbers, SRP137592 
and SRP137597).

Differential expression analyses of CAGE. Differential expression analyses were performed using the 
Bioconductor package, edgeR, version 3.16.546. Differentially expressed TSSs were defined as different promoters 
with a false discovery rate <0.1 between unpaired samples derived from corresponding samples (four controls 
and four RANKL-stimulated samples). Differentially expressed TSSs were divided into increased and decreased 
TSS groups by their fold-change values. Calculations of distances from identified TSSs to known promoters and 
genomic feature annotations were performed using the Bioconductor package, ChIPseeker, version 1.6.747 with 
TxDb.Mmusculus.UCSC.mm10.knownGene, version 3.2.248.

Statistical analyses. Statistical analyses were performed using Student’s t-test for comparisons between 
two groups, and Dunnett’s test for multiple comparisons using JMP Pro 12.0 (SAS, Cary, NC, USA). All data were 
expressed as means ± standard error of the mean, and the statistical validation is shown in each figure legend. 
The results are representative examples of three or more independent experiments. The indicated replicates are 
biological.
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