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Systematic realization of double-
zero-index phononic crystals with 
hard inclusions
Jaeyub Hyun1,3, Wonjae Choi2, Semyung Wang1, Choon-su Park2 & Miso Kim2

A systematic process is described to realize double-zero-index phononic crystals with Dirac-like points 
experimentally. This type of crystal normally has softer inclusion material than its surroundings 
medium, allowing mapping into a zero-index medium under certain conditions but also making 
experimental implementation difficult. On the other hand, realizing phononic crystals with hard 
inclusions can be experimentally more feasible, but the mapping conditions cannot be directly applied 
to hard-inclusion crystals such that mapping is not systematically guaranteed in these cases. Moreover, 
even if such crystals become realizable, there is a lack of a systematic design process which can be used 
to optimize or to redesign the crystals, which largely limits their potential applications. In this paper, 
we discover the essential conditions for realizing phononic crystals with hard inclusions and propose a 
methodology for the systematic design of these crystals using homogenization based on the effective 
medium theory. Using the proposed method, a double-zero-index phononic crystal with hard inclusions 
is optimized and experimentally realized for an underwater ultrasonic wave collimator.

Metamaterials have been widely investigated in recent years. These are artificially designed to realize unprece-
dented physical characteristics such as negative refraction and bandgap1,2. A zero-index metamaterial is one of 
the types of materials which exhibit zero refractive indices, and these materials can be realized by several phe-
nomena, including local resonance3, zeroth-order Fabry-Perot resonance4, and with a Dirac-like point5. We focus 
here on the last method, particularly for underwater applications. The first realization of a zero-index medium 
based on a Dirac-like point was achieved in the optic/electromagnetic field in 20116, and an equivalent phononic 
crystal was theoretically realized in 2012 through an acoustic analogy to the phenomenon of an optic/electromag-
netic Dirac-like point7. At a Dirac-like point with a properly designed crystal, both the effective density and the 
reciprocal of the effective bulk modulus can be zero, resulting in double-zero-index characteristics. The crystal 
shows better transmission performance due to its finite acoustic impedance8 than a single zero-index material 
with a near-infinite impedance mismatch, leading to many interesting applications such as unidirectional trans-
mission9, cloaking10 and tunneling effects11 with little transmission loss.

Recent studies6–8,12 have shown that crystals with a Dirac-like point can be mapped to a double-zero-index 
medium (double-ZIM) only if the Dirac-like point firstly originates due to a linear combination of monopole and 
dipole modes and secondly is formed at or near a Brillouin zone (BZ) center or Γ point. These two conditions 
were found for photonic crystals having soft inclusions surrounded by a hard matrix6. Analogues to the photonic 
crystal, double-zero-index phononic crystals (DZIPnCs), are often designed with soft inclusions in hard-matrix 
materials or with slow inclusions in a fast matrix, such as air cylinders in a water tank13, rubber cylinders in water7 
or rubber cylinders in an epoxy host14. Previous efforts demonstrated the possibility of phononic crystals using 
numerical simulations, but DZIPnCs with such soft inclusions are difficult to realize experimentally because the 
matrix is normally the slowest or softest material, such as air and/or water. Although one study8 described an 
experimental observation of a phononic crystal exhibiting a near-zero feature in an air medium, the inclusions 
were still softer than the matrix. If DZIPnCs are achieved with acoustically hard inclusions, they can be readily 
implemented in various applications. Recently, an example of a zero-index phononic crystal with hard inclusions 
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was simulated with a Dirac-like point at the BZ corner or M point15. It is interesting that the crystal still appears 
to have double-zero-index attributes, despite the fact that the Dirac-like point at the BZ corner violates the second 
mapping condition mentioned above. The mapping conditions for such crystals are not yet known though they 
are unveiled in this paper.

In addition, the lack of systematic process in the design of acoustic metamaterials and phononic crys-
tals is another bottleneck preventing their realization in industrial applications. Research is often based on 
trial-and-error methods and intuitive approaches; thus, optimizing the crystals or redesigning them for other 
applications becomes extremely laborious and time-consuming. For instance, in order to confirm the presence 
of a ZIM property, one can analyze acoustic wavefronts after a waveguide of an array of crystals. Such an indirect 
method requires a large amount of computation labor and does not provide physical insight into the principle of 
DZIPnCs. Thus, in order to improve the computation efficiency in this case, several inverse-design cases based 
on optimization algorithms have been attempted recently16–18. To the best of our knowledge, however, an inverse 
design of a DZIPnC has not been reported. Meanwhile, it is necessary to define quantitative parameters for an 
inverse-design method, and the effective medium theory (EMT)19 has been widely used to provide these param-
eters20. According to this theory, the effective density and effective bulk modulus are calculated and represent the 
local material properties of the DZIPnC. The EMT within a unit cell is known to be applied in the immediate 
vicinity of the BZ center in general; otherwise, the quality of the calculated properties cannot be guaranteed19,21,22. 
Therefore, it is important to ensure that the Dirac-like point is located at the BZ center in order to apply the EMT 
within a unit cell.

In this paper, in an effort to realize a double-zero-index phononic crystal with hard inclusions systematically, 
we discover the general conditions required to map phononic crystals with hard inclusions at a Dirac-like point 
onto a zero-index medium and propose a systematic inverse-design methodology for designing DZIPnCs. Before 
introducing the inverse-design method, we explicate the mapping conditions by comparing them with those of 
crystals with soft inclusions. A zone-folding mechanism is then introduced to locate the Dirac-like point at the 
BZ center so as to apply the effective medium theory accurately. An inverse-design method with bi-objective 
functions is described to design the DZIPnC with a Dirac-like point systematically. Finally, experimental realiza-
tion of the optimized DZIPnC is achieved with copper inclusions and a water matrix in the ultrasonic regime for 
underwater applications.

Results
Zero-index mapping of a hard-inclusion crystal with C4v symmetry.  As discussed in the previous 
section, the mapping conditions for a DZIPnC with a Dirac-like point require the Dirac-like point to be at the BZ 
center (i.e., the Γ point) and constructed via a linear combination of a monopole mode and dipole modes. 
However, these apply to photonic crystals with soft inclusions and not to phononic crystals with hard inclusions 
and thus cannot be directly applied to phononic crystals. In this section, we briefly explain the mapping condi-
tions for photonic crystals and describe the difference between cases with soft and hard inclusions, after which we 
unveil the mapping conditions for hard-inclusion phononic crystals.

The conditions can be explained through the spatial symmetry characteristic of Bloch modes. In particular, 
the relationship between a combination of several Bloch modes and the construction of a Dirac-like point had 
been comprehensively analyzed in terms of this type of mode symmetry in previous studies23–25. For square lattice 
crystals with νC4  symmetry (i.e., where the symmetry is preserved upon a rotation of 90° (=360/4)), combinations 
of Bloch modes at the Dirac-like point at the BZ center (i.e., Γ point) are categorized into two types for soft inclu-
sions, as shown in Table 1: (1) a monopole mode and dipole modes, and (2) a quadrupole mode and dipole 
modes24. However, not all of these mode combinations can be mapped to a double-ZIM. Because the surrounding 
medium is acoustically harder than the inclusions, the acoustic energy is localized at the inclusion area near the 
center of the unit cell. Thus, the monopole mode is readily excited at a relatively low frequency compared to the 
quadrupole mode, and the first combination (i.e., a monopole mode + dipole modes) in Table 1 can be mapped 
to a ZIM. With the other combination of a quadrupole mode and dipole modes listed in the table, the crystal 
cannot easily be mapped to a ZIM23, as a higher operational frequency may be required. Alternatively, a core-shell 
structure may be utilized. Therefore, the first combination is the only possible mapping condition for a 
soft-inclusion crystal.

An analogous condition can be found for hard-inclusion crystals, but it requires a relaxed condition of the BZ 
center. It is important to note that the M point has νC4  symmetry identically to the Γ point within the BZ of the 
square crystal26. Given the identical symmetry characteristics of Γ and M points, it can be expected that the two 
combinations for soft inclusions can be directly applied to cases of a Dirac-like point at an M point. In such crys-
tals, the acoustic energy is confined to the surrounding soft medium; thus, a quadrupole mode is readily excited, 
in contrast to soft-inclusion crystals. Therefore, by comparing soft and hard inclusion cases, crystals with hard 

Inclusion-type
Position of a Dirac-like point 
within an irreducible BZ

Combination of Bloch modes to 
generate a Dirac-like point24,26

Mapping to the double-
zero-index medium

Soft inclusion BZ center (Γ point)
Monopole (A1) + Dipoles (E) Yes

Quadrupole ( BB or1 2) + Dipoles (E) No

Hard inclusion BZ corner (M point)
Monopole (A1) + Dipoles (E) No

Quadrupole ( BB or1 2) + Dipoles (E) Yes

Table 1.  Zero-index mapping condition for a square crystal with C4v symmetry.
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inclusions can be mapped to a zero-index medium only if the Dirac-like point originates from a linear combina-
tion of a quadrupole mode and dipole modes and is located at a BZ corner. Table 1 summarizes these mapping 
conditions.

In this section, we generalize the mapping conditions of DZIPnCs with soft/hard inclusions. Interestingly, the 
combination of these Bloch modes (i.e., a quadrupole mode and dipole modes) for hard-inclusion crystals 
appears to violate the aforementioned conventional mapping conditions of a DZIPnC with soft inclusions, but the 
difference can be explained by the symmetry between soft and hard inclusions. Although this study uses phononic 
crystals with νC4  symmetry as an example, an identical description can be extended to photonic crystals for both 
optics and electromagnetics with other well-defined instances of symmetry.

Zone-folding for the Dirac-like point at k = 0.  The EMT has been widely used to find quantitative mate-
rial properties in the inverse-design process. In general, the EMT works well with the long-wavelength limit 
assumption of the unit cell19,27; therefore, in order to ensure the accuracy of the EMT, the location of the current 
Dirac-like point must be near the BZ center (i.e., the Γ point). Because the Dirac-like point of the DZIPnC of 
interest is located at the M point, we propose a zone-folding mechanism (i.e., enlarging the size of the unit cell to 
be analyzed) in order to move the Dirac-like point from the M to the Γ point.

We selected a fully viable design of a DZIPnC as in Fig. 1, which already has a Dirac-like point15, in order to 
show that this zone-folding method is an essential foundation for the subsequent inverse-design process of the 
DZIPnC. From the band structure of the original unit cell in Fig. 2a, it is apparent that the Dirac-like point will be 
at the Γ point if the band structure on Γ → M is folded. One method which can be used for this purpose is to 
enlarge the size of the unit cell. When the area of the original unit cell (i.e., the red solid square in Fig. 1a) is dou-
bled in size, as in Fig. 1a, its BZ in the reciprocal lattice is reduced to half (Fig. 1b). The band structure of the 
enlarged unit cell then becomes more complicated than the original case as a result of the zone-folding mecha-
nism. Based on the notation shown in Fig. 1b, the band structure of the enlarged unit cell on X → Γ will include 
the original structure for → ΓX  as well as →M X due to the zone-folding mechanism. In addition, Γ → ′M  can 
be constructed by folding Γ → M in the figure. These folding processes in the band structure can be seen in 
Fig. 2b,c, respectively. After the zone is folded by enlarging the size of the unit cell, the Dirac-like point is then 
located at the Γ point, as shown in Fig. 2d. Bloch modes of the enlarged unit cell are shown in Fig. 1d; these are 
still one quadrupole mode and two dipole modes.

The zone-folding mechanism makes the wavelength at the Dirac-like point relatively large enough to compute 
the effective medium within a cell, under the long-wavelength assumption in EMT. By moving the M point to the 
Γ point, the smallest wavelength of the unit cell can effectively become the largest one; thus, the crystal has the 
isotropic characteristic of an effective medium (See Supplementary Note for details) by augmenting the size of the 
unit cell. It is interesting to note that the periodic arrays of the original unit cell and of the enlarged unit cell are 
identical to each other despite the fact that the related band structures are different, as shown in Fig. 2a and d. By 
only changing the means of interpretation, the EMT process becomes extremely efficient because the homogeni-
zation step can be executed at the unit-cell level, which is normally much smaller than the waveguide. Moreover, 
this folding mechanism can be applied when designing any unit-cell-based photonic and phononic crystals.

Systematic inverse design of the zero-index phononic crystal by optimizing the effective  
material properties and Dirac-like point.  In this section, a systematic inverse-design method for 
DZIPnCs is proposed by combining the proposed unit-cell analysis method based on zone folding and the optimi-
zation method. The proposed inverse-design method can be applied to hard inclusions as well as to soft inclusions, 
but this study focuses particularly on a DZIPnC with a hard inclusion. First, for the inverse design of the DZIPnC, 
it is most important to define the optimization formulation with a physically quantifiable objective function. 
Physically, the DZIPnC should exhibit both near-zero properties and a Dirac-like point at the Γ point. Thus, the 
objective function J( ) can be defined as a bi-objective function that combines two sub-objective functions J J( & )H D  

Figure 1.  Two types of unit cells considered and their modes: (a) Original (O) and enlarged (E) unit cells. The 
red solid square represents unit cell type O in a conventional manner and blue solid diamond is unit cell type 
E. (b) The first Brillouin zones for two types of unit cells. The blue solid diamond denotes unit cell type E and 
the red solid square represents the zone for unit cell type O. (c,d) Bloch modes of unit cells at a Dirac-like point. 
Both unit cell types O and E have one quadrupole mode and two dipole modes.
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based on a weighted-summation approach28. The two sub-objective functions must (1) make the effective proper-
ties, such as effective mass density and effective reciprocal of the bulk modulus, close to zero (JH), and (2) make the 
Dirac-like point occur at the Γ point ( JD).

= +J W J W J (1)H H D D

Here, the subscripts H and D denote ‘for homogenization’ and ‘for a Dirac-like point’, respectively. In Eq. (1), 
appropriate weighting factors WD and WH for each sub-objective function should be selected. Each weighting 
factor is automatically updated from the current values of the objective functions during the optimization pro-
cess, as follows:
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where R[] denotes ‘real component of ’ and the density and bulk modulus of water are ρw and κw, respectively. The 
equation above requires the effect properties, which can be calculated as shown below.
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Here, 〈⋅〉 refers to the average over the boundaries, j is the imaginary unit = −j 12 , ω is the radian frequency, 
and p and v are the pressure and particle velocity, respectively (for the average calculations, refer Supplementary 
Note). In order to create a convex-type function which improves the convergence performance of the optimal 
solution, squares were used for both normalized effective material properties, as presented in Eq. (3). Although 
the ideal conditions for the DZIPnC would be ρ κ= =1/ 0, we determine the two effective properties of the 
DZIPnC in Eq. (4) to make them very small relative to those of the surrounding medium, as in Eq. (3), in practice. 
The second sub-objective function JD is to minimize the difference between the target operational frequency and 
the frequencies computed for each branch at the Dirac-like point,
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where Γfi  is the frequency computed for the i-th branch at the Γ-point, f0 is the target operational frequency, and 
the k is the selected branch number. Through this optimization formulation with the physically quantifiable 

Figure 2.  Band structures for the three types of unit cells and related folding mechanisms: (a) Band structure of 
unit cell type O and (b,c) zone-folding mechanism when the unit cell is enlarged. (d) Band structure of unit cell 
type E.
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objective function, we developed an in-house program to perform the inverse design of the DZIPnC based on a 
genetic algorithm (GA).

In order to describe the inverse-design process, we present an example case of a DZIPnC for the design con-
ditions specified in Table 2. Note that for an intuitive implementation during the process, the direction of the 
incident acoustic wave is aligned to the principal axis (e.g., the x-direction); thus, we rotate the original enlarged 
unit cell shown in Fig. 1d by 45°. The rotated and enlarged unit cell is used as the basic crystal structure for the 
inverse design of the DZIPnC. A unit cell with two simple geometrical design variables (i.e., d1 and d2) is consid-
ered as the target crystal structure, as shown in the inset in the upper panel in Fig. 3. Here, d1 and d2 represent the 
size of the inclusion and that of the unit cell, respectively. The optimization history is presented in Fig. 3. The GA 
internally has two mathematical operators: crossover and mutation29. The controllable fraction parameters of 
these operators should be appropriately selected, and they are set to 0.9 and 0.02, respectively, here. In addition, 
in order to obtain a solution close to the global optimum, the size of the initial population and the number of 
maximum generation instances are set to 50 and 20, respectively. In addition, k in Eq. (5) is set to 2 in this exam-
ple, as the target bands are from the second to the fourth branch. In the initial stage of the optimization process 
(step A), the propagation characteristic of the acoustic wave is mostly unaffected by the crystals. As the optimiza-
tion progresses, the two design variables are gradually updated, and a bandgap starts to appear at the BZ center 
(step B). In the final stage (step C), both the Dirac-like point and the near-zero index feature are obtained; there-
fore, an almost perfect plane wave is achieved by the optimization process. The design variables d1 and d2 are 
found to be 2.263 mm and 6.336 mm, respectively, and the phononic crystal acts as a zero-index material at 
approximately 200 kHz. Using the EMT, we found the equivalent material properties to be ρ ρ = .Re[ ]/ 0 0515w  and 
κ κ = ./Re[ ] 0 0371w . A geometrical sensitivity analysis was also conducted according to changes in the two design 
variables, d1 and d2. The near-zero-index feature (i.e., minimizing the phase change through the waveguide) was 
found to be guaranteed in the range of an approximately ±10% change of d1, although the amplitude of the trans-
mitted wave decreases (for more details, refer to the Supplementary Note).

Note that the inverse-design methodology is versatile when designing the DZIPnC and can be used to define 
a variety of design parameters, such as the material properties and dimensions of the unit cell as well as its inclu-
sions. In addition to the example presented here, a DZIPnC with a circular inclusion was optimized at approxi-
mately 50 kHz. These results are shown in the Supplementary Note. It is also important to note that the inverse 
design of the DZIPnC is conducted through a single unit cell of the DZIPnC and not through the entire wave-
guide system composed of arrays of unit cells. Therefore, the speed of the analysis and design can be dramatically 
accelerated. If the aforementioned conditions (i.e., the Dirac-like point and the near-zero effective properties) are 
satisfied, the proposed GA-based inverse-design method can be applied not only to a square crystal with νC4  
symmetry but also to a triangular crystal with νC6  symmetry. In addition, the inverse-design process can be 
extended in a straightforward manner to more general optimization processes, such as topology optimization, by 
changing the design variables from the current simple geometrical parameters to discrete finite elements30,31.

Experimental realization of a plane-wave generator using the DZIPnC.  We experimentally realize 
the DZIPnC of a Dirac-like point at k = 0 (i.e., the Γ point), particularly designed for underwater ultrasonic appli-
cations. Generating plane waves is important in many research and practical fields. For example, in order to assess 
the capability of a sensor system, testing procedures often require an ideal source such as a plane-wave generator. 
However, in practice, plane waves are difficult to realize with a single transducer in a limited space, as doing so 
normally requires a large space satisfying the far-field assumption or an array of single transducers32. Using the 
DZIPnC, plane waves can be generated even with a single transducer within a relatively small space. In this exper-
iment, we designed the DZIPnC following the process shown in Fig. 3. Accordingly, the dimensions in the previ-
ous sections are used for the experiment. The DZIPnC was realized with square welding rods of the type readily 
available for purchase from an online market, and we located them periodically to build the designed arrays of 
unit cells (Fig. 4a). This shows the simple geometry of the DZIPnC and the easy implementation for practical 
applications. The experimental setup is shown in Fig. 4b. It is conducted with and without the DZIPnC in a water 
tank (as in Fig. 4c,d), and two 200 kHz ultrasonic transducers were used as the transmitter and the receiver, scan-
ning an area of 36 × 95 mm2 in 0.25 mm steps. The simulation and experimental results are compared in Fig. 5a,b, 
respectively. It can be clearly observed in Fig. 5b that plane waves are successfully generated with the DZIPnC for 
in both the numerical simulation and the experiment. In contrast, curved waves are observed without the 
DZIPnC both theoretically and experimentally, as shown in Fig. 5a. The concept of the proposed DZIPnC-based 
ultrasonic plane-wave generator can be directly applied to biological imaging applications such as to a nano/
micro-particle control system using a plane wave (e.g., acoustic tweezer33 and acoustic levitation systems34) and 
can be extended to a wide range of applications by employing an optimal patterning method35 (e.g., an ultrasonic 
omnidirectional wave generator as another ideal source or by means of wave focusing for non-destructive evalu-
ations36, biological imaging37, and a high-intensity focused ultrasound system38).

Target operational 
frequency (kHz)

Material of 
inclusion

Shape of 
inclusion

200 Copper Square

Table 2.  Specified design conditions for a DZIPnC with a hard inclusion.
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Discussion
In conclusion, we have proposed methods which can be used systematically to realize double-zero-index pho-
nonic crystals (DZIPnC) with hard inclusions. First, the mapping conditions of the DZIPnC are generalized 
through the spatial symmetry characteristic of Bloch modes. Particularly, it is discovered that phononic crystals 
with a hard inclusion can be mapped to a zero-index medium when its Dirac-like point is at the BZ corner and 
it originates with a quadrupole mode and two dipole modes. Second, a zone-folding mechanism is introduced 
which efficiently calculates the effective medium properties within a unit cell for hard-inclusion phononic crystals, 

Figure 3.  Optimization history of the DZIPnC with a square-shaped hard inclusion. Upper panel: the bi-
objective value in an optimization history plot with respect to the design iterations. The inset shows the target 
unit-cell shape parameterized by two design variables. Lower panel: results at three iteration points in the 
optimization history. The figure shows the configurations of the unit cell (left), the band structures near the Γ 
point (middle), and the simulated pressure fields (right). The evolution of the configuration of the unit cell is 
evident and the configuration in step C is the unit-cell shape of the DZIPnC optimized from the GA algorithm.
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whereas otherwise it is very time-consuming to compute them with arrays of cells. Third, an inverse-design 
method is suggested using the EMT and bi-objective functions in order to design such crystal structures sys-
tematically. Finally, a DZIPnC with a Dirac-like point was designed using the proposed methods and was exper-
imentally realized for the first time. Using arrays of copper welding rods, an underwater plane-wave generator 
was created. The results from the experimental realization are in good agreement with the numerical simulation 
results.

Methods
Finite element analysis and design optimization.  In this paper, the finite element method (FEM) is 
utilized in the numerical analysis of the DZIPnCs using the commercial software COMSOL Multiphysics. Two 
types of numerical simulations were conducted: (1) a Bloch-mode analysis with a unit cell, and (2) a time-har-
monic analysis with an array of unit cells. First, for the Bloch-mode analysis, a periodic boundary condition based 
on the Floquet-Bloch theorem is employed at the four boundaries of the unit cell, with mode shapes and band 
structures then calculated for the unit cells considered in the paper. The triangular meshes are uniformly and 
symmetrically constructed over the entire domain of the unit cell to be analyzed. Moreover, by using the second 
order Lagrangian shape function, the Bloch modes are calculated. The calculated Bloch modes show the features 
of nearly pure dipoles and quadrupoles. Second, a time-harmonic simulation was conducted with the DZIPnC 
and the effective medium. The largest mesh element size is lower than 1/10 of the shortest wavelength, and per-
fectly matched layers were used to simulate non-reflective boundaries. The GA toolbox in MATLAB version 
2013b is used for the design optimization of the DZIPnC with specified conditions for the target frequency and 
size of the purchased copper welding rod.

Measurements and data processing in the experiment.  Experiments were conducted in a 
1.5 m × 1.3 m × 0.8 m water tank with two motorized arms which scan in the x, y and z directions used for the 
ultrasonic scanning test. The scanning system is controlled by the FlexSCAN-C system from Sonix. The DZIPnC, 
made with square-shaped rods, was placed in the water tank. A 200 KHz ultrasonic transducer with a 25 mm 
diameter (Ultran GS200-D25) was used as a transmitter, positioned 10 mm away from the DZIPnC. An identical 
transducer is located on the opposite side of the waveguide as a receiver, initially located 10 mm away from the 

Figure 4.  Experimental setup and measurements: (a) Copper square rod used for the periodic inclusions, 
the DZIPnC and corresponding side view. The DZIPnC has a unit-cell lattice of 15 × 13 with d1 = 2.26 mm 
and d2 = 6.34 mm. (b) Setup for the experiment on the DZIPnC with the receiver controlled by a motorized 
scanning system. (c) Top-view and (d) side-view snapshots of the experiment in a water tank. The transducers 
on the left and the right are the transmitter and receiver, respectively.

Figure 5.  Absolute value of pressure fields simulated and measured: (a) without and (b) with the DZIPnC. 
Whereas curved responses are apparent without the crystal, the simulation and experimental results show 
collimated waves with the DZIPnC.
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DZIPnC. A function generator (Tektronix AFG3051C) generates 20 sinusoidal waves to the transmitter and the 
receiver then measures the water movement at every 0.25 mm step, covering an area of 36 × 95 mm2 on the xy 
plane. The received signal is digitized by a FlexSCAN-C system with a sampling rate of 100 MHz and a 16-bit 
resolution. The amplitudes of the received signal were collected at all scanning points at identical time points after 
receiving ten cycles, after which they were normalized using the maximum value in the data set.
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