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Simultaneous quantification 
of serum monounsaturated 
and polyunsaturated 
phosphatidylcholines as potential 
biomarkers for diagnosing non-
small cell lung cancer
Yingrong Chen  1, Zhihong Ma1, Jing Zhong1, Liqin Li1, Lishan Min1, Limin Xu1, Hongwei Li2, 
Jianbin Zhang2, Wei Wu3 & Licheng Dai  1

Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. In this study, 
we investigated Ultrahigh Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass 
Spectrometry and Gas Chromatography Time-of-Flight/Mass Spectrometry-based non-targeted 
metabolomic profiles of serum samples obtained from early-stage NSCLC patients and healthy controls 
(HC). Metabolic pathways and the biological relevance of potential biomarkers were extensively 
studied to gain insights into dysregulated metabolism in NSCLC. The identified biomarker candidates 
were further externally validated via a targeted metabolomics analysis. The global metabolomics 
profiles could clearly distinguish NSCLC patients from HC. Phosphatidylcholine (PC) levels were found 
to be dysregulated in glycerophospholipid (GPL) metabolism, which was the top altered pathway in 
early-stage NSCLC. Compared with those in HC, significant increases in the levels of saturated and 
monounsaturated PCs such as PC (15:0/18:1), PC (18:0/16:0) and PC (18:0/20:1) were observed in 
NSCLC. Additionally, relative to those in HC, the levels of 9 polyunsaturated PCs, namely, PC (17:2/2:0), 
PC (18:4/3:0), and PC (15:0/18:2), and so on were significantly decreased in NSCLC patients. A panel of 
12 altered PCs had good diagnostic performance in differentiating early-stage NSCLC patients from HC, 
and these PCs may thus be used as serum biomarkers for the early diagnosis of NSCLC.

Lung cancer is one of the most common malignancies worldwide, with the highest rate of morbidity and 
mortality. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases1. Despite significant 
advancements in the diagnosis and treatment of NSCLC, the five-year survival rate of NSCLC is a mere 15%. 
Unfortunately, 70% of NSCLC patients are diagnosed at advanced stages, which markedly reduce the effectiveness 
of treatment2–4. Early diagnosis plays a key role in patients’ prognoses. One of the key problems in the manage-
ment of NSCLC is the lack of new molecular biomarkers with high sensitivity and specificity.

Metabolomics involves the analysis of all low molecular weight metabolites in a quantitative manner at a cer-
tain time under specific environmental conditions in an organism or a biological sample5. It is essential to distin-
guish between information pertaining to a diseased or non-diseased status. Metabolomics may have the potential 
for application in the field of disease diagnosis or in the identification of disease biomarkers6–8. NSCLC develop-
ment and progression alter metabolic processes. Advancements are being made for a great diversity of technolo-
gies, including nuclear magnetic resonance (NMR) spectroscopy9,10, high performance liquid chromatography/
mass spectrometry (HPLC/MS and LC/MS/MS)11,12, and gas chromatography/mass spectrometry (GC/MS)13,14. 
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Metabolomics approaches include non-targeted metabolomics and targeted metabolomics. Non-targeted metab-
olomics approaches involve global profiling of the metabolome to identify different metabolites that can be used 
for the initial screening of diagnostic biomarkers. However, the accuracy and reliability of the identification of 
metabolites by these approaches are low15,16. Targeted metabolomics approaches use standards to quantify metab-
olites to validate biomarkers and investigate specific metabolic pathways identified using non-targeted metabolic 
profiling17. The accuracy and reproducibility are much higher for targeted metabolomics than for non-targeted 
metabolomics.—

To broaden our understanding of metabolic alterations in NSCLC and to identify potential biomark-
ers for early diagnosis, 90 early-stage NSCLC patients and 90 healthy controls (HC) were enrolled in a study 
involving Ultrahigh Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry 
(UHPLC-Q-TOF/MS) and Gas Chromatography Time-of-Flight/Mass Spectrometry (GC-TOF/MS)-based 
non-targeted metabolomics analysis. Metabolic pathways and biological relevance of potential biomarkers were 
extensively studied to gain insights into dysregulated metabolism in early-stage NSCLC. The identified biomarker 
candidates were further externally validated in a cohort including 30 early-stage NSCLC patients and 30 HC by a 
targeted metabolomics analysis.

Results
Clinical characteristics of the study subjects. A total of 90 NSCLC patients (including 40 (44%) males 
and 50 (56%) females; mean age 58.1 ± 9.0 years) and 90 sex- and age-matched HC (42 males and 48 females; 
mean age 53.0 ± 11.8 years) were included in our non-targeted metabolomics study. For the targeted metabolom-
ics study, 30 NSCLC patients and 30 HC were included in the absence of differences in characteristics such as age 
and sex between the two groups. The clinical characteristics of the subjects are summarized in Table 1.

Non-targeted metabolomics analysis. Metabolic profiles of serum samples. For UHPLC-Q-TOF/MS, 
1865 metabolite features in positive ion mode and 359 metabolite features in negative ion mode were selected 
for subsequent analyses. For GC-TOF/MS, 290 ion peaks were identified, and 223 metabolites remained after 
the removal of noise based on the interquartile range. Typical total ion chromatograms (TICs) of the metabolic 
profiles of early-stage NSCLC patients and HC are provided in Figs 1 and 2. The data were normally distributed 
after normalization.

Multivariate statistical analysis. The principle component analysis (PCA) score plots obtained for early-stage 
NSCLC patients and HC are shown in Fig. 3. The samples in the two groups segregated into two distinct clusters. 
A supervised orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to maximize the 
differences between groups and to aid in the identification of marker metabolites responsible for class separa-
tion. The parameters of the OPLS-DA score plots (Fig. 4) were R2X = 0.637, R2Y = 0.866, and Q2 = 0.866 for 
UHPLC-Q-TOF/MS in the positive mode, R2X = 0.268, R2Y = 0.804, and Q2 = 0.760 for UHPLC-Q-TOF/MS in 
the negative mode and R2X = 0.134, R2Y = 0.905, and Q2 = 0.860 for GC-TOF/MS. These values indicated that 
there was a clear separation between early-stage NSCLC patients and HC.

Differences in metabolites and related pathways between NSCLC patients and HC. For UHPLC-Q-TOF/MS, a 
total of 37 different metabolites were selected based on variable importance in the projection (VIP) values greater 
than 1, p values less than 0.05, and the q values of false discovery rate (FDR) less than 0.05 including 20 metab-
olites in the positive mode and 17 metabolites in the negative mode (Table 2). For GC-TOF/MS, 19 different 
metabolites were identified (Table 3). Then, we mapped these different metabolites into their biochemical path-
ways through metabolic enrichment and pathway analyses based on the KEGG database and MetaboAnalyst. 
As shown in Fig. 5, the significantly altered pathways were glycerophospholipid (GPL) metabolism, starch and 

Characteristic

Non-targeted 
metabolomics

Targeted 
metabolomics

NSCLC 
patients HC

NSCLC 
patients HC

Sample size 90 90 30 30

Age range (years) 58.1 ± 9.0 53.0 ± 11.8 62.1 ± 6.7 51.7 ± 7.1

Sex

  Male 40 42 21 19

  Female 50 48 9 11

Pathological type

  ADCa 50 — 15 —

  SqCCb 30 — 15 —

TNM stagec

  Stage I 81 — 15 —

  Stage II 9 — 15 —

Table 1. Clinical characteristics of early-stage NSCLC patients, healthy controls (HC) and patients with benign 
lung disease (LBD) enrolled in this study. aADC: Adenocarcinoma. bSqCC: Squamous cell carcinoma. cUnion 
for International Cancer Control (UICC) TNM Classification of lung cancer (8th ed., 2017).
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sucrose metabolism, galactose metabolism, caffeine metabolism, and amino sugar and nucleotide sugar metab-
olism based on the results of UHPLC-Q-TOF/MS and GC-TOF/MS analyses. GPL metabolism was the top 
altered pathway in early-stage NSCLC. Next, networks of metabolites were constructed with Metscape (Fig. 6). 
Table 4 lists the detailed results of pathway analyses. The metabolites involved in the altered pathways included 
phosphatidylcholines (PCs), ethanolamine, glucose-1-phosphate, D-galactonate, theophylline and xanthine. The 
sensitivity, specificity and area under the ROC curve (AUC) of each metabolite and the combination of PCs are 
presented in Table 5. As shown in Table 5, the combination of PCs had high performance in predicting early-stage 
NSCLC with an AUC of 0.996. Thus, we selected PCs for the target metabolomics analysis.

Targeted metabolomics analysis. We analysed the changes in the concentration of 85 PCs in early-stage 
NSCLC patients and HC. The data were normally distributed after normalization. The p value based on Student’s 
t-test and the q values of FDR in the average concentration of PCs were calculated between NSCLC patients and 
HC (Table S1). Only 12 PCs were selected as biomarkers for the early diagnosis of NSCLC (Table 6) according 
to p < 0.01 and q < 0.05. The concentration distributions of these selected PCs are shown in Fig. 7. As shown in 
Fig. 7, compared with the corresponding levels in HC, the levels of saturated and monounsaturated PCs such 
as PC(15:0/18:1), PC(18:0/16:0) and PC(18:0/20:1) were significantly increased, whereas the levels of polyun-
saturated PCs such as PC(17:2/2:0), PC(18:4/3:0), PC(15:0/18:2), PC(16:0/18:3), PC(17:0/18:2), PC(18:2/18:2), 
PC(16:0/20:3), PC(15:0/22:6) and PC(24:4/17:2) significantly decreased in early-stage NSCLC patients.

To estimate the diagnostic value of the twelve targeted PCs, we further performed receiver operating charac-
teristic (ROC) analysis. The sensitivity, specificity and AUC of each metabolite and the combination of PCs are 
presented in Table 6. The ROC curves are shown in Fig. 8. Although individual PCs did not have good diagnostic 
performance in distinguishing NSCLC from HC, the combination of these twelve PCs had the best diagnostic 
performance.

Discussion
In this study, we performed a comprehensive non-targeted metabolomics analysis in human serum samples to 
identify differences in metabolic features between HC and NSCLC patients by UHPLC-Q-TOF/MS and GC-TOF/
MS. Metabolic pathway analysis of altered metabolites suggested that GPL metabolism was the most significantly 
altered metabolic pathway between the two groups. We then employed a targeted metabolomics analysis to fur-
ther evaluate changes in the levels of PCs between early-stage NSCLC patients and HC. ROC analysis revealed 
that a panel of 12 PCs exhibited good performance in differentiating HC and early-stage NSCLC patients.

NSCLC is the most frequently diagnosed cancer with high mortality, partly ascribed to late diagnosis and 
poor prognosis. Many of the commonly used serum tumour biomarkers are limited to late-stage disease and 
have low sensitivity and specificity18,19. Currently, there are a handful of validated small molecular biomarkers 
for NSCLC that can be used to avoid the necessity of tumour biopsies for classifying NSCLC. Metabolomics 
is used to systematically analyse all metabolites and metabolic pathways in an organism or a biological sample 

Figure 1. Typical TICs of metabolic profiles of early-stage NSCLC patients (A) positive ion mode; (B) negative 
ion mode and HC (C) positive ion mode; (D) negative ion mode based on UHPLC-Q-TOF/MS analysis.
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and is being increasingly recognized as a technique enabling the discovery of biomarkers and understanding of 
disease mechanisms20. Non-targeted and targeted metabolomics are the two main MS techniques for the study 
of metabolites and have their own advantages and disadvantages. Non-targeted metabolomics is good for the 
initial screening of biomarkers but has low precision. In contrast, targeted metabolomics has high sensitivity and 
good reproducibility in validating biomarkers21. In the past, non-targeted metabolomics was widely applied for 
identifying NSCLC biomarkers by NMR, HPLC/MS and GC/MS. It has been reported that the major alterations 
in lung adenocarcinoma are related to phospholipid metabolism and protein catabolism, whereas squamous cell 
carcinoma exhibits greater changes in glycolytic and glutaminolytic pathways based on NMR9. In one study, 
GC-TOF/MS was used to measure altered metabolites in paired malignant and non-malignant lung tissues from 
early-stage adenocarcinoma, and cancer-associated biochemical alterations were characterized by decreased lev-
els of glucose and elevated levels of cysteine, antioxidants, alpha- and gamma-tocopherol, and the nucleotide 
metabolite 5,6-dihydrouracil22. Metabolomic profiling by UPLC-Q-TOF/MS has been performed to identify 
diagnostic and prognostic markers in lung cancer. Creatine riboside, a novel molecule identified in this study, and 
N-acetylneuraminic acid were both significantly elevated in NSCLC and associated with poor prognosis. Creatine 
riboside was the strongest classifier of lung cancer status in the whole cohort as well as in stage I–II cases and thus 
may be important for early detection23. The different metabolites should be further validated by targeted metab-
olomics. Zhang et al. characterized metabolic alterations in lung cancer using a non-targeted metabolic profiling 
strategy based on 1H-NMR spectroscopy and a targeted metabolic profiling strategy based on rapid resolution 
liquid chromatography (RRLC). Sixteen altered metabolites were detected using the non-targeted approach, and 
nine were identified using the targeted approach10.

In our study, both UHPLC-Q-TOF/MS and GC-TOF/MS were simultaneously used for non-targeted metabo-
lomics analysis to explore alterations in serum levels of metabolites between early-stage NSCLC patients and HC. 
For targeted metabolomics, UHPLC-Triple-TOF/MS was used to validate the concentration of PCs and demon-
strated high performance in predicting early-stage NSCLC. Because the purpose of the non-targeted metabolom-
ics analysis was to select different metabolites and the detection method used in non-targeted metabolomics was 
not specialized for PCs, the results needed to be verified using a specialized quantitative method for PCs. Thus, 
the targeted metabolomics analysis was used to determine the absolute concentrations of the PCs. Because of the 
different aims between the two methods, the methods for extracting metabolites from the sample were different, 
and the methods of the chromatography and mass spectrometry were also different. Although the untargeted 
metabolomics could detect some lipids, it was not a suitable method for the lipid determination. Because of the 

Figure 2. Typical TICs of metabolic profiles of early-stage NSCLC patients (A) and HC (B) based on GC-TOF/
MS analysis.
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limitation of the untargeted metabolomics in the extracting and determining lipids, more PCs were extracted 
and identified by the targeted analysis. We suspected it was the reason that the significant PCs identified in the 
untargeted analysis were non-significant in the targeted analysis. However, we believe that the two methods are 

Figure 3. PCA score plots of metabolic profiles in early-stage NSCLC patients and HC with or without mean-
centred (ctr) scaling. (A) UHPLC-Q-TOF/MS analysis in the positive mode, R2X = 0.627. (B) UHPLC-Q-TOF/
MS analysis in the negative mode, R2X = 0.529. (C) GC-TOF/MS analysis, R2X = 0.416. Dots and boxes denote 
samples from early-stage NSCLC patient and HC, respectively.

Figure 4. OPLS-DA score plot of metabolic profiles of early-stage NSCLC patients and HC after unit variance 
(uv) scaling. (A) UHPLC-Q-TOF/MS analysis in the positive mode. (B) UHPLC-Q-TOF/MS analysis in the 
negative mode. (C) GC-TOF/MS analysis.

Peak Metabolite Polarity m/z VIP
Fold-
change Peak Metabolite Polarity m/z VIP

Fold-
change

1 5,10-Methylenetrahydrofolate POS 440.1747 1.11 3.80 21 1-Methylxanthine NEG 203.0023 1.01 0.63

2 Biliverdin POS 583.2549 1.11 0.29 22 2-Hydroxy-3-methylbutyric acid NEG 117.0554 1.09 1.39

3 β-Octylglucoside POS 310.2229 1.73 0.39 23 2-Oxoadipic acid NEG 141.0165 1.79 1.18

4 Glycochenodeoxycholate POS 450.3173 1.07 1.28 24 3-Hydroxycapric acid NEG 169.1228 1.54 0.50

5 Isovaleric acid POS 103.0755 1.60 0.35 25 all cis-(6,9,12)-Linolenic acid NEG 277.2175 1.25 0.80

6 L-palmitoylcarnitine POS 444.3168 1.62 0.50 26 Arachidonic Acid NEG 303.2327 1.26 0.84

7 PC(10:0/22:2) POS 730.5311 1.49 0.36 27 DL-lactate NEG 89.0240 2.41 2.03

8 PC(15:1/22:6) POS 790.5513 1.54 1.57 28 Hippuric acid NEG 178.0510 1.22 0.41

9 PC(16:1/0:0) POS 494.3326 1.08 1.62 29 Inosine NEG 267.0736 1.72 4.17

10 PC(17:2/24:4) POS 848.5930 1.35 1.39 30 PA(18:2/18:0) NEG 699.4770 1.81 1.21

11 PC(18:0/22:6) POS 834.5778 1.57 1.64 31 Palmitic acid NEG 255.2322 1.04 0.86

12 PC(18:3/0:0) POS 518.3369 1.57 2.11 32 PE(16:0/0:0) NEG 452.2774 1.35 1.48

13 PC(18:4/22:6) POS 826.5287 1.03 1.69 33 PE(18:0/0:0) NEG 480.3087 1.04 1.34

14 PC(19:0/0:0) POS 538.3695 1.34 1.45 34 PE(18:1/0:0) NEG 478.2930 1.11 1.67

15 PC(20:0/0:0) POS 552.3926 1.48 0.51 35 PE(18:2/0:0) NEG 476.2775 1.26 1.57

16 PC(O-16:0/0:0) POS 504.3452 1.29 1.83 36 Theophylline NEG 179.0544 1.19 0.42

17 PC(O-16:1/0:0) POS 502.3333 1.34 1.49 37 Xanthine NEG 188.9864 1.29 0.52

18 PC(O-18:3/0:0) POS 504.3374 1.62 0.37

19 PE(22:2/12:0) POS 716.5143 1.15 1.29

20 L-prolyl-L-phenylalanine POS 263.1366 1.67 1.50

Table 2. Discrepant metabolites identified by UHPLC-Q-TOF/MS analysis between early-stage NSCLC 
patients and HC.
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complementary and irreplaceable. On the other head, the targeted analysis was validated only in 30 early-stage 
NSCLC patients and 30 HC, which should be verified in larger samples in the future to increase their credibility.

In this study, GPL metabolism was the top altered pathway in the NSCLC samples, and serum concentra-
tions of PCs were altered between early-stage NSCLC patients and HC. Phospholipids, one of the major com-
ponents of cell membranes, participates in various biological functions, and their levels are altered in various 
human cancers24,25. PCs are the most abundant bilayer-forming phospholipids in eukaryotic membranes and 
can contribute to proliferative growth in cancer cells26,27. Abnormal PC metabolism has been reported in can-
cer cells. Guo et al. reported that different combinations of sphingomyelin (SM) (34:1), PC(34:2), PC(34:1), 
PC(36:4), PC(36:3), and PC(36:2) exhibit high diagnostic potential for lung cancer, colorectal cancer, gastric 
cancer and pancreatic cancer28. Increased PCs levels have also been reported in cervical cancer, ovarian cancer, 
breast cancer and oesophageal squamous cell carcinoma and thus might be interpreted as a requirement for 
the high rate of cancer cell proliferation. Additionally, increased levels of PCs may be correlated with the over-
expression of choline kinase in various cancers29. In our study, the levels of monounsaturated phospholipids, 
such as PC(15:0/18:1) and PC(18:0/20:1), were significantly increased, whereas the levels of polyunsaturated 
phospholipids such as PC(17:2/2:0), PC(18:4/3:0), PC(15:0/18:2), PC(16:0/18:3), PC(17:0/18:2), PC(18:2/18:2), 
PC(16:0/20:3), PC(15:0/22:6) and PC(24:4/17:2) were significantly decreased in NSCLC samples. Previous studies 

Peak Similarity Metabolite VIP Fold-change

1 326 3-(2-Hydroxyphenyl)propionic acid 1.50 0.81

2 279 4-Acetylbutyric acid 2 1.56 1.32

3 291 Galactonic acid 4.26 6.64

4 523 Ethanolamine 1.32 0.88

5 326 4-Androsten-19-ol-3,17-dione 1 3.67 11.59

6 789 2-Hydroxypyridine 1.10 0.83

7 814 Mannose 2 1.59 1.74

8 378 2-Deoxyerythritol 1.30 0.83

9 582 Sedoheptulose 1.28 0.77

10 780 Isoleucine 1.37 0.74

11 783 D-(glycerol-1-phosphate) 2.91 1.90

12 380 3-Hydroxybutyric acid 3.29 1.60

13 777 Aspartic acid 1 1.21 0.76

14 649 β-Glycerophosphoric acid 1.39 0.87

15 264 Prostaglandin E2 2 1.06 1.68

16 607 Glucose-1-phosphate 1.52 0.82

17 410 P-cresol 1.17 0.60

18 676 4-Aminobutyric acid 3 1.24 0.67

19 363 Lyxose 1 1.45 0.85

Table 3. Discrepant metabolites identified by GC-TOF/MS analysis between early-stage NSCLC patients and 
HC.

Figure 5. Summary of pathway analyses based on metabolomics data. (A) Glycerophospholipid metabolism. 
(B) Starch and sucrose metabolism. (C) Galactose metabolism. (D) Caffeine metabolism. (E) Amino sugar and 
nucleotide sugar metabolism.
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have noted that the activation of de novo lipogenesis is an early and common event in the tumour microenviron-
ment30–32. The key enzymes in this pathway include fatty acid synthase and stearoyl-CoA desaturase-1. Guo et al.29  
reported the up-regulation of fatty acid synthase and stearoyl-CoA desaturase-1 in the lung cancer microenvi-
ronment relative to that in adjacent normal tissues. Thus, we speculated that the promotion of biosynthesis of 
lipids with monounsaturated acyl chains and the suppression of biosynthesis of polyunsaturated lipids in the 
NSCLC microenvironment may be activated by de novo lipogenesis. Increased lipid saturation can help reduce 

Figure 6. Networks of indicated differential metabolites. 1. L-Isoleucine. 2. Inosine. 3. Xanthine. 4. L-Aspartate. 5. 
4-Aminobutanoate. 6. 5, 10-Methylenetrahydrofolate. 7. Phosphatidylcholine. 8. Prostaglandin E2. 9. Ethanolamine. 
10. L-Palmitoylcarnitine. 11. Hexadecanoic acid. 12. D-Glucose-1-phosphate. 13. D-Mannose. 14. Biliverdin. 15. 
2-Oxoadipate. 16. (R)-3-Hydroxybutanoate. 17. Hippurate.
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cell membrane fluidity and promote tumour cell invasion and infiltration32,33. Ollila S et al.33 reported on the 
influence of unsaturated lipids on single-component membrane properties, focusing on their dynamic aspects 
and lateral pressure profiles across the membrane. With increasing degree of unsaturation, the authors observed 
considerable effects on dynamic properties, such as accelerated dynamics of phosphocholine head groups and 
glycerol backbones as well as accelerated rotational dynamics of lipid molecules. The lateral pressure profile is 
also altered by the degree of unsaturation. With increasing numbers of double bonds, the peak in the middle of 
the bilayer decreases. This is compensated for by changes in the membrane-water interface region via increasing 
peak heights of the lateral pressure profile. Hilvo et al.31 reported that increased levels of saturated fatty acids, 
associated with reduced membrane fluidity, are also found in aggressive breast cancers, suggesting that reduced 
membrane fluidity is a feature of the advanced disease. Rysman et al.32 also reported that alterations in fatty acid 
saturation can dramatically alter these properties and affect many aspects of the cellular machinery. The shift 
from lipid uptake to de novo lipogenesis in cancer cells leads to increased membrane lipid saturation, resulting in 
higher levels of saturated and monounsaturated phospholipids, potentially protecting cancer cells from oxidative 
damage by reducing lipid peroxidation. These findings underline the importance of precisely controlled regula-
tion of lipid synthesis and desaturation in cancer cells. Thus, we speculated that the de novo lipogenesis pathway 
may promote the synthesis of monounsaturated PC molecules to enhance cell membrane formation and increase 
plasma membrane density, thereby altering cell membrane fluidity and promoting tumour formation in NSCLC.

Total Hits Hit name Raw p −log(p) FDR Impact

Glycerophospholipid metabolism 39 2 1. Phosphatidylcholine (PC)
2. Ethanolamine 0.048 3.032 0.908 0.156

Starch and sucrose metabolism 50 1 1. Glucose-1-phosphate 0.371 0.991 1.000 0.138

Galactose metabolism 41 2 1. Glucose-1-phosphate 2. 
D-Galactonate 0.053 2.942 0.908 0.077

Caffeine metabolism 21 2 1. Theophylline 2. Xanthine 0.015 4.194 0.908 0.070

Amino sugar and nucleotide sugar 
metabolism 88 1 1. Glucose-1-phosphate 0.561 0.578 1.000 0.088

Table 4. Detailed results of pathway analyses based on metabolomics data.

Biomarker AUC (95% CI) Sensitivity (%) Specificity (%)

Combined effects of PCs 0.996 (0.987–1.000) 98.9 98.9

Ethanolamine 0.692 (0.612–0.771) 91.1 56.7

D-galactonate 0.880 (0.830–0.929) 86.7 72.2

Glucose-1-phosphate 0.316 (0.238–0.394) 86.7 50.0

Theophylline 0.251 (0.181–0.322) 67.8 76.7

Xanthine 0.264 (0.191–0.337) 77.8 60.0

Table 5. Prediction performance of potential metabolic biomarkers between early-stage NSCLC and HC.

No. Biomarker p value q value
Fold-
change AUC (95% CI)

Sensitivity 
(%)

Specificity 
(%)

Trend 
(Cancer)

1 PC(17:2/2:0) 1.86E-05 6.38E-04 0.51 0.183 (0.078–0.288) 66.7 86.7 down

2 PC(18:4/3:0) 1.18E-03 6.07E-03 0.59 0.233 (0.110–0.356) 66.7 83.3 down

3 PC(15:0/18:2) 7.15E-03 1.92E-02 0.81 0.283 (0.147–0.420) 56.7 90.0 down

4 PC(16:0/18:3) 1.13E-03 2.27E-02 0.63 0.218 (0.101–0.335) 83.8 70.0 down

5 PC(17:0/18:2) 5.72E-04 4.36E-03 0.79 0.250 (0.125–0.375) 70.0 73.3 down

6 PC(18:2/18:2) 1.05E-03 5.81E-03 0.69 0.254 (0.128–0.381) 53.3 93.3 down

7 PC(16:0/20:3) 1.42E-03 6.48E-03 0.65 0.252 (0.126–0.378) 60.0 90.0 down

8 PC(15:0/22:6) 4.00E-04 3.63E-03 0.71 0.243 (0.121–0.365) 53.5 90.0 down

9 PC(24:4/17:2) 3.78E-03 1.30E-02 0.78 0.273 (0.139–0.407) 70.0 80.0 down

10 PC(15:0/18:1) 8.26E-03 2.07E-02 1.64 0.717 (0.586–0.848) 60.0 80.0 up

11 PC(18:0/16:0) 5.27E-03 1.62E-02 1.34 0.763 (0.641–0.885) 73.3 76.7 up

12 PC(18:0/20:1) 1.96E-03 3.28E-02 1.53 0.691 (0.556–0.826) 66.7 70.0 up

Panel a — — 0.897 (0.818–0.975) 90.0 76.7

Panel b — — 0.811 (0.703–0.919) 76.7 70.0

Panel c — — 1.000 (1.000–1.000) 100 100

Table 6. Detection of PCs as potential biomarkers for the diagnosis of early-stage NSCLC. Panel (a): 
combination of down-regulated PCs; Panel b: combination of up-regulated PCs. Panel (c): combination of 12 
altered PCs.
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In summary, we observed a significantly altered metabolic profile in early-stage NSCLC using 
UHPLC-Q-TOF/MS- and GC-TOF/MS-based non-targeted metabolomics analysis and identified a panel of PCs 
to distinguish HC and NSCLC patients. The identified PCs were further externally validated by a targeted metab-
olomics analysis. Increased saturated and monounsaturated PCs and decreased polyunsaturated PCs may be used 
as potential biomarkers to differentiate early-stage NSCLC patients and HC. Our study has thus highlighted the 
power of using comprehensive metabolomics approaches to identify biomarkers and underlying mechanisms in 
NSCLC.

Materials and Methods
Chemicals. LC grade acetonitrile (ACN), methanol (MeOH), MTBE and dichloromethane were purchased 
from Merck (Darmstadt, Germany). L-2-chlorophenylalanine was purchased from Shanghai Heng Bo Biological 
Technology Co., Ltd. (Shanghai, China). BSTFA (1% TMCS, v/v) was purchased from REGIS Technologies. Inc. 
(Illinois, USA). Ultrapure water was prepared using a Milli-Q system (Millipore; Billerica, MA, USA). Lipidomix 
Mass Spec Standard (Catalogue No. 330707, containing 160 μg/mL PC(15:0/18:1) (d7)) was purchased from 
Avanti Polar lipids (Alabaster, AL, USA).

Figure 7. Scatter plots of serum levels of the selected PCs in HC and early-stage NSCLC patients. Black 
horizontal lines represent median values. P values are determined by the Student’s t-tests.
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Patients and sample collection. Serum samples were collected from NSCLC patients and HC at Huzhou 
Central Hospital from January 2015 to July 2016. The patients were selected according to the following criteria: 
(1) all patients were diagnosed and confirmed by pathology; (2) patients with NSCLC were at early stages (Stage 
I and II) according the clinical staging method and had no other cancers; and (3) none of the patients received 
preoperative adjuvant chemotherapy or radiotherapy. Serum samples from HC were collected from healthy vol-
unteers with no history of carcinoma. Histopathology results for all cancer patients were confirmed by surgical 
resection of the tumours, while clinicohistopathological characteristics and tumour stages were assessed based on 
biopsy results. No preoperative chemotherapy or radiotherapy was administered to the cancer patients included 
in this study.

All samples were collected in accordance with ethical guidelines, and written informed consent was received. 
All patients were approached based on approved ethical guidelines, and patients who agreed to participate in this 
study were required to sign consent forms before being included in the study. The study was approved by Research 
Ethics Committee of Huzhou Centre Hospital. (Huzhou City, Zhejiang Province). We also confirmed that all 
methods were performed in accordance with the relevant guidelines and regulations.

Before the collection of serum samples, patients and healthy volunteers fasted for at least 12 h. Briefly, for 
serum isolation, blood was collected into tubes (BD Vacutainer with increased silica act clot activator and 
silicone-coated interior) and centrifuged at 700 g for 10 min at 4 °C within 2 h of venipuncture. The supernatant 
was removed and centrifuged in the same way for the second time. The resultant serum was transferred into a 
clean tube and stored at −80 °C until use.

Non-targeted metabolomics. Sample preparation. For UHPLC-Q-TOF/MS, 700 μL of MeOH and 40 μL 
of L-2-chlorophenylalanine (1 mg/mL stock in dH2O) were added to 200 μL of each serum sample, and the sam-
ples were vigorously vortexed for 30 s. The mixtures were sonicated for 10 min (in ice water) and allowed to stand 
for 2 h at −20 °C. The solutions were centrifuged at 13,000 rpm for 15 min at 4 °C. A 400 μL aliquot of the super-
natant was subjected to UHPLC-Q-TOF/MS. Additionally, 10 μL of each sample was taken and pooled as quality 
control (QC) samples.

For GC-TOF/MS, 700 μL of MeOH and 40 μL of L-2-chlorophenylalanine (1 mg/mL stock in dH2O) were 
added to 200 μL of each serum sample, and the samples were vigorously vortexed for 10 s. The samples were cen-
trifuged at 13,000 rpm for 15 min at 4 °C, and a 300-μL aliquot of the supernatant was transferred to a clean vial 
while 10 μL of each sample was taken and pooled as QC samples. After being dried in a vacuum concentrator, the 
collected supernatant was suspended in 40 μL of methoxy pyridine hydrochloride (20 mg/mL in pyridine) and 
incubated for 30 min at 80 °C. After this incubation, 60 μL BSTFA with 1% TMCS was added to each vial, and the 
mixtures were incubated for 2 h at 70 °C. Then, 10 μL of a standard mixture of fatty acid methyl esters (FAMEs, 
1 mg/mL C8-C16 and 0.5 mg/mL C18-C30 in chloroform) was added to the QC sample. After completion of the 
reaction, samples were prepared for GC-TOF/MS.

Chromatography and mass spectrometry. UHPLC-Q-TOF/MS analyses were performed using a UHPLC system 
(1290 series, Agilent Technologies, USA) coupled to a Q-TOF mass spectrometer (Agilent 6550 iFunnel Q-TOF, 
Agilent Technologies, USA). Waters ACQUITY UHPLC HSS T3 C18 column (1.7 μm, 2.1 mm × 100 mm) was 

Figure 8. ROC curves of the combination of PCs that were altered between HC and early-stage NSCLC 
patients.
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used for LC. The column was maintained at 25 °C. The injected sample volume was 1 μL for the positive mode 
and 3 μL for the negative mode. The gradient conditions were as follows: 0–1 min in 1% B, 1–8 min linear gradient 
from 1 to 100% B, and 8–10 min in 100% B. Solvent A was 0.1% formic acid (FA) in water in the positive mode 
or 0.5 mmol/L NH4F in water in the negative mode, and solvent B was 0.1% FA in ACN in the positive mode or 
100% ACN in the negative mode. The flow rate was 500 μL/min. The measurement conditions of MS data acqui-
sition were as follows: drying gas temperature, 250 °C; drying gas flow, 16 L/min; nebulizer pressure, 20 psi in the 
positive mode or 40 psi in the negative mode; sheath gas temperature, 400 °C; sheath gas flow, 12 L/min; capillary 
voltage, 3,000 V in the positive mode or −3,000 V in the negative mode; and nozzle voltage, 0 V. The acquisition 
rate was set as 4 Hz, and the scan range was from a mass-to-charge ratio (m/z) of 50 to 1200 Da. Data acquisition 
for tandem mass spectrometry (MS/MS) was performed using another Q-TOF mass spectrometer (Triple TOF 
6600, AB SCIEX, USA). QC samples were used for MS/MS data acquisition. The source parameters were set as 
follows: GAS1, 40 psi; GAS2, 80 psi; curtain gas pressure (CUR), 25 psi; heater gas temperature (TEM), 650 °C; 
ISVF, 5500 V in the positive mode and −4500 V in the negative mode; DP, 60 V; and CE, 35 ± 15 eV. To expand 
the coverage of the MS/MS spectra, the mass ranges were divided into the following four segments: 50–300 Da, 
290–600 Da, 590–900 Da, and 890–1200 Da. Data acquisition and processing were performed with Mass Hunter 
(version B.05.01, Agilent Technologies, USA) and Analyst TF (version 1.7.1, AB SCIEX, USA) qualitative analysis 
software. MS raw data files were converted to the mzXML format using ProteoWizard and processed by the R 
package XCMS (version 1.41.0), which can perform peak finding, filtering, alignment, and scaling. The R package 
CAMERA was used for peak annotation after XCMS data processing34. The cutoff for match score was set as 0.1, 
and the minfrac was set as 0.5. All the m/z errors were less than 30 ppm, and all the retention time (RT) errors 
were less than 60 s. Metabolite identification was performed by matching the acquired MS/MS data against MS/
MS data in a database developed in-house.

GC-TOF/MS analyses were performed using an Agilent 7890B GC system (Agilent, USA) coupled with a 
Pegasus HT TOF mass spectrometer (LECO, St. Joseph, MI, USA). The system was equipped with a DB-5MS cap-
illary column coated with 5% diphenyl cross-linked with 95% dimethylpolysiloxane (30 m × 250 μm inner diam-
eter, 0.25 μm film thickness; J&W Scientific, Folsom, CA, USA). A 1 μL aliquot of derivatized sample was injected 
in the splitless mode. Helium was used as carrier gas at a constant flow rate of 1 mL/min through the column. The 
front inlet purge flow was 3 mL/min. The column temperature was initially at 50 °C; after 1 min, the temperature 
was increased from 50 to 310 °C at a rate of 20 °C/min and held at 310 °C for 6 min. The injection, transfer line, 
and ion source temperatures were 280, 270, and 220 °C, respectively. The energy was −70 eV in electron impact 
mode. The MS data were acquired in full-scan mode with an m/z range of 50–500 at a rate of 20 spectra/s after 
a solvent delay of 366 s. Chroma TOF 4.3X software (LECO) and LECO-Fiehn Rtx 5 database were used for 
extracting raw peaks, filtering and calibrating data baselines, aligning peaks, performing deconvolution analysis, 
identifying peaks and integrating peak areas. The RT index (RI) method was used for peak identification, and 
the RI tolerance was 5,000. Metabolic features detected in less than 50% of all QC samples were discarded35. The 
UHPLC-Q-TOF/MS and GC-TOF/MS data were normalised and evaluated the distribution by MetaboAnalystR.

Multivariate statistical analysis. SIMCA-P 14.1 (Umetrics, Umea, Sweden) was employed for multivariate anal-
ysis, including PCA with mean-centred (ctr) scaling and OPLS-DA with unit variance (uv) scaling. A sevenfold 
cross-validation method was used based on the OPLS-DA model to estimate the robustness and the predictive 
ability of our model.

Selection of potential metabolic biomarkers for targeted metabolomics. Potential metabolic biomarkers were 
selected with VIP values greater than 1, p values based on Student’s t-test less than 0.05 and q values of FDR 
less than 0.05. In addition, the differentially abundant metabolites were cross-referenced to pathways by further 
searching commercial databases, including KEGG (http://www.genome.jp/kegg/) and MetaboAnalyst. Network 
of metabolites was built and analysed in Metscape, which is a plugin for Cytoscape.

Then, we constructed univariate and multivariate ROC curves for each biomarker and the combination of 
potential serum biomarkers to examine their utility for predicting early-stage NSCLC. The sensitivity and spec-
ificity trade-offs were summarized for each variable using the AUC. An AUC value of 1.0 corresponds to a pre-
diction model with 100% sensitivity and 100% specificity, whereas an AUC value of 0.5 corresponds to a poor 
predictive model.

Targeted metabolomics analysis. Sample preparation. Forty microlitres of each sample was added to 
160 μL of water and 480 μL of extraction liquid (VMTBE:VMeOH = 5:1, containing 10 μL of 160 μg/mL PC(15:0/18:0)
(d7)) and vigorously vortexed for 60 s. The mixtures were sonicated for 10 min and centrifuged at 3,000 rpm 
for 15 min at 4 °C. A 200 μL aliquot of the supernatant was taken. The remaining lower fraction was mixed 
with 200 μL of MTBE and vigorously vortexed for 60 s. The mixtures were sonicated for 15 min centrifuged at 
3,000 rpm for 15 min at 4 °C. A 200 μL aliquot of the supernatant was taken, and sonication, centrifugation and 
supernatant collection were repeated once more. The three supernatants (MTBE extracts) were transferred to a 
clean vial and dried in a vacuum concentrator. The dried samples were reconstituted with 80 μL of dichlorometh-
ane/MeOH (1:1, v/v) and subjected to UHPLC-MS/MS analysis. Additionally, 6 μL of each sample was taken and 
pooled as QC samples.

Chromatography and mass spectrometry. Lipid profiling was performed with a UHPLC system (1290 series, 
Agilent Technologies, USA) coupled with a Q-TOF mass spectrometer (Triple TOF 6600, AB SCIEX, USA). 
Phenomenex Kinetex C18 100 A column (1.7 μm, 2.1 × 100 mm) (Phenomenex, USA) was used for the separation 
of lipid extracts. The column was maintained at 25 °C. The linear gradient started from 60% to 0% A (10 mmol/L 

http://www.genome.jp/kegg/
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ammonium formate, ACN:H2O = 6:4) and 40% B (10 mmol/L ammonium formate, IPA:H2O = 9:1). Gradient 
conditions were as follows: 0–12 min linear gradient from 40 to 100% B and 12–13.5 min in 100% B. The flow rate 
was 300 μL/min. The injected sample volume was 1 μL. Data acquisition and processing were performed with the 
acquisition software Analyst TF (version 1.7.1, AB SCIEX, USA), which can simultaneously acquire high resolu-
tion MS and MS/MS data by full-scan TOF MS and information-dependent acquisition (IDA) in both positive 
and negative ion modes. The source parameters were set as follows: GAS1, 60 psi; GAS2, 60 psi; CUR, 30 psi; 
TEM, 600 °C; ISVF, −4500 V in the negative mode; and CE, 45 ± 25 eV.

Data processing. The data were processed using an absolute quantitative lipidomics method36. MS raw data 
files were converted to the mzXML format using MSConverter, and processed by the R package XCMS (version 
1.41.0). The pre-processed results generated a data matrix that consisted of the RT, m/z, and peak intensity. The 
cutoff for match score was set as 0.8, and the minfrac was set as 0.5. All m/z errors are less than 30 ppm, and all RT 
errors are less than 60 s. The metabolic features detected in less than 50% of QC samples were discarded35. Lipid 
identification was performed by matching the acquired MS/MS data against MS/MS data in a database developed 
in-house. The absolute concentration (ng/mL) of each PC was calculated based on the peak area of the PC iden-
tified in the sample and the peak area of the internal standard of PC (15:0/18:1) corresponding to the sample (the 
formula was shown in Figure S1).

Statistics analysis. The data were normalised and evaluated the distribution by MetaboAnalystR. SPSS 19.0 soft-
ware was used for statistical analyses. Data were presented as the mean ± SD. Differences between the two groups 
were evaluated by Student’s t-tests. Differences were considered statistically significant when p values were less 
than 0.01 and q values of FDR less than 0.05.

Data availability. The datasets generated and/or analysed during the current study are available from the 
corresponding author upon request.
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