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Inferring a nonlinear biochemical 
network model from a 
heterogeneous single-cell time 
course data
Yuki Shindo  1, Yohei Kondo2 & Yasushi Sako1

Mathematical modeling and analysis of biochemical reaction networks are key routines in 
computational systems biology and biophysics; however, it remains difficult to choose the most valid 
model. Here, we propose a computational framework for data-driven and systematic inference of 
a nonlinear biochemical network model. The framework is based on the expectation-maximization 
algorithm combined with particle smoother and sparse regularization techniques. In this method, 
a “redundant” model consisting of an excessive number of nodes and regulatory paths is iteratively 
updated by eliminating unnecessary paths, resulting in an inference of the most likely model. Using 
artificial single-cell time-course data showing heterogeneous oscillatory behaviors, we demonstrated 
that this algorithm successfully inferred the true network without any prior knowledge of network 
topology or parameter values. Furthermore, we showed that both the regulatory paths among nodes 
and the optimal number of nodes in the network could be systematically determined. The method 
presented in this study provides a general framework for inferring a nonlinear biochemical network 
model from heterogeneous single-cell time-course data.

A biochemical reaction network is a key concept in understanding how higher-order functions in the cell emerge 
from relatively simple individual elements, such as proteins and metabolites. The reaction network system is often 
nonlinear and complex and can potentially display various dynamic behaviors, such as ultrasensitivity, bistability, 
and oscillation1–6, that form the basis of diverse cellular phenotypes. Because of its complexity, in silico analysis 
based on mathematical modeling and numerical simulation is an essential strategy for quantitatively understand-
ing a system of interest. Mathematical analysis can help to eliminate the nonessential individuality of biological 
targets and identify core principles that govern the behaviors and function of the system in the cell. Using these 
approaches, various studies have revealed relationships between the behavior of a system and its underlying 
mechanisms, including feedback/feedforward loops, cross-talk, compartmentalization, and noise7–12.

There are at least two distinct stages of in silico network analysis. The first step involves construction of a 
mathematical model that describes the system, and the second step involves analysis of the model. Although 
the second step strongly depends upon the aim of the study, a mathematical model is needed for the analysis, 
regardless of the details of the second step. Typically, modeling of a target system is performed in a patchwork 
manner, which means that fragments of studies regarding a specific reaction are integrated to construct a map 
of the reaction network13–16. Although this procedure is straightforward, selecting the sources of each reaction 
that constitutes the network is a non-trivial task that might raise concerns regarding the validity of the modeling. 
Alternatively, a data-driven approach incorporating as few assumptions as possible for inferring a network model 
can compensate for the defect of the patchwork modeling.

Data-driven inference of biochemical network models has previously been extensively studied17–20, and both 
genome-wide networks and cell-specific gene regulatory and posttranslational modification networks have 
been systematically reconstructed21,22. Additionally, although the regulatory relationships in the inferred net-
work often represent linear or binary correlations among nodes, efforts are underway to identify nonlinear ordi-
nary differential equation (ODE) systems23–26. However, the intersection between systematic model inference 
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and network modeling with nonlinear ODEs has received less attention27,28. Therefore, a framework that enables 
data-driven modeling of the network while considering the nonlinearity of the system is needed. Furthermore, 
recent advances in experimental methods have made available highly quantitative and time-resolved data at the 
single-cell level29, thereby making it desirable for the framework to handle single-cell datasets.

To address these problems, we developed a method combining an expectation-maximization (EM) algorithm 
with a particle smoother and sparse regularization. Using this method, we showed that an oscillatory network 
model can be systematically inferred based only on single-cell time-course data. Briefly, our strategy is as follows 
(Fig. 1): (1) quantitatively measure components of the network and obtain a single-cell dataset, (2) prepare a 
“redundant” model where an excessive number of reaction paths and nodes are defined using nonlinear ODEs, 
and (3) perform model learning using the dataset while eliminating unnecessary paths in the redundant model to 
identify the most probable model. We evaluated the performance of the method using artificial time-course data 
and showed that the algorithm accurately inferred the true network model in a data-driven manner.

Results
Maximum likelihood parameter estimation in a biochemical network model. We introduced the 
following nonlinear state space model:

= +
= +

−x f x v
y h x w

( )
( ) (1)

t t t

t t t
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where x and y denote state variables (e.g., amounts of mRNA and protein) and measurements (e.g., fluorescence 
intensity), respectively. Function f describes the evolution of the system and can be calculated as 

∫ θ τ= + τ− − −
f x x g x d( ) ( , )t t t

t
sys1 1 1

, where, in general, g represents ODEs that describe a biochemical reaction 
network of interest, and θsys denotes model parameters. Function h represents the process of measurement of x. 
Vectors vt and wt denote system noise and measurement noise, respectively, where we assumed that they followed 
a Gaussian distribution. Given dataset Y Y a A{ }( 1, , )a( )= = … , where a is an index of each cell and Y(a) repre-
sents the single-cell time-course data, estimation of θ, a set of parameters that characterize the state space model, 
can be accomplished by maximizing the log-likelihood of the model. Here, we employed an EM algorithm to find 
the maximum likelihood estimates of θ. Note that the algorithm is analytically intractable, because it requires a 
probability distribution of the time course at all time points. Therefore, we numerically approximated the proba-
bility distribution using a particle smoother algorithm30 (Materials and Methods). We referred to the algo-
rithm31,32 as the EM-PS (particle smoother) algorithm.

Next, we tested whether the EM-PS algorithm could provide correct estimates in a given model using artificial 
time-course data. To generate artificial data, we constructed a gene regulatory network in silico that consisted of 
three genes (X, Y, and Z) and a negative feedback loop (Fig. 2a). The network produced an oscillatory expression 
pattern with appropriate parameters. We used the Hill function to express reactions involving either activator or 
repressor molecules, because the activity of such regulators is often nonlinear (Supplementary Information). For 
simplicity, we used first-order kinetics for the degradation process. To mimic a realistic biological experiment in 
which cell-to-cell variability and observation noise exist, we numerically solved the model as nonlinear stochastic 
Langevin equations and added Gaussian noise as observation error to each value to generate artificial single-cell 
time-course data (Fig. 2b).

Using the artificial data and EM-PS algorithm, we conducted maximum likelihood estimation of the model 
parameters. We observed a monotonic increase in the log-likelihood during iterations of the algorithm, and 

Figure 1. Schematic representation of the proposed method for data-driven inference of biochemical network 
models. Details of each step are described in the text.
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eventually the estimated states were consistent with the data (Figs 2c and d and S1). Note that small fluctua-
tions were observed, even after convergence due to the stochastic nature of the particle smoother algorithm 
implemented in the EM-PS algorithm. Differences between the correct and estimated values were <11%, even 
though the dataset contained significant cell-to-cell variability. Additionally, the algorithm was robust over a 
wide range of initial values (Fig. 2e; see Initial #1 and #2). Interestingly, the dynamics of parameter convergence 
varied among parameters and were not always monotonic (Supplementary Fig. S2), indicating that the likelihood 
function had a complicated landscape in the parameter space. These results revealed that the EM-PS algorithm 
represented a powerful approach for parameter estimation in nonlinear biochemical network models.

Inferring network topology using a sparse regularized EM-PS algorithm. Next, we extended the 
algorithm to infer not only parameter values but also network topology. We focused on the fact that biochemical 
networks are sparse33–35, which means that the number of regulatory paths is much smaller than the number of 
possible links between nodes. To utilize the sparsity of biochemical networks for inference35–37, we introduced a 
regularization term referred to as the least absolute shrinkage and selection operator (Lasso), which is a simple 
yet powerful technique that provides a sparse solution38. In our strategy, we first prepared a “redundant” model 
consisting of an excessive number of regulatory paths among genes, followed by elimination of less important 
paths by Lasso.

To construct the redundant model, we used the Hill function, because it can express both a linear and nonlin-
ear reaction depending on parameters K and n, which denote the (apparent) association constant [reciprocal of 
the (apparent) dissociation constant] and Hill coefficient, respectively. For example, the activity of transcription 
activator, A, or repressor, R, was expressed as = + = +c K A K A c K R( [ ]) /(1 ( [ ]) ), 1/(1 ( [ ]) )A

n n
R

n . Assuming a 
common situation in which regulators function independently39, overall gene expression that is regulated by 
virtually any gene in the system (redundant model) can be written as follows:

Figure 2. Maximum likelihood estimation of model parameters using the EM-PS algorithm. (a) Schematic 
of a three-component negative feedback oscillator model. (b) Artificial measurement data were generated by 
numerically solving the model as nonlinear stochastic Langevin equations, followed by addition of Gaussian 
noise to each value to simulate the measurement process. The dataset consists of 10 independent time-course 
data, with two examples (#1 and #2) shown. (c) Iterative estimation of the states using the EM-PS algorithm. 
Each dot represents the (artificial) measurement data, and lines denote the trajectories sampled by the particle 
smoother. (d) Log-likelihood values were plotted as a function of the iteration number. Note that small 
fluctuations were observed, even after the convergence of the algorithm because of the stochastic nature of the 
EM-PS algorithm. (e) A difference in the parameter values between the estimated and correct values is shown as 
a ratio. We tested two different sets of initial parameter values, where one is 1/100 of the correct values (Initial 
#1), and another is randomly generated in the range of 1/30 to 30× the correct values (Initial #2).
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where i and j represent indices of the activator and repressor, respectively. We focused on the fact that a path 
does not exist [cA = 0 (no activator activity) or cR = 1 (no repressor activity)] when parameter K = 0 (i.e., a zero 
or nonzero association constant can be used to characterize the presence or absence of the regulatory path in the 
model). Using this notation, the condition that biochemical networks are sparse is equivalent to the fact that most 
association constants (K) in the redundant model are equal to zero. Therefore, the association constants were 
subjected to regularization, thereby virtually removing the less important path from the network. Therefore, we 
rewrote the equations regarding the EM steps as follows:

∑θ θ θ θ

θ θ θ

λ′ = −

= ′
θ

Q Q K

Q

( , ) ( , )

argmax ( , ) (3)

s
s

(old) (old)

(new) (old)

where s represents the index of the association constant, and λ denotes the strength of the regularization term 
(details are provided in Materials and Methods). We referred to this algorithm as the EM-PS-Lasso algorithm.

We then tested the performance of the EM-PS-Lasso algorithm using artificial data (Fig. 2b). We assumed 
a situation where we had time-course data for genes X, Y, and Z, but no prior knowledge of their regulatory 
relationships. Therefore, we constructed a model where any possible regulatory paths among the three genes 
(18 paths) were incorporated (Fig. 3 and Supplementary Information). Using the redundant model and artificial 
single-cell time-course data, we conducted network inference and parameter estimation using the EM-PM-Lasso 
algorithm. Because this algorithm requires parameter λ, which controls the strength of the penalty term, we eval-
uated the log-likelihood of the model as a function of λ (Figs 4a and S3). We also examined the log-likelihood on 
unseen test data and confirmed that the estimation did not suffer from overfitting. As expected, too large a value 
of λ resulted in a failure to fit the data, because all parameters were estimated to be zero (Supplementary Fig. S4). 
Values of λ from 0.1 to 10 yielded high log-likelihood values, implying potential good inference; however, too 
small a value of λ (λ = 0.1, 1) resulted in inference of overly redundant and biologically inconsistent models (e.g., 
gene Z simultaneously autoactivated and autorepressed gene Z) (Supplementary Fig. S4). Thus, we rejected these 
models (Supplementary Fig. S4). Consequently, the results at λ = 3,10 were systematically selected as candidates 
for the inferred model.

Figure 3. Schematic of the redundant model. We assumed no prior knowledge regarding the regulatory 
relationships in the network. Therefore, the model consists of an excessive number of regulatory paths among 
genes. The numbers shown in the network scheme represent the index of each reaction path.
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At λ = 3, the estimated states based on the inferred model were consistent with the data (Fig. 5a). In the 
inferred model, three association constants of 18 had nonzero values, indicating that only these three regula-
tory paths were crucial to reproduce the data (Fig. 5b). The paths consisted of activation of gene Y by gene X, 
activation of gene Z by gene Y, and repression of gene X by gene Z, which were equivalent to the true network 
(Fig. 2a). Removal of paths from the redundant model during iterations of the algorithm occurred at several steps 
rather than at a single step (Fig. 5c and d). We also confirmed that model parameters other than the association 
constants, such as degradation rate constants and Hill coefficients, were also successfully estimated (Fig. 5e). The 
same network model was inferred at λ = 10 (Supplementary Fig. S5). By contrast, the dynamics of the removal 

Figure 4. Inferring the network model via the EM-PS-Lasso algorithm. (a) The models were inferred using 
the EM-PS-Lasso algorithm, with different values for the regularization parameter, λ, and using the artificial 
data and redundant model. Log-likelihood values at iteration number 100 were plotted as a function of λ. (b) 
Relationship between the number of effective paths in the inferred models and λ.

Figure 5. Data-driven inference of a three-component oscillator model. (a) Estimated states after 100 iterations 
of the algorithm with λ = 3. Each dot represents artificial data (Fig. 2b), and lines indicate the estimated 
trajectories. (b) Values of the association constant after 100 iterations of the algorithm with λ = 3. Each 
parameter index corresponds to the reaction number (Fig. 3). (c) Values of association constants in the model 
plotted as a function of the iteration number. (d) Schematic representation of the inferred network. The red 
arrows represent effective paths where the association constant has a nonzero value, whereas light-gray arrows 
are paths that have no regulatory activities, because the association constant is zero. (e) A difference in the 
parameter values between the estimated and correct values is shown as a ratio.
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of paths from the redundant model were highly different from those at λ = 3. Overall, we demonstrated that 
the EM-PS-Lasso algorithm enabled both estimation of model parameters and inference of network topology. 
Furthermore, our results indicated that rich information regarding network topology was embedded in single-cell 
time-course data, even when the data were highly dynamic, nonlinear, and heterogeneous.

In general, the number of effective paths with nonzero association constants decreased as λ increased 
(Fig. 4b). Note that there was an apparent increase in the number of estimated paths at λ = 30. Indeed, most of the 
estimated paths had nonzero but extremely small values of association constants and had practically little effect 
on system behavior. This issue could be overcome by defining a threshold for the parameter value and/or for a 
degree of response to parameter changes (i.e., sensitivity analysis).

Inferring the number of components in the network. In our analysis, we assumed that the number 
of genes constituting the network was known, whereas their regulatory relationships were unknown. However, 
it is more common that neither factor is known. Therefore, we examined whether the algorithm could infer both 
the number of components and network topology. Again, we generated an artificial dataset using a network 
consisting of two genes (Fig. 6a and Supplementary Information) showing oscillatory dynamics with appropriate 
parameters. We also prepared a redundant model (equivalent to that in Fig. 3) consisting of three components 
rather than two, because we assumed that we had no prior knowledge regarding the number of components in 
the network. Using the artificial data and redundant model, we performed model inference of the gene regulatory 
network via the EM-PS-Lasso algorithm and evaluated the log-likelihood of the inferred models, finding that the 
model with λ = 15 showed the highest log-likelihood value (Fig. 6b) and was consistent with the data (Fig. 6c). 
Next, we evaluated the values of the association constant for all regulatory paths in the redundant model. The 

Figure 6. Inferring the number of components in the network. (a) Schematic of a two-component oscillator 
model. (b) Models were inferred using the EM-PS-Lasso algorithm with different values of λ. Log-likelihood 
values of the models at iteration number 100 are shown as a function of λ. (c) Consistency of the estimated 
states with the data. Each dot represents artificial data generated from the two-component oscillatory model. 
Lines denote trajectories sampled from the inferred model. (d) Values of the association constant after 100 
iterations of the algorithm. Each parameter index corresponds to the reaction number (Fig. 3). (e) Values of 
association constants in the model plotted as a function of the iteration number of the EM-PS-Lasso algorithm. 
(f) Schematic representation of the inferred network. The red and light-gray arrows represent the effective paths 
and eliminated paths, respectively. Note that gene Y is not involved in system behavior, because all paths related 
to gene Y had no regulatory activity after iteration number 27.



www.nature.com/scientificreports/

7ScIentIfIc REPORTS |  (2018) 8:6790  | DOI:10.1038/s41598-018-25064-w

paths in the redundant model were removed in several steps during iterations of the algorithm (Fig. 6d and e), 
with three association constants of 18 eventually found to have nonzero values (Fig. 6f). The paths remaining in 
the model described autoactivation of gene X, activation of gene Z by gene X, and repression of gene X by gene 
Z. All regulatory paths related to gene Y had no activity, indicating the absence of gene Y in the network model. 
Therefore, the inferred model practically consisted of two genes and three regulatory paths (Fig. 6e, right) and 
was completely equivalent to the true network (Fig. 6a). Overall, these results revealed that the EM-PS-Lasso 
algorithm was able to infer not only the regulatory paths but also the number of components in the model.

Discussion
The concept of data-driven inference and analysis of biochemical networks has gained attention in computa-
tional systems biology and biophysics. However, this remains a difficult task due to the highly nonlinear nature 
of biological systems. Here, we proposed an EM algorithm-based method combining a particle smoother and 
sparse regularization to enable data-driven and systematic inference of nonlinear biochemical network models. 
Our method was successfully applied to construct mathematical models showing oscillations, which is one of 
the stereotypical nonlinear behaviors. Furthermore, because the elemental reaction in our modeling is described 
by a Hill function commonly used to express various types of biochemical reactions, our method can be directly 
applied to a wide range of networks, including transcriptional control, signal transduction, and metabolic 
regulation.

In this study, we focused on the fact that a regulatory path can be negligible when the association constant in 
the Hill function describing the path is equal to zero. Penalizing the association constants using Lasso resulted 
in elimination of unnecessary paths in the redundant model and enabled inference of the network topology. The 
proposed algorithm might also be useful when the model is described by other schemes, such as mass action 
kinetics, because the biological meaning of the association constant is straightforward. In such a system, the 
reaction is negligible when the association rate constant (kon) in the mass action kinetics is estimated at zero. 
Therefore, the algorithm would be applicable to the mass action-based model with only a slight modification, 
where the association rate constant instead of the association constant is subjected to regularization.

Although Lasso is a simple yet powerful technique that provides a sparse solution, there are also other meth-
ods for sparse regularization. For example, automatic relevance determination and Bayesian masking are superior 
to Lasso in terms of sparsity-shrinkage tradeoff40,41, although we did not use these techniques in the present study 
because of their slow convergence. Another promising approach to regularization is Group Lasso24,42,43, which 
can provide a sparse solution at the grouped variable level. Recently, a problem involving insulation of network 
activity attracted interest, and a condition that insulates the activity of a sub-network from the overall network 
was also studied44. The prominent feature of Group Lasso, where the sparse solution is given at the group level, 
might make it compatible with this problem.

Different system configurations often produce qualitatively similar behaviors45. For example, ~10 types of 
different synthetic circuits reportedly generate “oscillatory” dynamics46. Therefore, our finding that the net-
work can be reconstructed based solely on time-course data might be surprising. Although it seems difficult to 
strictly define a condition that achieves the most effective inference, our results suggest that time-course data and 
possibly their associated noise47 contain rich information and would be sufficient to reconstruct the regulatory 
network. Methods for data-driven analysis will become increasingly important as the number of various exper-
imental technologies, including super-multiplexed color live-cell imaging48, continue to rapidly progress. The 
present study provides a general framework for analyzing the intersections of nonlinear biochemical systems, 
model inference, and single-cell time-course data analysis in a data-driven manner.

Materials and Methods
Nonlinear state space model. We introduce a nonlinear state space model, which is given by

x f x v
y h x w

( )
( ) (4)

t t t

t t t

1= +
= +

−

where x is a k-dimensional vector consisting of state variables, and y denotes an l-dimensional vector representing 
measurements of x. Functions f and h are nonlinear functions describing the evolution of the system and meas-
urement process, respectively. Vectors vt = {vt,i} (i = 1, …, k) and wt = {wt,j} (j = 1, …, l) denote system noise and 
measurement noise, respectively, where we assumed that they followed a Gaussian distribution: vt,i ~ N (0, (σi)2), 
wt,j ~ N (0, (ηj)2). Initial values of the state are given by x0,i ~ N (μi, (γi)2). We used standard ODEs to model the 
biochemical reaction network of interest as dx/dt = g (x, θsys), where, in general, g is a nonlinear function consist-
ing of arbitrary equations, such as the Hill equation, and θsys indicates model parameters. Function f can be calcu-
lated by numerically integrating the equations as ∫ θ τ= + τ− − −

f x x g x d( ) ( , )t t t

t
sys1 1 1

. Numerical integration of 
ODEs was performed using routines implemented in the scipy.integrate package (https://docs.scipy.org/doc/
scipy/reference/integrate.html) as described previously49. In the present study, we used a linear function for h 
(h(x) =  αx) for simplicity, where α  =  1 unless otherwise explicitly indicated. Given dataset 

y y yY Y Y Y Y{ } { , , , } { , , }a A
T T T

A( ) (1) (2) ( )
1:
(1)

1:
(2)

1:
( )= = … = … , where a is an index of each cell and Y(a) represents  

the single-cell time-course data, estimation of θ θ σ η μ γ σ η μ γσ η μ= = = = ={ }, , , , , ( { }, { }, { },sys i j i
a( )  

γ = … = … = …i k j l a A{ } ( 1, , , 1, , , 1, , ))i  can be accomplished by maximizing the log-likelihood of the 
model. Note that only μ is dependent on the cell index a to describe cell-to-cell variability of initial states.

https://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/integrate.html
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EM-PS algorithm for parameter estimation. Maximum likelihood estimation of θ can be accomplished 
by maximizing log-likelihood θ θ θ| = ∑ | |p Y p Y X p Xln ( ) ln ( , ) ( )X , which requires intractable integration with 
respect to state variables x x xX X X X X{ } { , , , } { , , , }a A

T T T
A( ) (1) (2) ( )

1:
(1)

1:
(2)

1:
( )= = … = … . Therefore, we used an EM 

algorithm to find maximum likelihood estimates of θ. The EM algorithm was run by iterating steps E (expecta-
tion) and M (maximization), which are defined as

θ θ θ

θ θ θ
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respectively. Given that the E step is analytically intractable, because it requires the probability distribution of 
the time series at all time points, we numerically approximated p(X|Y, θ) using a particle smoother as previously 
reported31,32. Briefly, the particle smoother algorithm approximates the distribution as an ensemble of particles:

∑ ∑θ β δ β β| = − = ≥
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where P is the number of particles, X(a,p) indicates a trajectory of the pth particle sampled by the algorithm for data 
Y(a), β(a,p) represents the weight of the particle, and 𝛿 is Dirac’s delta. This weight is given as l l/a p a p

p
a p( , ) ( , ) ( , )β = ∑ , 

where l(a,p) = p (Y(a,p)|X(a,p)) denotes the likelihood of the particle. The calculation was performed using the pyParti-
cleEst package50. Finally, the log-likelihood estimate was obtained by averaging over the particles: 

θ = ∑L lln ( ) ln ( )a
P p

a p( ) 1 ( , ) . Note that θ|p X Yln ( , ) can be written as θ θ| = ∑ |p X Y p X Yln ( , ) ln ( , )a
a a( ) ( ) , because 
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For the M step, we numerically maximized the Q function using the quasi-Newton method with respect to θsys, 
because, in general, dQ/dθsys = 0 cannot be solved analytically. This optimization was performed using the L-BFGS-B 
function implemented in the scipy.optimize package (http://docs.scipy.org/doc/scipy/reference/optimize.html), with a 
non-negative constraint for the parameter values. Additionally, the equations for the derivative of Q with respect to σ, 
η, μ, and γ are linear equations; therefore, updated values for the parameters were easily found. Note that we defined 
minimum values for γ, because if the value is too small, sample impoverishment can occur51. We also defined maxi-
mum values for σ, η in order to avoid overestimation of the noise that could cause meaningless inference.

Artificial data generation. Artificial data were generated by numerically solving the model as nonlinear 
stochastic Langevin equations: dx/dt = g(x) + ξ(t), where ξ(t) is Gaussian noise with 〈ξi(t) = 0〉 and 〈ξi(t)ξj (t′)〉 =  
2Dδi,jδ (t − t′) with Kronecker’s δi,j and Dirac’s δ(t) distribution, where parameter D characterizes the amplitude 
of the noise. Computation was conducted using a stochastic Runge-Kutta algorithm52. The measurement process 
was simulated by adding Gaussian noise to each variable: yi = xi + ηφ, where φ is a random number sampled 
from a standard normal distribution, and η characterizes the amplitude of the noise. Stochastic simulation was 
performed over the simulation period T = 400, and data points from T = 351 to T = 400 were collected at a time 
resolution of 1. The simulation was repeated 10 times to generate 10 independent time-course data that served 
as training data. Similarly, an additional 10 independent time-course data were generated and used as test data 
for validation. Details of the model equations and parameter values are described in the Supporting Information.
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