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Implementation of a Toffoli gate 
using an array of coupled cavities in 
a single step
Y. Cao1,2, G. C. Wang1,2, H. D. Liu1,2 & C. F. Sun1,2

The Toffoli gate (controlled-controlled-NOT gate) is one typical three-qubit gate, it plus a Hadamard 
gate form a universal set of gates in quantum computation. We present an efficient method to 
implement the Toffoli gate using an array of coupled cavities with one three-level atom in each cavity. 
The large detuning between atoms and classical (quantum) fields plays an important role and the gate 
is implemented in one-step. The quantum information is encoded into the low-lying states of identical 
atoms and it is convenient to address qubit individually. Based on the Markovian master equation, it is 
shown that the scheme to implement the Toffoli gate is robust against the decoherence.

Quantum computers provide the possibility of solving certain computational tasks much faster than any classical 
counterpart using the best currently known algorithms1–5, thus a great deal of effort has been devoted to building 
scalable and functional quantum computers over the last two decades. Solving a quantum computational task cor-
responds to performing a unitary transformation on the quantum register, which is composed of multiple qubits. 
Any quantum algorithm can be decomposed into a sequence of single-qubit rotations and entangling two-qubit 
logical gates, which form a universal set of quantum operations6,7. Moreover, various kinds of physical realizations 
of quantum computations have been intensively studied8–15. However, if only single-qubit and two-qubit gates are 
available, the qubits scale up so that the approach becomes very complicated and it may be hard to implement. 
On the other hand, using gates acting on more than two qubits can significantly simplify the decomposition of 
otherwise intractable algorithms£¬ which can shorten the operation time and promise higher fidelity. Therefore 
multiqubit gates play a central role in quantum algorithms, quantum corrections, and quantum networks, and 
they serve as a stepping stone towards the realization of a scalable quantum computer.

Among the multiqubit gates, the quantum Toffoli gate (controlled-controlled-NOT gate)16 is one typical 
three-qubit gate. It flips the state of a target qubit conditioned on the state of two control qubits. This gate plus a 
Hadamard gate can form a universal set of gates in quantum computation. Moreover, it can be directly used to 
implement the complex quantum algorithms1 and quantum simulation17–19, and has immediate practical appli-
cations as correcting operation in quantum error correction schemes20–24. Therefore, the Toffoli gate is vitally 
important for quantum computing, and improving the design of the Toffoli gate can make the implementation 
of large-scale quantum computation more tractable. So far, the minimum cost for implementing a three-qubit 
Toffoli gate is five two-qubit gates25, and the decomposition of a generalized n-qubit Toffoli gate involves O(n2) 
two-qubit gates7. In experiment the Toffoli gate has been first implemented in nuclear magnetic resonance20. 
Recently, the three-qubit quantum Toffoli gate has been achieved in some other physical architectures, such as lin-
ear optics, ion-trap qubits, superconducting circuits, quantum dots (QDs), and diamond nitrogen-vacancy (NV) 
defect centres26–32. In these experiments based on the idea of “hiding” states, the required resources are greatly 
reduced in contrast with theoretical proposals, which use only two-level systems. However, they still require three 
two-qubit or qubit-qutrit gates so that the fidelity would be significantly deteriorated by decoherence. Therefore, it 
is important to implement the quantum Toffoli gate in one-step without using any two-qubit or qubit-qutrit gate.

In this work, we propose an efficient scheme to realize a Toffoli gate in one-step with a coupled-cavity model. 
The matrix form of the three-qubit Toffoli gate expanded in the basis {|0〉1, |1〉1, |0〉2, |1〉2, |0〉3, |1〉3} is
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where the target qubit swaps its information | 〉 ⇔ | 〉0 13 3 if and only if two control qubits are in |01〉12. Note that it 
is equivalent to the standard form of a Toffoli gate upon a local unitary transformation. Coupled cavity arrays 
describes a series of optical cavities, each of which contains one or more qubits or atoms, and photons can hop 
between two neighboring cavities. This model can overcome the problem of individual addressability and has 
emerged as a fascinating alternative for simulating quantum many-body phenomena. Theoretical works on quan-
tum information processing and quantum computing have been proposed with using the atom-cavity interaction 
in coupled cavity arrays33–41. The merit of our scheme is that the Toffoli gate is implemented in one-step without 
any single-qubit or two-qubit operation, which can significantly simplify the experimental realization and shorten 
the operation time. Meanwhile, it is easy to control and measure qubit separately because there is one three-level 
atom in each cavity. Furthermore, we encode the quantum information into the low-lying states of three identical 
atoms without any ancillary level compared with ref.42.

Results
In Fig. 1 we consider three coupled cavities with one three-level atom in each cavity. The k-th (k = 1, 2, 3) atom has 
two ground states |0k〉 and |1k〉 and one excited state |ek〉 with energies ωa, ωb and ωe, respectively. Each | 〉 ↔ | 〉e0k k  
transition is coupled to its corresponding cavity mode with the coupling strength gk, detuned by Δ. Meanwhile, 
the transitions | 〉 ↔ | 〉e03 3  and | 〉 ↔ | 〉e13 3  for the target atom are driven by a pair of classical fields with the Rabi 
frequencies Ωa and Ωb respectively, detuned by the same parameter Δ. In addition, the cavities are coupled via the 
exchange of photons with the coupling constant J. The system Hamiltonian takes the following form (ħ = 1)

= + + +H H H H H , (2)cla int hop free

where

Figure 1. Three coupled cavities with one three-level atom in each cavity are shown for simulating the Toffoli 
gate. From left to right the atoms are labeled as 1, 2, 3. We consider the first two atoms as the control qubits 
while the third atom is the target qubit. The two ground state levels |0i〉 and |1i〉 (i = 1, 2, 3) of each atom define a 
single qubit.
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where †a a( )j j  is the annihilation (creation) operator of the j-th cavity mode, ω l1
 and ω l2

 are the frequencies of two 
classical fields, and ωc is the frequency of the cavity. By changing to the interaction picture, and performing a 
rotation with the frame defined by = Δ ∑ | 〉〈 |=U i t e eexp( )i i i1

3 , the Hamiltonian can be written as
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where we have assumed gk = g for simplicity.
In the following, we will discuss the scheme to implement the Toffoli gate based on the large detuning case. 

Here we consider that the two classical optical pumping lasers are both sufficiently weak (i.e. the Rabi frequencies 
Ωa and Ωb are both very small compared with {J, g, Δ}), and the excited states of the atoms and the excited cavity 
field modes are not initially populated, the highly excited level can be neglected33–35,43,44. Based on the interaction 
form of the Hamiltonian (4), the qubit basis {|0〉1, |1〉1, |0〉2, |1〉2, |0〉3, |1〉3}a with cavities in vacuum states can be 
divided into four subspaces. For the first subspace {|010〉a |000〉c, |011〉a |000〉c, |e10〉a |000〉c, |01e〉a |000〉c, 
|010〉a |100〉c, |010〉a |010〉c, |010〉a |001〉c}, we first diagonalize the strong interaction described by atom-cavity 
Hamiltonian in Eq. (4). Based on the new basis |Φ 〉{ 1
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the atom-cavity Hamiltonian reads:
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The effective Hamiltonian in the first subspace can be evaluated explicitly (see Methods)
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Similar to the analysis of the first subspace, we consider the second subspace {|000〉a |000〉c, |001〉a |000〉c, 
|e00〉a |000〉c, |0e0〉a |000〉c, |00e〉a |100〉c, |000〉a |100〉c, |000〉a |010〉c, |000〉a |001〉c}. Based on the new basis |Φ 〉{ 1

(2) , 
|Φ 〉a
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the atom-cavity Hamiltonian reads:
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The effective Hamiltonian in the second subspace reduces to (see Methods)
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Based on the above condition |Ω | |Ω | Δ J g{ , } { , , }a b  and J g , this effective Hamiltonian is ≈H 0eff
2 , 

which means that the qubit states |000〉 and |001〉 remain unchanged during the whole evolution time.
For the third subspace {|100〉a |000〉c, |101〉a |000〉c, |1e0〉a |000〉c, |10e〉a |000〉c, |100〉a |100〉c, |100〉a |010〉c, 
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the atom-cavity Hamiltonian is given by:
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The effective Hamiltonian in the third subspace is (see Methods)

=H 0, (13)eff
3

which means that the qubit states |100〉 and |101〉 remain unchanged during the whole evolution time.
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For the fourth subspace {|110〉a |000〉c, |111〉a |000〉c, |11e〉a |000〉c, |110〉a |100〉c, |110〉a |010〉c, |110〉a |001〉c}, 
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the atom-cavity Hamiltonian reads:
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The effective Hamiltonian in the fourth subspace is (see Methods)

=H 0, (16)eff
4

which means that the qubit states |110〉 and |111〉 remain unchanged during the whole evolution time. Thus the 
time evolution operator for the final effective Hamiltonian can be written as
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where m = Ω2/Δ with the parameters Ωb = −Ωa = Ω. Adjust the evolution period T = πΔ/Ω2, we obtain the 
three-qubit Toffoli gate which takes the form of Eq. (1).

In what follows, we check the accuracy of the effective Hamiltonian compared to the original Hamiltonian 
with the populations of three qubit states {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}a |000〉c. In Fig. 2, (a) 
plots the conversion of states |010〉a |000〉c and |011〉a |000〉c when the system reserves the single excitation. The 
population can achieve 0.9981 at the period time. (b) depicts the populations of states |000〉a |000〉c, |001〉a |000〉c, 
|100〉a |000〉c, |101〉a |000〉c, |110〉a |000〉c and |111〉a |000〉c for the system reserving the single excitation. The min-
imum data of the population is 0.9938 during the evolution time. Since the system do not conserve the total 
number of excitations, and in front we neglect the highly excited level under the weak excitation case, here we 
further consider the numerical simulation for the system reserving the double excitation in (c) and (d). Compare 
plots (c) with (a), (d) with (b), it is found that the results for the double excitation case are in accord with the 
results for the single excitation case. These numerical results reveal that the effective Hamiltonian is excellently 
close to the original Hamiltonian under the given parameters. To make our results more clearly, Fig. 3 gives the 
truth table of the Toffoli gate at the period time for the single excitation case. The fidelity for the Toffoli gate in the 
ideal case is = | | = .†F T U T U( ) tr[ ( ) ] 0 99911

8 Toffoli , with U(T) being the final evolution operator based on the 
original Hamiltonian (4) and UToffoli being the ideal Toffoli gate. Thus a Toffoli gate is implemented with high 
fidelity. Furthermore, we numerically discuss the case that the atom-cavity coupling strengths g1, g2 and g3 are 
different with g1 = g + δ, g2 = g − δ and g3 = g, the Toffili gate can be implemented as well, as shown in Fig. 4. When 
the parameter δ ≤ 0.2, the fidelity contains higher than 95%.

Discussion
In the coupled-cavity arrays, the main decoherence effects in our scheme are the decay of cavities and the spon-
taneous emission of atoms. In this section, we numerically show how the decay of cavities and the spontaneous 
emission of atoms affect the fidelity of the resulting gate. The master equation for the whole system in the Markov 
approximation is governed by the following Lindblad equation45:

∑

∑ ∑

ρ ρ κ ρ ρ ρ

γ σ ρσ σ ρ ρσ

= − +


 − −





+


 − −





=

= =



† † †i H a a a a a a[ , ] 1
2

1
2

1
2

1
2

,
(18)

I
j

j j j j j j

l j
j
el

le
j

el
j

ee
j

ee
j

1

3

0,1 1

3



www.nature.com/scientificreports/

6SCiEntiFiC RepoRtS |  (2018) 8:5813  | DOI:10.1038/s41598-018-24214-4

where κ represents the cavity decay rate, γj
el denotes the spontaneous emission rate of atoms from the level |e〉j to 

|l〉j for the j-th atom (j = 1, 2, 3) and we assume γ γ γ= = /2j
e

j
e0 1  for convenience. To quantify the robustness of 

our logical gate, we adopt the gate fidelity defined as the Bures-Uhlmann fidelity

Figure 2. The populations of three qubit states when the system reserves the single excitation (a,b) and the 
double excitation (c,d), respectively. (a,c) Plot the populations conversion of states |010〉 and |011〉; (b,d) 
Plot the populations of states |000〉, |001〉, |100〉, |101〉, |110〉 and |111〉. The excited cavity field modes can be 
adiabatically eliminated. Choose the parameters as Ωb = −Ωa = Ω = 0.02g, Δ = g and J = 0.1g.

Figure 3. The truth table of the population of the Toffoli gate at the period time for the single excitation case. 
The parameters are chosen as Ωb = −Ωa = Ω = 0.02g, Δ = g and J = 0.1g.
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ρ ρ ρ ρ ρ≡F t t( , ( )) Tr ( ) , (19)id id id

1
2

1
2

where ρ(t) is the mixed output system state (obtained from the joint system-bath evolution after a partial trace 
over the bath) and ρ id is the density operator for target state. Here we choose the initial state as 
|Ψ〉 = | 〉 + | 〉 + | 〉 − | 〉 + | 〉 + | 〉 + | 〉 + | 〉 | 〉( 000 001 010 011 100 101 110 111 ) 000a c

1
8

. The corresponding den-
sity operator for target state is ρ = |Ψ′〉〈Ψ′|id , with the target state |Ψ′〉 = | 〉 + | 〉 − | 〉 + | 〉+( 000 001 010 0111

8
| 〉 + | 〉 + | 〉 + | 〉 | 〉100 101 110 111 ) 000a c.

In Fig. 5 we depict the fidelity F of the Toffoli gate for the large detuning model as a function of the decoher-
ence parameter κ/g and interaction time t/T. The fidelity F remains higher than 91%, which shows the Toffoli gate 
is robust against decoherence. Recently, the coupled cavity arrays can be constructed in several kinds of physical 
systems, such as photonic crystal defects46, toroidal microcavity arrays47, and superconducting stripline resona-
tors48. Ref.47 investigated the suitability of toroidal microcavities for strong-coupling cavity quantum electrody-
namics with the parameters π∼ ×g 2 750 MHz, γ π∼ × .2 2 62 MHz, κ π∼ × .2 3 5 MHz. And ref.49 has shown 
the large-scale ultrahigh-Q coupled nanocavity arrays based on photonic crystals corresponding to the 

Figure 4. The fidelity F of the Toffoli gate versus the parameter δ/g. The atom-cavity coupling constants 
g1 = g + δ, g2 = g − δ and g3 = g. The parameters are chosen as Ωb = −Ωa = Ω = 0.02g, Δ = g and J = 0.1g.

Figure 5. The fidelity F of the Toffoli gate versus the decoherence parameter κ/g and interaction time t/T, where 
γ = κ. The parameters are chosen as Ωb = −Ωa = Ω = 0.035g, Δ = g and J = 0.2g.



www.nature.com/scientificreports/

8SCiEntiFiC RepoRtS |  (2018) 8:5813  | DOI:10.1038/s41598-018-24214-4

parameters ∼ . ×g 2 5 109 Hz, γ ∼ . ×1 6 107 Hz, κ ∼ ×4 105 Hz. The fidelity of the Toffoli gate can achieve 
95.43% and 98.14% for the above two different kinds of parameters (g, γ, κ), respectively. In the multi-qubit quan-
tum computing networks the fidelities are relatively high.

In summary, we have proposed an efficient method to implement the Toffoli gate using an array of coupled 
cavities with one three-level atom in each cavity. The large detuning between atoms and classical (quantum) fields 
plays an important role. The Toffoli gate is implemented in one-step without any single-qubit or two-qubit opera-
tion, which can significantly simplify the experimental realization and shorten the operation time. Meanwhile, it 
is easy to control and measure qubit separately because there is one three-level atom in each cavity. Furthermore, 
we encode the quantum information into the low-lying states of three identical atoms without any ancillary level.

Methods
The effective Hamiltonian in the first subspace. In the case that the two classical optical pumping 
lasers are both sufficiently weak (i.e. the Rabi frequencies Ωa and Ωb are both very small compared with {J, g, Δ}), 
and the excited states are not initially populated, the excited states of the atoms and the excited cavity field modes 
can be adiabatically eliminated. The resulting effective dynamics will describe three two-level systems. To second 
order in perturbation theory, the dynamics are then given by the effective operators44:
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J

g
J

g
J

g
J

g J
J

g
J

g
J

g
J

g

g g

2 2
4 4 2

0 0

4
2 2

4 2
0 0

2 2
1 0 0

0 0 0 0 1

0 0 0 1

1
1

2

2

2

2

2

2

2

2

2

Then the effective Hamiltonian in the first subspace reduces to

= −
Ω
Δ

| 〉〈 | −
Ω
Δ

| 〉〈 |

−
Ω Ω

Δ
| 〉〈 | + | 〉〈 | .

H
2

010 010
2

011 011

2
( 011 010 010 011 )

(21)

a b

a b

eff
1

2 2

The effective Hamiltonian in the second subspace. The inverse matrix of T2 in Eq. (9) is

η η

η η

η η

η η

=







−
Δ

−
Δ

−

−
Δ







−

+ +

+ +

− −

− −

T

g

g J

g

g J

g g

g

0 0 0 0

2 0 0 0 0

0 0 0 0

0 0 2 0 0

0 0 0 0 1

0 0 0 0 1 0

,2
1

2

where η = ± Δ± g J22 . Based on Eq. (20), the effective Hamiltonian in the second subspace is given by
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=
− Δ

Ω | 〉〈 | + Ω | 〉〈 |

+Ω Ω | 〉〈 | + | 〉〈 | .
Δ

H 1

2
[ 000 000 001 001

( 000 001 100 000 )] (22)

g
J

a b

a b

eff
2 2 2

4

2

Based on the above condition |Ω | |Ω | Δ J g{ , } { , , }a b  and J g , this effective Hamiltonian ≈H 0eff
2 .

The effective Hamiltonian in the third subspace. The inverse matrix of T3 in Eq. (12) is

α β β α β β

β α β α β β
α α γ γ γ γ

β β γ

β β γ

=







− Δ Δ

Δ − Δ
Δ

Δ Δ

Δ Δ







−

− −

+ +

− + − + − +

−

+

T

2 2 2
2 2 2

2
1

2
1

2
1

2
1

2

,3
1

2 2

2 2

with α =±
± Δ

Δ

g J
J

2 2
4

2

2 , β = −
Δ

g
J2 2

, and γ =±
− ± Δ

Δ
g J

Jg
2

2

2
. Based on Eq. (20), the effective Hamiltonian in the third 

subspace can be evaluated explicitly

= .H 0 (23)eff
3

The effective Hamiltonian in the fourth subspace. The inverse matrix of T4 in Eq. (15) is

=







− −

− −
Δ

−

−







.−T

J J

J J

J J g g

g

1
2

0 1
2

0

0 1
2

1
2

0

1
2

1
2

2 2

0 0 2 0

4
1

2

Based on Eq. (20), the effective Hamiltonian in the fourth subspace can be evaluated explicitly

= .H 0 (24)eff
4
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