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Potential formula of the nonregular 
m × n fan network and its 
application
Zhen Tan1, Zhi-Zhong Tan  2 & Jianxin Chen  1

Potential formula of an arbitrary resistor network has been an unsolved problem for hundreds of years, 
which is an interdisciplinary problem that involves many areas of natural science. A new progress has 
been made in this paper, which discovered the potential formula of a nonregular m × n fan network with 
two arbitrary boundaries by the Recursion-Transform method with potential parameters (simply call 
RT-V). The nonregular m × n fan network is a multipurpose network contains several different types of 
network model such as the interesting snail network and hart network. In the meantime, we discussed 
the semi-infinite fan network and a series of novel and special conclusions are produced, the effective 
resistance is educed naturally. The discovery of potential formulae of resistor network provides new 
theoretical tools and techniques for related scientific research.

Modelling resistor network to study scientific problem is an important idea, the initial progress of circuit theory 
dates back to 1845, a German scientist Kirchhoff who proposed the node current law and the circuit voltage law1. 
From then on, the electrical industry has begun to make progress and promote social development, and many 
problems has been resolved by modelling resistor network by numerous researchers. Nowadays, the circuit net-
works have been attracting more attention in the recent years since they can be applied to the model both elec-
trical and non-electrical systems involving many sciences problems2–12. For example, the calculation of effective 
resistances involves a wide range of interdisciplinary problems: the problem of classical transport2, electromigra-
tion phenomena3, lattice Greens fusnctions4,5, resistance distance6 and so on. As is known to all, the mean field 
theory is widely used to multiple fields, modelling the resistor network can also help to carry on the research of 
the mean field theory7.

In real life, many problems in the field of natural science and physics can be attributed to Laplace equation and 
Poisson equation8,9. Searching for the potential solutions of Laplace’s equation has been an important question 
involved many fields of science and physics, such as the fields of fluid dynamics, heat conduction, electricity, 
electromagnetism, astronomy and so on. The solution of Laplace’s equation is subject to boundary conditions, the 
different boundary conditions seriously affect the solution of Laplace equation. When the boundary geometry is 
a bit complicated, one must use the computer to resolve the numerical solution, or use the graphical method to 
draw the equipotential surface or lines of force field. Thus, searching for the exact potential equation of the resis-
tor network become an urgent problem10.

We revisit the research history of the network model, it is found that it is usually very difficult to obtain the 
explicit resistance and potential formulae of the complex networks because the boundary condition is like a trap 
or wall, which affects the electrical characteristics (current, resistance, potential) of the finite network10–37. As this 
reason that researchers have found several different effective methods to evaluate the effective resistance of resis-
tor network with different structure, but the potential formula of the complex resistor network has always been an 
unsolved problem for hundreds of years. About the research of resistor network, Cserti11 and Giordano12 derived 
the resistance formula of the infinite network by the Green function technique. Wu13 formulated a Laplacian 
matrix method and achieved the exact expressions for the effective resistance in both infinite and finite networks, 
and the Laplacian approach has also been applied to the complex impedance network14. Next refs15,16 researched 
the asymptotic expansion of the resistance between two maximum separated nodes, and Chair17,18 researched 
two resistor networks by the Laplacian matrix method. In 2011 ref.19 built a new method to study network model, 
next Tan, Zhou and Yang proposed a conjecture of cobweb model20, shortly after that Izmailian et al. improved the 
Laplacian method and proved the validity of the conjecture21, and gave a general resistance formula of the cobweb 
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network, next the globe network22 and fan (a rectangle with zero resistor boundary) network23 were solved by 
the Laplacian method. But the Laplacian method is difficult to study the resistor network with arbitrary elements 
because it is bound by the explicit solution of the matrix with different parameters.

In recent years, Tan10,19,26–28 created a desired Recursion-Transform (RT) method in the process of continuous 
improvement. The superiority of the RT method is that studying resistor network just need one matrix along one 
directions, which, avoids two Laplacian matries13,21, the solution required is just one instead of two eigenvalues, 
and results given by the RT method is in a single sum. In fact, the RT method have been developed and used 
to study various types of resistance networks24–37. Such as, ref.24 studied the resistance of globe network, ref.25 
computed the resistance of the fan and cobweb networks, refs26,27 calculated the resistance of the fan network 
with arbitrary boundaries, refs28–30 calculated the resistance of the cobweb network under different conditions, 
ref.31 studied the resistance of a hammock network by two different methods, ref.32 gave out the resistance of the 
non-regular cylindrical network. refs33,34 researched the complex impedance of the rectangular network. ref.35 
researched the equivalent resistance and impedance of the cylindrical network. Refs36,37 researched the com-
plex impedance of the two networks. Recently, ref.10 researched the potential functions of the regular fan and 
cobweb networks by means of the RT method. As a summary, the RT method includes two types, namely RT-I 
method and RT-V method, where the RT-I method is shorthand for the recursion-transform method with current 
parameters, and the RT-V method is shorthand for the recursion-transform method with potential parameters. 
The main difference between the two approaches is that it is convenient to calculate the branch currents directly 
by RT-I method, while the RT-V method directly calculates the node potential. When using the RT-I method to 
evaluate the potential, it needs to sum the currents such as

U x y r I( , )m n x
i( )∑∆ =×

Here we are going to derive the potential function of the nonregular fan network by the RT-V method pioneered 
by one of us10, and made a new research progress.

Figure 1 is called a nonregular fan network, where two arbitrary resistors of r1 and r2 are respectively arranged 
on the left and right boundaries, clearly, two variable resistors represent a variety of network models. Such as, 
when just r2 = 0, the fan network degrades into a snail network as shown in Fig. 2, where all nodes on the right 
edge with zero resistor collapse into a point, when r1 = r2 = 0, the fan network degrades into a heart network 
as shown in Fig. 3, which is an interesting topological structure, where all nodes on the edges with zero resistor 

Figure 1. An 6 × 9 fan resistor network with two arbitrary boundaries.

Figure 2. An 6 × 7 snail network of resistors, which is a kind of topological structure of fan network when the 
resistor on the right edge is zero.
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collapse into a point. Thus, to achieve potential equation of the nonregular fan network with two arbitrary bound-
aries is an important physics problem, which can provide a new technique and theory for the related research.

Results
Several definitions. In order to simplify the expression of the solutions of matrix equations in the following 
sections, we define several variables below for later use,
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The above definition is similar to literature 10, 26–30, which is conducive to the unification of physical sym-
bols and the comparison with other results. Such as expressing equation roots by (5), voltage by Um×n(x, y) or Vx

y( ), 
current by J or Ik

i( ) and so on. The above definitions will be applied in the following all sections, which can make 
complex results become simple and easy.

Two general potential formulae. Considering a nonregular m × n fan network as shown in Fig. 1, where 
two resistors r1 and r2 bond on the left and right boundaries, and denote the resistors along the radius and arc 
directions by r0 and r, and denote the resistor numbers along radius and arc directions by m and n. Suggesting O 
is the origin of the coordinate system, and the left edge act as Y axis. Denote potential distribution of d(x, y) is 
shown in Fig. 4, where reads U x y V( , )m n x

y( )=× .
We inject current J into the lattice at d(x1, y2) and exit J at d2(x2, y2), and select U0(0, 0) = 0. We find the nodal 

potential in a nonregular m × n fan network is
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where x x
i
,

( )
s k

β , Sk,i, θi and Gn
i( ) are, respectively, defined in Eqs (2–4).

When Fig. 1 is a semi-infinite network of n → ∞, the nodal potential in an m × ∞ resistor network can be 
written as

Figure 3. An 6 × 14 hart network of resistors, which is a kind of topological structure of fan network when the 
resistors on the left and right boundaries are zero.



www.nature.com/scientificreports/

4Scientific REPORTs |  (2018) 8:5798  | DOI:10.1038/s41598-018-24164-x

∑
λ λ

θ
=

+

−

− − −
.×∞

=

− −U x y
J

r
m

S S

b b
S( , ) 2

2 1 (1 cos ) 1 (7)

m

i

m
i
x x

i i
x x

i

i
y i

1

1, 2,
2 ,

1 2

Formulae (6) and (7) are found for the first time by this paper.

Method
RT-V method. RT-V method is shorthand for the recursion-transform method with potential parameters 
pioneered by one of us10. The RT-V method splits the derivation into four parts. The first part creates a main 
matrix equation of potential distributions along the Y axis. The second part derives the constraint equations 
(including boundary conditions) of nodal potentials. The third part diagonalizes the matrix relation to produce 
a simple recurrence relation involving only variables on the same Y axis, which reduces the problem from two 
dimensions to one dimension. The fourth part makes the inverse transformation of matrix to derive the exact 
nodal potential. Here we are going to promote the RT-V method to suit to evaluating the nodal potential of the 
nonregular m × n fan network. The following is the specific application of the RT-V method to derive Eqs (6) 
and (7).

Building recursion relations. Assuming {x, y} is the coordinate of node d(x, y) in the network, and denot-
ing the nodal potential of the fan network is shown in Fig. 4. We express the nodal potential at d(x, y) by 

=U x y V( , ) x
y( ), and stipulate V0 = 0 at the O.

Setting up the equations based on the sub-network of Fig. 4. By Kirchhoff law r V( 0)i k
1Σ =−  to set up the node 

potential equations along the radius direction, we achieve when ignoring the external current source,
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where b = r/r0. We can rewrite Eq. (8) as a matrix form and consider the current J flow through network from 
d1(x1, y1) to d2(x2, y2),

δ= − −+ − rV B V V I (9)k m k k k x k1 1 ,

where Vk is an m × 1 column matrix,

= V V VV [ , , , ] , (10)k k k k
m T(1) (2) ( )

and

δ δ= −I J( ) (11)k
i

y i y i
( )

, ,1 2

and Bm is a m × m tridiagonal matrix,

Figure 4. Segment of resistor network with resistor and potential parameters.
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Next, according to the RT-V method10 we need to set up the equations of boundary conditions by the left and 
right edges. Using Kirchhoff ’s current law (Σ −ri

1Vk = 0) yields

b bV B E V[ (2 ) ] , (13)m1 1 1 0= − −

b bV B E V[ (2 ) ] , (14)n m n2 1 2= − −−

where bk = rk/r0, matrix Bm is given by (12).
The above Eqs (9–14) are all equations we need to calculate the potential, we are going to resolve them indi-

rectly by the method of matrix transform.

Approach of matrix transform. According to the RT method, we obtain after multiplying Eq. (9) from the 
left-hand side by an m × m undetermined matrix Qm

rQ V Q B V Q V Q I (15)m k m m k m k m k x k1 1 ,δ= − − .+ −

Evaluating the eigenvalues of matrix Bm by solving determinant equation of det|Bm − tEm| = 0, we obtain the 
eigenvalues (i = 1, 2, … m)

θ= + −t b b2(1 ) 2 cos , (16)i i

where θi = (2i − 1)π/(2m + 1). Next, constructing the matrix transform by the following identity
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For simplifying our expression, by (15) and (17) we appoint
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We therefore obtain a main equation after applying (20) and (17) to Eq. (15),

ζ= − −+ −X t X X rJ , (22)k
i

i k
i

k
i

y i1
( ) ( )

1
( )

,

where

ζ θ ζ θ= = − .y ysin , sin (23)i k i k1, 1 2, 2

Analogously, multiplying Eqs (13) and (14) from the left-hand side by matrix Qm yields

= + −b X t b X( 2) , (24)i
i

i
1 1

( )
1 0

( )

= + − .−b X t b X( 2) (25)n
i

i n
i

2 1
( )

2
( )

Thus, we obtained all equations to calculating the potential by solving Eqs (22–25).
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General solutions of the matrix equations. Assuming λ λ,i i are the roots of the characteristic equation 
for Eq. (22), we therefore get Eq. (5). Based on above matrix Eqs (22–25) that we achieve the general solution of 
Xk

i( ) (0 ≤ k ≤ n),

X
t G

rJ
( 2)

,
(26)

x
i x x

i
i x x

i
i

i n
i

( ) ,
( )

1, ,
( )

2,
( )

1 2
β ζ β ζ

=
+

−

where x x
i
,

( )
s

β  is defined in Eq. (2), and ζ1,i, ζ2,i are given by Eq. (23).
Please note that Eq. (26) is a complex expression which is composed of three piecewise function (0 ≤ k ≤ x1, 

x1 ≤ k ≤ x2, x2 ≤ k ≤ n).

Inverse matrix transformation. In order to get the desired potential formula, we make inverse matrix 
transformation by Eqs (19) and (20), we have
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Putting Eq. (23) into (29), we therefore achieved formula (6).
Proof of Eq. (7). When n → ∞ with m finite, by Eq. (5) we have λ λ> > >1 0i i , together with Eqs (2) and 

(3), taking limit to the factor of Eq. (6) yields
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Substituting (30) into (6), we therefore obtain Eq. (7) after using b b2 (1 cos ) 1i i i
2λ λ θ− = + − − .

Discussion
Applications of the potential formula. In the following applications, we stipulate all parameters are 
identical with the Eqs (1–5), and all definitions are identical with the preceding part of the text. Especially, the 
potential in reference nodes O satisfies U0(0,0) = 0. Making use of formulae (6) and (7) we have a series of specific 
potential formula as follows.

Application 1. Consider a nonregular m × n fan network with r1 = r0 (r2 is arbitrary) as shown in Fig. 1, the 
potential of a node d(x, y) in the network is
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Application 2. Consider a regular m × n fan resistor network with r1 = r2 = r0 as shown in Fig. 1, the potential of 
a node d(x, y) in the network is
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Please note that ref.10 researched the regular fan network, our formula (32) is completely equivalent to the 

result of Eq. (6) in ref.10, which verify each other’s correctness.

Application 3. When b2 = 0 (r2 = 0), Fig. 1 degrades into a snail network as shown in Fig. 2, the potential of a 
node d(x, y) in the m × n snail network can be written as
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Application 4. When r1 = r2 = 0, Fig. 1 degrades into a heart network as shown in Fig. 3, the potential of a node 
d(x, y) in the m × n heart network can be written as
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Application 5. Consider Fig. 1 of an m × n fan network, when d2(x, y) = O(0, 0) (the output current J is at the 
point of O), the potential of a node d(x, y) is
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Application 6. Consider the input current J locate at the left edge, and output current J locate at the right edge, the 
potential of a node d(x, y) in the m × n fan network is

U x y
J m

r S r S

G
S( , ) 2

2 1 (1 cos )
,

(36)i

m n x
i

y i x
i

y i

i n
i y i

1

1 2,
( )

, 2 1,
( )

,
( ) ,

1 2∑
α α

θ
=

+







−

−





=

−

where αk x
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( ) is defined in Eq. (1).

Application 7. In Fig. 1, when x2 = x1 (the input and output currents locate at the same radius), the potential of a 
node d(x, y) in the m × n fan network is
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where Sk,i is defined in Eq. (4), and βx x
i
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k
 is defined in Eq. (2).

Application 8. In Fig. 1, when y2 = y1 (the input and output current locate at the same arc), the potential of a node 
d(x, y) in the m × n fan network is
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Application 9. Assuming Fig. 1 is a semi-infinite ∞ × n network, and m → ∞ but n is finite, and (x1, y1) and (x, 
y) are finite. When d2(x2, y2)=O(0, 0), taking limit m → ∞ to Eq. (35), we achieve the potential of a node d(x, y) 
in a semi-infinite ∞ × n network

∫π

θ θ

θ

β
θ=

−











.
π

∞×U x y
J

r y y
G

d( , ) sin( )sin( )
1 cos (39)

n x x

n

0
0

1 , 1

Application 10. When d2(x2, y2) = O(0, 0), m, n → ∞, but (x, y) and (x1, y1) are finite (means the lattice is finite in 
the left and bottom, but it is infinite in the right and top), taking limit n → ∞ to Eq. (39) together with Eq. (30), 
we obtain

∫π

λ θ θ

θ
θ=

+ − −

π θ∞×∞
−

U x y
J

r y y

b b
d( , ) sin( )sin( )

(1 cos ) 1
,

(40)

x x

0
1

2

1

where b b b b1 cos (1 cos ) 12λ θ θ= + − − + − −θ .
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Application 11. Consider a nonregular m × n fan network with two arbitrary boundaries as shown in Fig. 1, 
deriving the effective resistance between d1(x1, y1) and d2(x2, y2) based on Rm×n(d1, d2) = (U1 − U2)/J by Eq. (6), 
we get

R d d r
m

S S S S

G
( , ) 2

2 1

2

(1 cos )
,

(41)
m n

i

m i
y i

i
y i y i

i
y i

i n
i1 2

0

1

1,1
( )

,
2

1,2
( )

, , 2,2
( )

,
2

( )
1 2 1 2∑

β β β

θ
=

+

− +

−
×

=

where i
x
i

n x
i

1,2
( )

1,
( )

2,
( )

1 2
β α α= − (simply reads x x

i i
,

( )
1,2
( )

1 2
β β= ).

Please note that ref.27 has researched the effective resistance of the nonregular fan network based on the branch 
current parameters, but formula (41) derived here is based on the potential parameters. However, the two results 
are the same in form even though they used two different methods of calculation. Eq. (41) is a general resistance 
formula of a nonregular fan network, by Eq. (41), we have a specific result as follows.

Application 12. When b1 = b2 = 1 (r1 = r2 = r0), Fig. 1 degrades into an regular m × n fan network, from (41), we 
have the effective resistance between d1(x1, y1) and d2(x2, y2) in the regular m × n fan network

∑
β β β

θ
=

+

− +

−
×

= +

R d d r
m

S S S S

F
( , ) 2

2 1

2

(1 cos )
,

(42)
m n

i

m i
y i

i
y i y i

i
y i

i n
i1 2

0

1

1,1
( )

,
2

1,2
( )

, , 2,2
( )

,
2

1
( )

1 2 1 2

where βx x
i
,

( )
k s

 reduces to β = ∆ ∆ −F Fk s
i

x
i

n x
i

,
( ) ( ) ( )

k s
.

Please note that refs23,25 have researched the resistance formula of the regular fan network, our formula (42) 
under the case of r1 = r2 = r0 is completely equivalent to the results of refs23,25. This comparison demonstrate the 
validity of the each other’s conclusion.

Searching for the explicit solutions of the potential function in a complex resistor network is important but 
difficult. This paper makes a new progress in the study of potential function of the nonregular fan network by 
using the RT-V method for the first time. This means that we obtain the analytical solution of the Poisson equa-
tion in a variety of boundary conditions because Poisson equation can simulated by resistor network model.

As applications of the RT method, we obtained a universal potential equation of a nonregular m × n fan resis-
tor network such as Eq. (6). Obviously, it is easy for us to derive the effective resistance by potential formula such 
as Eq. (41). As applications of formula (6) that many novel results are produced, such as the interesting results of 
Eqs (31–38), and the potential formulae of semi-infinite network are produced, such as Eqs (39–40).

References
 1. Kirchhoff, G. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer 

Ströme geführt wird. Ann. Phys. Chem. 148, 497–508 (1847).
 2. Kirkpatrick, S. Percolation & Conduction. Rev. Mod. Phys. 45, 497–508 (1973).
 3. Pennetta, C. et al. A biased resistor network model for electromigration phenomena in metallic lines. Phys. Rev. B. 70, 174305 

(2004).
 4. Katsura, S. & Inawashiro, S. Lattice Green’s functions for the rectangular and the square lattices at arbitrary points. J. Math. Phys. 12, 

1622 (1971).
 5. Woong, K. Combinatorial Green’s function of a graph and applications to networks. Advances in Applied Mathematics. 46, 417–423 

(2011).
 6. Klein, D. J. & Randi, M. Resistance distance. J. Math. Chem. 12, 8195 (1993).
 7. Caracciolo, R., De Pace, A., Feshbach, H. & Molinari, A. A statistical theory of the mean field. Annals of Physics. 262, 105–131 

(1998).
 8. Lai, M.-C. & Wang, W.-C. Fast direct solvers for Poisson equation on 2D polar and spherical geometries. Numer. Methods Partial 

Differ. Equ. 18, 56–68 (2002).
 9. Borges, L. & Daripa, P. A fast parallel algorithm for the Poisson equation on a disk. J Comput Phys. 169, 151–192 (2001).
 10. Tan, Z.-Z. Recursion-transform method and potential formulae of the m × n cobweb and fan networks. Chin. Phys. B. 26(9), 090503 

(2017).
 11. Cserti, J. Application of the lattice Greens function for calculating the resistance of an infinite network of resistors. American Journal 

of Physics. 68, 896–906 (2000).
 12. Giordano, S. Disordered lattice networks: general theory and simulations. Int. J. Circ. Theor. Appl. 33, 519–540 (2005).
 13. Wu, F. Y. Theory of resistor networks: the two-point resistance. J. Phys. A: Math. Gen. 37, 6653–6673 (2004).
 14. Tzeng, W. J. & Wu, F. Y. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A: Math. Gen. 39, 

8579–8591 (2006).
 15. Essam, J. W. & Wu, F. Y. The exact evaluation of the corner-to-corner resistance of an M × N resistor network: asymptotic expansion. 

J. Phys. A: Math. Theor. 42, 025205 (2009).
 16. Izmailian, N. Sh. & Huang, M.-C. Asymptotic expansion for the resistance between two maximum separated nodes on a M × N 

resistor network. Physical Review E. 82, 011125 (2010).
 17. Chair, N. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor 

network, and number theory. Annals of Physics. 341, 56–76 (2014).
 18. Chair, N. The effective resistance of the n-cycle graph with four nearest neighbors. J. Stat. Phys. 154, 1177–1190 (2014).
 19. Tan, Z.-Z. Resistor Network Model (Xi’an, China: Xidian University Press) (2011).
 20. Tan, Z.-Z., Zhou, L. & Yang, J.-H. The equivalent resistance of a 3 × n cobweb network and its conjecture of an m × n cobweb 

network. J. Phys. A: Math. Theor. 46(19), 195202 (2013).
 21. Izmailian, N. Sh., Kenna, R. & Wu, F. Y. The two-point resistance of a resistor network: A new formulation and application to the 

cobweb network. J. Phys. A: Math. Theor. 47, 035003 (2014).
 22. Izmailian, N. Sh. & Kenna, R. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. 09, 1742–5468 

(2014).
 23. Izmailian, N. Sh. & Kenna, R. The two-point resistance of fan networks. Chin. J. Phys. 53(2), 040703 (2015).
 24. Tan, Z.-Z., Essam, J. W. & Wu, F. Y. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E. 90(1), 012130 

(2014).



www.nature.com/scientificreports/

9Scientific REPORTs |  (2018) 8:5798  | DOI:10.1038/s41598-018-24164-x

 25. Essam, J. W., Tan, Z.-Z. & Wu, F. Y. Resistance between two nodes in general position on an m × n fan network. Phys. Rev. E. 90(3), 
032130 (2014).

 26. Tan, Z.-Z. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B. 
24(2), 020503 (2015).

 27. Tan, Z.-Z. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. 
Phys. Rev. E. 91(5), 052122 (2015).

 28. Tan, Z.-Z. Recursion-transform method to a non-regular m × n cobweb with an arbitrary longitude. Scientific Reports. 5, 11266 
(2015).

 29. Tan, Z.-Z. & Fang, J.-H. Two-point resistance of a cobweb network with a 2r boundary. Commun. Theor. Phys. 63(1), 36–44 (2015).
 30. Tan, Z.-Z. Theory on resistance of m × n cobweb network and its application. Int. J. Circ. Theor. Appl. 43, 1687–1702 (2015).
 31. Essam, J. W., Izmailian, N. Sh., Kenna, R. & Tan, Z.-Z. Comparison of methods to determine point-to-point resistance in nearly 

rectangular networks with application to a “hammock” network. Royal Soc. Open Sci. 2, 140420 (2015).
 32. Tan, Z.-Z. Two-point resistance of a non-regular cylindrical network with a zero resistor axis and two arbitrary boundaries. 

Commun. Theor. Phys. 67, 280–288 (2017).
 33. Tan, Z.-Z. & Zhang, Q.-H. Formulae of resistance between two corner nodes on a common edge of the m × n rectangular network. 

Int. J. Circ. Theor. Appl. 43, 944–958 (2015).
 34. Tan, Z. Z. Two-point resistance of an m × n resistor network with an arbitrary boundary and its application in RLC network. Chin. 

Phys. B. 25, 050504 (2016).
 35. Tan, Z.-Z. & Zhang, Q.-H. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-

transform method. Acta Phys. Sin. 66, 070501 (2017).
 36. Tan, Z.-Z., Zhu, H., Asad, J. H., Xu, C. & Tang, H. Characteristic of the equivalent impedance for an m × n RLC network with an 

arbitrary boundary. Front. Inform. Technol. Electron. Eng. 18, 2070–2081 (2017).
 37. Tan, Z. Z., Asad, J. H. & Owaidat, M. Q. Resistance formulae of a multipurpose n-step network and its application in LCnetwork. Int. 

J. Circ. Theor. Appl. 45, 1942–1957 (2017).

Acknowledgements
This work is supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161278), 
and National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No. 
201710304006), and the Prophase Preparatory Project of Natural Science Foundation of Nantong University, 
China (Grant No. 15ZY16).

Author Contributions
Tan, Zhen conceived the project. Tan, Zhi-Zhong performed and analyzed formulae calculations. Chen, Jianxin 
check and validate the correctness of the calculations. All authors contributed equally to the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Potential formula of the nonregular m × n fan network and its application
	Results
	Several definitions. 
	Two general potential formulae. 

	Method
	RT-V method. 
	Building recursion relations. 
	Approach of matrix transform. 
	General solutions of the matrix equations. 
	Inverse matrix transformation. 

	Discussion
	Applications of the potential formula. 

	Acknowledgements
	Figure 1 An 6 × 9 fan resistor network with two arbitrary boundaries.
	Figure 2 An 6 × 7 snail network of resistors, which is a kind of topological structure of fan network when the resistor on the right edge is zero.
	Figure 3 An 6 × 14 hart network of resistors, which is a kind of topological structure of fan network when the resistors on the left and right boundaries are zero.
	Figure 4 Segment of resistor network with resistor and potential parameters.




