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Hemodynamic Changes Before and 
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Prospective observation of hemodynamic changes before and after the formation of atherosclerotic 
stenosis in the carotid artery is difficult. Thus, a vessel surface repairing method was used for 
retrospective hemodynamic study before and after atherosclerotic stenosis formation in carotid artery. 
The three-dimensional geometry of sixteen sinus atherosclerotic stenosis carotid arteries were repaired 
and restored as normal arteries. Computational fluid dynamics analysis was performed to estimate 
wall shear stress (WSS), velocity and vortex in atherosclerosis-free areas and sinus in stenosis-repaired 
carotid artery. The analysis was also performed in the stenotic segment and upstream and downstream 
of stenosis in stenotic carotid artery. Compared to the atherosclerosis-free areas in stenosis-repaired 
carotid artery, sinus presented significantly lower WSS (P < 0.05), lower velocity (P < 0.05) and 
apparent vortex. Compared to the sinus, the WSS in the upstream of stenosis was lower (P < 0.05), 
while in the downstream area was similar (P = 0.87), both upstream and downstream of stenosis 
demonstrated similar velocity to sinus (P = 0.76 and P = 0.36, respectively) and apparent vortex. 
Atherosclerosis-prone areas including normal carotid sinus and upstream and downstream of stenosis 
in stenotic carotid artery were subjected to lower WSS and velocity as well as apparent vortex, thereby 
might be associated with the formation and progress of atherosclerosis.

Atherosclerotic disease is the major cause of ischemic stroke or transient ischemic attack1,2. The formation 
and progression of atherosclerosis are caused by complicated pathological process under long-term, compli-
cated hemodynamic actions3,4. Thus, understanding the specific hemodynamic factors before the formation of 
moderate and severe stenosis of the carotid artery is crucial, as stenosis constitutes the major sources of brain 
embolism5–7. Previous studies evaluated the correlation between atherosclerosis and hemodynamic factors in 
normal and stenotic carotid arteries from different participants8,9. However, only limited data are available on the 
follow-up of the normal carotid artery and atherosclerotic stenosis formation, that prompts a prospective com-
parative study. Prospective observation of hemodynamic changes during the formation of atherosclerotic stenosis 
is extremely difficult and often restricted because it is time-consuming and cost-ineffective; also, ethical issues are 
involved. Therefore, the development of an economic and efficient method to study the hemodynamic changes 
before and after atherosclerotic stenosis formation is pivotal.

Image-based computational fluid dynamics (CFD) methods can provide blood velocity non-invasively in vivo, 
from which, wall shear stress (WSS) and blood flow patterns can be calculated and analyzed with spatial resolu-
tions exceeding those of the in vivo methods10,11. Thus, CFD can offer an additional layer of functional informa-
tion to enrich the anatomical information. Moreover, CFD can virtually remove and repair the lesion segment 
similar to the normal artery, thereby permitting the analysis of alternative flow scenarios resulting from various 
states of vessels12,13. Therefore, in this study, we used the vessel surface repairing method to virtually remove and 
repair the carotid sinus stenosis similar to the normal carotid artery. After hemodynamic analysis using CFD in 
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stenotic carotid arteries and stenosis-repaired carotid arteries. Herein, we demonstrated specific hemodynamic 
features of the stenosis-repaired segment (sinus) and upstream and downstream of stenosis that might provide an 
in-depth understanding of the atherosclerotic formation and progress in a retrospective study.

Results
From September 2012 to September 2013, 16 patients with stenotic carotid artery were included. Patients’ char-
acteristics were shown in Table 1.

Morphology features. A total of sixteen carotid arteries (six left and ten right carotid arteries) with ather-
osclerotic stenosis were analyzed, of which, twelve had moderate stenosis, and four had severe stenosis. Different 
components were identified in these plaques. Lipid necrotic core was found in thirteen plaques, calcification was 
displayed in ten plaques, and hemorrhage was found in six cases. However, no ulcer or thrombus was found in 
these plaques. Five carotid arteries underwent carotid artery stenting, and the other eleven patients treated with 
medication only.

Hemodynamic features. Hemodynamic features of normal carotid artery. In normal carotid artery, the 
carotid sinus manifested significantly lower WSS than on ROP and outer and inner lateral wall at CCA and ICA 
level (Fig. 1a). The sinus also featured significantly lower velocity than on ROP and at the CCA and ICA level 
(Fig. 1b–f). In the sinus, the direction of the flow was altered for vortex formation (Fig. 1e).

Hemodynamic features of stenosis-repaired carotid artery. In stenosis-repaired carotid artery, carotid sinus had 
significantly lower WSS than on ROP and outer and inner lateral wall at the CCA and ICA level (Table 2, Fig. 2b). 

Variables Mean ± SD/n (%)

Age, yr 68.21 ± 13.27

Male gender 10 (62.50%)

BMI, kg/m3 24.17 ± 2.39

Previous stroke/TIA 11 (68.75%)

Hypertension 10 (62.50%)

Diabetes 11 (68.75%)

Hyperlipidemia 12 (75.00%)

Table 1. Baseline data of stenotic carotid artery patients (n = 16).

Figure 1. Distribution of WSS (a) and velocity (b–f) in the normal carotid artery. The sinus featured with low 
WSS value was indicated in dark blue. Velocity streamlines and axial cut planes with in-plane velocity vectors 
in normal carotid artery represented the laminar flow started from CCA (f) and impinged to the bifurcation, 
changed its direction, slowed down and formed a vortex in the sinus (e), and returned to the laminar flow at 
ICA (d).
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The sinus had significantly lower velocity than on ROP and at the CCA and ICA level (Table 2, Fig. 2h–l). The flow 
in sinus slowed down and formed the vortex (Fig. 2k).

Hemodynamic features of stenotic carotid artery. For stenotic carotid artery, the STE located in the sinus had sig-
nificantly increased WSS as compared to the counterpart (sinus) in the stenosis-repaired carotid artery (Fig. 2a). 
The velocity was significantly increased at STE as compared to the corresponding sinus in the stenosis-repaired 
carotid artery (Fig. 2f) (Table 3).

Hemodynamic features at the upstream and downstream of stenosis. The upstream and downstream of stenosis 
in stenotic carotid artery in comparison to the stenosis-repaired carotid artery revealed low WSS and velocity 
(Table 4). The WSS at SUP was significantly lower than sinus in the stenosis-repaired artery. The WSS at SDO 
did not differ significantly from the sinus in the stenosis-repaired artery. The velocity at SUP and SDO was not 
significantly different as compared to a sinus in the stenosis-repaired artery. Both SUP and SDO developed the 
vortex. In conclusion, both SUP and SDO were characterized by low WSS and low velocity with a vortex that was 
similar to the sinus (Fig. 2a and c–g).

Formation of further stenosis. We followed up one case (of sixteen) for 4 years to detect the next location for 
further stenosis. In 2012, WSS at the SDO and SUP was lower than that on the walls of the surrounding areas 
(Fig. 3a). At the SDO and SUP, the velocity was significantly lower with a vortex in the outer lateral layers than 
the surrounding areas (Fig. 3c–e). The SDO and SUP areas of the carotid artery (2012) showed the progression of 
plaques in 2016 accompanied by significantly increased WSS and velocity (Fig. 3b and f–h). The significant steno-
sis progression in SDO and SUP in the carotid artery (2012) supported the result that the stenosis might progress 
at the areas with low WSS, low velocity, and vortex.

Discussion
The present study used vessel surface repairing method for a retrospective hemodynamic analysis in carotid 
artery before and after atherosclerotic stenosis formation. We found that (1) the carotid sinus in stenosis-repaired 
carotid artery was subjected to low WSS and low velocity, as well as, apparent vortex and (2) hemodynamic analy-
sis at stenotic carotid artery showed that the upstream and downstream of stenosis were subject to extremely low 
WSS, low velocity, and apparent vortex.

A previous study demonstrated that the sinus in normal carotid artery featured low WSS, low velocity, and 
apparent vortex. The stenosis-repaired carotid arteries exhibited characteristics similar to the normal carotid 
artery. To the best of our knowledge, this is the first study that investigated the hemodynamic parameters in 
atherosclerotic stenosis and stenosis-repaired carotid artery by CFD based on three-dimensional CE-MRA 
data for longitudinal research. The data modeling of the target vessel is the initial step for hemodynamic anal-
ysis. Recently, CFD-based analysis of atherosclerosis has become a crucial method for modeling the vessel and 
investigating the mechanism underlying atherosclerotic formation and progression. CFD allows for an in vivo 
assessment of individual hemodynamics with high reproducibility14. In addition to the visualization of complex 
three-dimensional blood flow patterns at any ROI in the vessel, CFD can virtually remove and repair the lesion 
segment back to the nearly normal artery12,13. A precise recovery of the atherosclerotic artery is vital. We used the 
mean and variance curvature calculation method to determine the filling data in the missing area based on the 
complex of the boundary contour of the vessel model. Then, the calculated data in the atherosclerotic area was 
used to construct a continuous surface that was similar to the original surface13. Gao et al.12 used the vessel surface 
repairing method to remove an aneurysm virtually and reconstructed the surface to simulate the normal basilar 
bifurcation and compared to the basilar arteries with and without an aneurysm by CFD. Similarly, we virtually 
removed the stenosis and restored to the nearly normal carotid artery. Thus, the sinus in the stenosis-repaired 
carotid arteries truly developed the atherosclerotic plaque for analysis without the influence of geometry and 
clinical factors. Using this novel approach, we compared the hemodynamic parameters between stenosis-repaired 
and stenotic carotid artery similar to the longitudinal research and observed the effect of the hemodynamic fea-
tures on atherogenesis and atherosclerosis progression.

CFD revealed that low WSS, low velocity, and vortex might be associated with atherogenesis at the 
stenosis-repaired carotid artery. Areas of the artery with uniform geometry, such as the CCA were exposed to 
an uninterrupted, unidirectional flow, which exerted a physiological WSS. With the bifurcation and expansion 
of vessel in the sinus, the flow skews and shifts towards the inner wall of the ICA, and therefore sinus is exposed 
to low and disturbed flow15–17. The disturbed flow with vortex resulted in an energy loss in the sinus, leading to 
a reduction in the flow velocity and WSS18. Several mechanisms have been proposed to elucidate the association 

WSS (Pa)

P

Velocity (m/s)

Psinus vs. atherosclerosis-free area sinus vs. atherosclerosis-free area

ROP 4.66(3.13–6.25) vs. 14.30(12.90–20.13) <0.001 0.43(0.18–0.65) vs. 1.20(1.08–1.43) <0.001

cca-out 4.66(3.13–6.25) vs. 6.51(5.55–7.02) <0.001 0.43(0.18–0.65) vs. 0.94(0.78–1.03) <0.001

cca-in 4.66(3.13–6.25) vs. 7.05(5.05–8.53) 0.014 0.43(0.18–0.65) vs. 0.79(0.61–0.90) <0.001

ica-out 4.66(3.13–6.25) vs. 12.20(7.32–18.05) <0.001 0.43(0.18–0.65) vs. 0.91(0.38–2.04) <0.001

ica-in 4.66(3.13–6.25) vs. 8.71(6.24–23.13) <0.001 0.43(0.18–0.65) vs. 1.29(0.90–1.88) <0.001

Table 2. WSS and Velocity in stenosis-repaired artery: sinus compared with atherosclerosis-free areas (ROP, 
cca-out, cca-in, ica-out, ica-in). median (P25-P75).
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between low WSS and atherogenesis, including the modulation of endothelial function and structure, regulation 
of gene expression, modification of bulk transport of lipids, and promotion of monocyte adhesion to the endothe-
lial wall19–21. This finding was in accordance with those of previous studies. Consequently, a reverse study via 
vessel surface repairing method of the diseased artery may be applied as a prospective study.

Furthermore, the progressive change in the hemodynamic profile with atherosclerotic plaque formation was 
observed. Downstream to stenosis, a fundamental shift in hemodynamics, with low WSS, low velocity, and the 

Figure 2. Distribution of WSS and velocity in a stenotic carotid artery and stenosis-repaired carotid artery. The 
zones characterized with low WSS value were indicated in the dark blue, and thus, presumed to be susceptible 
to atherosclerosis formation and development. Velocity streamlines and axial cut planes with in-plane velocity 
vectors in stenosis-repaired carotid artery represented the laminar flow started from CCA (l) and impinged 
to the bifurcation, changed its direction, slowed down and formed a vortex in the sinus (k), and returned to 
laminar flow at ICA (j). Velocity vectors in k of the sinus are depicted with low velocity (blue and short vectors) 
and vortex in this region. Velocity streamlines and axial cut planes with in-plane velocity vectors in stenotic 
carotid artery represented low velocity (blue and short vectors) and vortex in SUP (g), sped up in STE (f), and 
formed low velocity (blue and short vectors) and vortex in SDO (e).

STE vs. sinus P

WSS (Pa) 23.80(14.54–27.13) vs.4.66 (3.13–6.25) <0.001

Velocity (m/s) 1.33(1.06–1.76) vs.0.43 (0.18–0.65) <0.001

Table 3. WSS and velocity in STE in stenotic carotid artery compared with sinus in stenosis-repaired carotid 
artery. median (P25-P75).
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WSS (Pa) P Velocity (m/s) P

SUP vs. sinus 3.44(1.98–4.64) vs.4.66 (3.13–6.25) <0.001 0.43(0.24–0.68) vs. 0.43(0.18–0.65) 0.762

SDO vs. sinus 5.16(1.86–11.83) vs. 4.66(3.13–6.25) 0.873 0.21(0.11–0.92) vs. 0.43(0.18–0.65) 0.357

Table 4. WSS and velocity in SUP and SDO of stenotic carotid artery compared with sinus in stenosis-repaired 
carotid artery. median (P25-P75).

Figure 3. Distribution of WSS and velocity at a follow-up case for four years. An 80-year-old male with 
hypertension for 12 years and diabetes for 9 years had frequent attacks of dizziness and blurred vision in 
December 2012; CE-MRA revealed atherosclerotic stenosis in the left proximal ICA. In February 2016, he had a 
transient ischemic attack and exacerbated stenosis was demonstrated in the left carotid artery by CE-MRA. WSS 
on the wall of the stenotic carotid artery of 2012 (a) and 2016 (b). The upstream and downstream of stenosis 
in a stenotic artery of 2012 characterized by low WSS value was indicated in blue, and thus, presumed to be 
susceptible to the further development of atherosclerosis. (b) Showed the progression of atherosclerotic plaque 
in the upstream and downstream area of stenosis in the stenotic artery of 2012. Velocity axial cut planes with 
in-plane velocity vectors in the stenotic artery of 2012 (c–e) and 2016 (f–h) represented low velocity (blue and 
short vectors) and vortex in upstream (e) and downstream (d) of stenosis in 2012 and sped up in counterparts 
(h and g) in 2016.
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vortex was noted. Huang et al.22 found that plaque was initiated in the sinus and progressed downstream as 
analyzed in thirty patients with different stages of stenosis. Michael et al.8 compared seventeen stenotic carotid 
arteries with sixty-four normal carotid arteries and found that the presence of moderate-proximal ICA stenosis 
distinctly altered the low WSS to move distally to the ICA plaque. Birchall et al.23 observed the low WSS, veloc-
ity, secondary turbulence, and recirculating flows downstream to the stenosis with respect to progression. The 
current study was in agreement with above studies that low WSS, low velocity, and vortex distribution at the 
downstream contributed to the plaque development on the distal side. In addition, we found that the upstream 
side was also characterized by low WSS, low velocity, and apparent vortex. The follow-up case showed that the 
further stenosis was not only located in SDO but also SUP. Sousa et al.14 revealed a low WSS value in the sinus 
region, as well as upstream and downstream of stenosis. However, only one patient with bifurcation stenosis was 
included in the study. Herein, we extended and supported their conclusion with sixteen stenotic carotid arteries.

The present study has several limitations. The main limitation of this study was that the vessel surface repairing 
method only made the stenosis-repaired carotid arteries normal-like rather than true normal ones. In addition, 
although vessel wall repairing method had been applied in aneurysms12,13, there was rarely applied in stenotic 
carotid artery. The feasibility of this method needs to be confirmed. The second limitation was that although the 
present atherosclerotic and hemodynamic analyses potentiate some factors for the diffused progression of carotid 
artery disease, the natural progression history of carotid atherosclerosis associated with hemodynamic factors 
may be clarified when carotid arteries are examined by the subsequent follow-up studies in the same patients. 
The last limitation was that in elucidating the hemodynamic parameters role in the progress of plaque, only the 
plaques exist or not was considered. Further studies with various stenosis degrees, volume, and additional factors 
are imperative.

Conclusions
The sinus in the stenosis-repaired artery and upstream and downstream of stenosis in stenotic artery harbor 
a hemodynamic environment characterized by low WSS, low velocity, and apparent vortex, might be associ-
ated with the formation and progression of atherosclerosis. Herein, the hemodynamic study of virtually repaired 
carotid arteries by CFD seems a promising method. These results can support further experimental studies inves-
tigating the multifactorial driving forces accompanied by the hemodynamic factor underlying the initiation and 
progression of carotid atherosclerosis.

Methods
Ethics approval of the study protocol. This study was conducted in accordance with the Declaration 
of Helsinki and approved by the Ethics Committee of the Renji Hospital of Shanghai Jiao Tong University with 
signed informed consent obtained from all subjects.

Patient and angiographic data. The clinical and imaging data of carotid arteries with sinus moderate and 
severe atherosclerotic stenosis (stenosis degree ≥30%) from sixteen subjects were collected between September 
2012 and September 2013. Stenosis degree was defined according to the North American Symptomatic Carotid 
Endarterectomy Trial criteria, with the following equation: (1 − LDmin/RD) × 100, where LDmin is mini-
mum lumen diameter and RD is reference diameter and the minimum lumen diameter was defined as the 
narrowest diameter of the stenotic lesion, measured in the direction perpendicular to the artery, and the ref-
erence diameter was defined as the normal diameter distal to the carotid artery lesion24,25. In addition, twelve 
patients with sixteen normal carotid arteries as normal controls were enrolled in the study. All these subjects 
underwent contrast-enhanced magnetic resonance angiography (CE-MRA) on a 3.0 T MR scanner (Achieva, 
Philips Healthcare, Best, the Netherlands) using an eight-channel phased-array carotid artery coil (Shanghai 
Chenguang). The following parameters were set: slice thickness, 2 mm; repetition time (ms)/echo time (ms), 
5.1/1.69; field of view, 25.0 × 15.9 cm; acquisition matrix, 250 × 159; acquisition matrix, 1 × 1 mm; acquisition 
time, 39s. The three-dimensional CE-MRA data of the stenotic and normal carotid arteries in these subjects were 
output as digital imaging and communications in medicine (DICOM).

CFD analysis. The three-dimensional CE-MRA data were analyzed by Amira 5.2.2 software (Visage Imaging, 
San Diego, CA, USA). The stenotic segment of the carotid arteries was repaired and restored to nearly normal 
carotid sinus using the MeshLab software (version 1.2.2, Visual Computing Lab, ISTI, CNR, Toscana, Italy). All 
the stenotic arteries, stenosis-repaired arteries, and normal arteries were generated by hybrid, predominantly 
high-resolution hexahedral mesh using Harpoon (version 4.3 SHARC Ltd, Manchester, UK). A typical mesh 
contained approximately 1000,000 cells with an entrance length measured at least ten vessel diameters prox-
imal to the carotid bifurcation in order to ensure the development of a Womersley flow profile26. Blood flow 
in the three-dimensional reconstructed models was simulated based on the unsteady incompressible Navier–
Stokes equations using the finite-volume method with Ansys Fluent software (version 6.3.26 Ansys, Lebanon, 
NH, USA). The inflow boundary condition of each model was defined at the inlet of the common carotid artery 
(CCA). We imposed time-varying velocity profile at the CCA inlet based on patient-specific flow waveform meas-
ured by ultrasound. All hemodynamic parameters were measured at the peak of the systolic phase. The vascular 
wall was presumed to be rigid, and velocity conditions obeyed the nonslip and nonpenetration constraints posed 
by the wall.

Six regions of interest (ROIs) in stenosis-repaired and normal carotid arteries were obtained for analysis, 
including five atherosclerosis-free areas [internal carotid artery (ICA) opposite to sinus (ROP) and outer and 
inner lateral at CCA and ICA level] and sinus. CCA level and ICA level were located at the three vessel diameters 
proximal and distal to the bifurcation, respectively27. Four ROIs in stenotic arteries were obtained for analysis, 
including the maximal stenotic segment (STE), the ICA opposite to STE (SOP), and upstream and downstream 
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of stenosis that was located in the outer lateral of normal carotid areas proximal and distal to the plaque (SUP and 
SDO, respectively). The hemodynamic parameters of WSS and velocity were obtained. Continuous variables were 
reported as median (P25-P75). Wilcoxon rank sum test was used to analyze the WSS and velocity. P values <0.05 
were considered significant. The streamlines and vectors of the flow illustrated the flow pattern (Fig. 4).

Data Availability Statement. All data generated or analyzed during this study are included in this pub-
lished article.
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