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A band of bound states in the 
continuum induced by disorder
Yi-Xin Xiao, Zhao-Qing Zhang & C. T. Chan

Bound states in the continuum usually refer to the phenomenon of a single or a few discrete bound 
states embedded in a continuous spectrum of extended states. Here we propose a simple mechanism to 
achieve a band of bound states in the continuum in a class of disordered quasi-1D and quasi-2D systems, 
where the bound states and extended states overlap completely in a spectral range. The systems 
are partially disordered in a way that a band of extended states always exists, not affected by the 
randomness, whereas the states in all other bands become localized and cover the entire spectrum of 
extended states. We demonstrate such disordered-induced bound states in the continuum in disordered 
multi-chain and multi-layer systems.

Disorder plays an important role in many fields of physics. It is well known that interference between multi-
ply scattered waves can disrupt the transport of electrons and classical waves in disordered media and make 
the transport diffusive1,2. In 1958, Anderson predicted that disorder can even completely stop diffusion3. A 
widely-accepted feature of Anderson localization is that all states are localized in one- (1D) and two-dimensional 
(2D) disordered systems due to coherent backscattering effects1,2,4, while three-dimensional (3D) random media 
have a mobility edge1,2,5 that separates localized states from extended states6,7. The above results hold in general 
for completely disordered systems in which localized states and extended states do not coexist. An interesting 
question is whether localized states can coexist with extended states if the system is not completely disordered. 
The answer is not obvious because any overlap of two kinds of states can result in resonance-type extended states 
even with an infinitesimal coupling.

A similar question on whether a bound state can exist in the continuum of extended states (BIC) had been 
raised by Von Neumann and Wigner in 19298 shortly after the advent of quantum mechanics. In the past few 
years, BICs have been achieved by several different mechanisms in various ordered systems9–25. However, in those 
systems, only one or a few discrete BICs were achieved.

In this work, we propose a mechanism to achieve a band of BICs induced by disorder in a class of quasi-1D 
and -2D systems. The systems are partially disordered in a way that the Hilbert space can be partitioned into 
two subspaces, so that the states in one subspace are unaffected by the presence of randomness and are hence 
extended, whereas wavefunctions in all other bands get localized by randomness. Different from the BICs found 
previously, here the disorder-induced BICs form a band and spectrally overlap with the continuum of extended 
states. We explicitly demonstrate such bands of BICs in multi-chain and multi-layer systems.

We first numerically demonstrate disorder-induced BICs in a multi-chain system described by a 
nearest-neighbor tight-binding Hamiltonian. The system consists of 2N + 1 (=51) coupled chains placed in the x 
direction, as depicted in Fig. 1(a). In the absence of disorder, the system is periodic in the x direction and all the 
chains are identical. There are 2N + 1 sites per unit cell. The lattice constant is a = 1, and all on-site energies and 
hopping parameters are taken to be zero and a constant t, respectively. The band structure of the multi-chain 
system, as shown in Fig. 1(b), comprises 2N + 1 bands. The central band marked by the blue curve has exactly the 
same dispersion relation =E t ka/ 2 cos( ) as that of a single chain, as we shall see later. Now we partially rand-
omize the system by adding random on-site energies εi to every second chain, namely the red sites in Fig. 1(a). 
Now N out of 2N + 1 chains are disordered. To study the Anderson localization properties of such a system, we 
truncate each chain in the x direction to M (=60) sites (assuming hard-wall boundary condition) and numerically 
calculate the eigen-functions and the participation ratio (PR) of each eigenstate, which is defined as 
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, where cn are the components of an eigenstate |ϕ〉 = ∑ncn|n〉 and |n〉 denotes the atomic orbitals. 

For the case of uniform randomness εi/t ∈ [−5, 5], the calculated energy spectrum and the participation ratios of 
all eigenstates are plotted in increasing energy in Fig. 1(c and d), respectively. Figure 1(d) shows clearly a stark 
contrast of two types of states: Type 1 contains M (=60) states with large values of PR (marked by blue dots) and 
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Type 2 contains 2N × M (=3000) states with much smaller PR (marked by red dots). These two types of states 
overlap spectrally in the band of extended states. We will show analytically later that Type 1 states are extended 
states having exactly the same spectrum as that of an isolated chain, i.e., the blue curve in Fig. 1(b), unaffected by 
the randomness, and Type 2 states are Anderson localized states. We show the wavefunctions of two types of 
states at the same chosen energy in Fig. 1(e and f), which clearly demonstrate their spatial overlap. Thus, we have 
demonstrated Anderson localized states and extended states in a band region, namely a band of disorder-induced 
BICs in such systems. It should be stressed that although the extended states constitute an insignificant portion, 
i.e.1/(2N + 1), of the whole space of eigenstates in the thermodynamic limit N → ∞, nevertheless they occupy a 
significant portion of the entire spectrum as shown in Fig. 1(b and c).

The occurrence of extended states in such a partially disordered system is explained as follows. Basically, 
such systems consist of multiple identical copies of A subsystems with adjacent copies separated and coupled by 
an intermediate B subsystem. The A and B subsystems can be chains or layers. In the absence of randomness, B 
subsystems are also identical. A simple example has been shown in Fig. 1(a), in which A and B subsystems are 
identical chains but denoted by blue and red, respectively. The Hamiltonian of a system containing N + 1 copies 
of A and N copies of B can be expressed as

Figure 1.  (a) A square lattice comprising multiple chains extending in the x direction. (b) The band structure 
with one band in blue color characterized by the same dispersion relation as that of an isolated chain. (c) The 
energy spectrum showing the spectral coexistence of extended states and localized states in the presence of 
onsite disorder on alternating chains (i.e. red sites). (d) The participation ratios of all the eigenstates. (e) and (f) 
show two states with the same eigen-energy E/t = 1.93, one is extended and the other is localized.
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where HA and HB are, respectively, the Hamiltonians of A and B subsystems. B  contains N copies of HB. If we 
assume that all subsystems are finite, each with M sites, the dimensions of HA and HB are M × M. The dimensions 
of Hsys and B  in Eq. (1) become (2N + 1)M × (2N + 1)M and NM × NM, respectively. The block matrices Ti 
denote the couplings between A and B and have dimensions M × NM. The explicit form of Hsys in Eq. (1) for small 
values of N and M can be found in Supplementary Information. It will be shown analytically below that the cou-
pled system Hsys always contains a set of eigenvalues which are the same as those of an isolated A subsystem, 
similar to the blue band in Fig. 1(b). This implies that the Hamiltonian can be block diagonalized to contain one 
isolated block HA, namely
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where Q is a unitary matrix and ′  is the other block with dimensions 2NM × 2NM. From Eq. (3), it is easy to see 
that the Hilbert space of the system is partitioned into two subspaces. Now we introduce randomness into every 
B subsystem, which randomizes the block ′. Since the subspace associated with HA is not affected by the disor-
der, all eigenstates in this subspace are extended. The randomness in the other subspace represented by ′ gives 
rise to localized states. It is shown in Supplemental Information that each extended eigenstate in the HA subspace 
is a direct sum of all eigenvectors of the N + 1 A subsystems, and has vanishing amplitudes on the B subsystems. 
Since the localized states in ′ subspace also involve atomic orbitals of the A subsystem, the spatial coexistence 
of two types of states naturally occur and form a band of BICs. The spectral overlap can always be achieved by 
adjusting the randomness. We thus have a very general mechanism to achieve a band of bound states in a class of 
quasi-1D and -2D partially disordered systems.

To be more explicit, we consider a minimal model of three coupled chains, each truncated to contain M sites, 
where random on-site energies εi are introduced in the middle chain as shown in Fig. 2(a). The Hamiltonian of 
the system becomes
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where all the matrix elements are block matrices with dimensions M × M. HA and HB denote, respectively, the 
Hamiltonians of the blue and red chains. The inter-chain couplings are represented by T1 = tIM and T2 = tIM, 
where IM denotes an identity matrix. We assume that the single-chain Hamiltonian HA satisfies the eigen-equation 
HAP = PΛ, where Λ = diag(λ1, λ2, …, λM) is a diagonal matrix and λi’s are the eigenvalues of HA, and P = (ϕ1, ϕ2, 
…, ϕM) comprises M columns of eigenvectors of HA. A similarity transformation HS = X−1 HmX with X = diag(P, 
P, IM) can be applied so that
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We note that when inter-chain couplings are absent, namely T1 = T2 = 0, there are two degenerate sets of eigen-
values λi, i = 1, …, M. The presence of [T1P, T2P] can lift the degeneracy of λi but leave a set of λi as the eigenval-
ues of Hs, thus also of Hm, independent of HB. This can be seen as follows. For each degenerate pair of eigenvalue 
λi of HA, the effects due to HB can be described by a simplified version of Eq. (5), i.e.,

λ ϕ
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Since the rank of the coupling block [tϕi, tϕi] is 1, where ϕi is the column eigenvector with respect to the 
eigenvalue λi of HA, by the rank-nullity theorem26, λi remains to be an eigenvalue of HS, thus also of Hm, inde-
pendent of HB. Applying the same argument to all λi, we have shown that a set of eigenvalues λi of HA remains 
and, therefore, Hm can always be block diagonalized into the following form,
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by a unitary transformation HBD = Q−1 HmQ. Concrete examples with explicit block diagonalization can be found 
in Supplementary Information. The above block diagonalization means a particular separation of Hilbert space 
into two subspaces. We call the subspace spanned by the eigenvectors corresponding to the invariant eigenvalues 
λi as the invariant subspace. For each eigenvalue λi, the associated eigenvector Φi can be expressed as the direct 
sum of three parts corresponding to the three chains, namely

ϕ ϕ ϕΦ = − ⊕ ⊕
1
2

1
2
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where ϕ i
A

1,  and ϕ i
A

2,  are the normalized eigenvectors of the two A (blue) chains and both correspond to the eigen-
value λi. And ϕB is a zero vector with M components. That is to say, the anti-symmetric “combination” of the 
eigenvectors ϕ i

A
1,  and ϕ i

A
2,  of the two separate blue chains constitutes an eigenvector Φi for the whole 

coupled-chain system, which has odd parity, conforming to the mirror symmetry in the y direction, and vanishes 
at the sites in the middle chain. The fact that the degeneracy of λi (in the absence of inter-chain couplings) out-
numbers the coupling channels brought by inter-chain couplings guarantees λi to be an eigenvalue for the 
coupled-chain system. Specifically, it is essential that blue chains (HA) outnumbers red chains (HB) by one to 
achieve a block diagonal form with one diagonal entry being HA, as shown in Eq. (3). Note such a block diagonal-
ization is valid for more general configurations of inter-chain couplings, such as including next-nearest-neighbor 
hoppings, as shown in Supplemental Information. Since the invariant subspace does not involve the sites at the 
middle chain, the disorder (both diagonal and off-diagonal) introduced into the middle chain will not affect the 
invariant subspace. Consequently, states in the invariant subspace will remain extended, whereas all other eigen-
states corresponding to the ′ subspace become localized due to the presence of disorder. The spectral coexist-
ence and therefore a band of BICs can always be achieved by adjusting the randomness. Since both subspaces 
involve the atomic orbitals at the A chains, the extended states and localized states will surely also coexist 
spatially.

We can generalize the system from three chains to 2N + 1 chains with N + 1 identical A chains separated and 
coupled by another N B chains. Following the similar procedure, it can be shown that the Hilbert space can be 

Figure 2.  (a) A three-chain system: each chain contains M sites and on-site disorder is introduced to the 
middle chain. (b) A multilayer system comprising multiple AA-stacked honeycomb-lattice layers. (c) The band 
structure of the multilayer system.
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split into two subspaces with an invariant subspace spanned by M eigenvectors having the form 
ϕ ϕΦ = ⊕ ⊕=

+ c( )i n
N

n n i
A B

1
1

,  (i = 1, …, M), each corresponds to the eigenvalue λi of the whole coupled-chain system. 
Here ϕn i

A
,  is the normalized eigenvector for the n-th A chain with eigenvalue λi and ϕB is a NM-component zero 

vector. The key is that the identical A chains outnumbers the B chains by 1 so that eigenvector components on 
each adjacent pair of A chains add destructively and vanish at the intermediate B chain, as detailed in 
Supplementary Information. There is always an invariant subspace and all the eigenstates therein are extended, 
whatever disorder is added on the B chains. The coexistence of extended states and localized states shown in Fig. 1 
validates the above analysis.

Noticing the generality of the above analysis, it is quite obvious that the particular separation of Hilbert space 
is not limited to quasi-1D systems, but can also be applied to quasi-2D multilayer systems constructed similarly 
to achieve the spectral and spatial coexistence in coupled-layer systems. As an example, we consider a system 
comprising 2N + 1 (N = 6) AA-stacked honeycomb-lattice layers as shown in Fig. 2(b). Assuming the system is 
periodic in the x and y directions, we can compute its band structure. Since the honeycomb lattice is a two-band 
model, there should be totally 2(2N + 1) (=26) bands as shown in Fig. 2(c), in which two invariant bands are 
denoted by blue curves. We now introduce uniform diagonal disorder εi ∈ [−20, 20] to every B (red) layer and the 
system is truncated to contain 420 sites per layer. Open boundary conditions are assumed. The energy spectrum 
and participation ratios are shown in Fig. 3(a and b). They clearly show the spectral coexistence of the two differ-
ent types of states in a band. A few eigenstates near zero energy have low participation ratios but are depicted by 
blue dots (marked as extended states) because they are edge states localized on the zigzag edges of ordered (A) 
layers and are actually from the invariant subspace. To further demonstrate the spectral coexistence, the absolute 
values of wavefunctions |ψ(x, y, z)| of two states at the same energy are denoted by colored dots at (x, y, z), as 
shown in Fig. 3(c and d). For better visualization, the sizes of the dots are scaled to be proportional to |ψ(x, y, z)|. 
The two states show markedly different nature: one is extended, and the other is localized. Their spatial coexist-
ence is clearly seen.

In short, we proposed a method to create a band of disorder-induced BICs in a class of systems, in which the 
Hilbert space can be partitioned in a way that the disorder affects only one subspace causing localization, while 
the states in the other subspace remain extended. The disorder-induced BICs are demonstrated explicitly in both 
multi-chain and multi-layer systems. We want to emphasize that the method we propose is very general. It is not 
limited to the multi-chain and multi-layer systems demonstrated here. It applies universally to any similar struc-
tures as long as the identical copies of A subsystem outnumber that of B subsystem so that there is a particular 
subspace immune to degrees of freedom of the B subsystems, namely sites on the B subsystems. Such systems 

Figure 3.  (a) The coexistence of extended states and localized states in the energy spectrum of a system 
consisting of multiple honeycomb layers, where diagonal disorder is added to alternating layers. (b) The 
participation ratios of all the eigenstates. (c) and (d) show two states with the same eigen-energy E/t = 2.51, one 
is extended and the other is localized.
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can be experimentally realized using coupled optical waveguides27,28 and cold atoms29–32. Our results imply that 
any energy stored in the localized states will not be carried away by energy transport in the eigen-channels of 
extended states although the energies in these two types of states overlap both spectrally and spatially.
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